
Runway Incursion Event Forecast Model based 
on LS-SVR with Multi-kernel 

Guimei Xu1, Shengguo Huang2 
College of Civil Aviation, 

Nanjing University of Aeronautics and Astronautics, 
Nanjing, China 

Email: 1xgm2000@126.com, 2huangsg@nuaa.edu.cn 
 
 
Abstract—Forecasting of runway incursion event is very 
significant to guide the job of civil aviation safety 
management. It is an important part of the runway 
incursion early warning management. However, prediction 
of runway incursion event is a complicated problem due to 
its non-linearity and the small quantity of training data. As 
a novel type of learning machine, support vector machine 
(SVM) has been gaining popularity due to their promising 
performance, such as dealing with the data of small sample, 
the high dimension and the excellent generalization ability. 
However, the generalization ability of SVM often relies on 
whether the selected kernel function is suitable for real data. 
To lessen the sensitivity of different kernels and improve 
generalization ability, least square support vector regression 
(LS-SVR) with multi-kernel is proposed to forecast the 
runway incursion event in this paper. The two experimental 
results indicate that LS-SVR with multi-kernel model is 
better than LS-SVR with individual kernel model and 
generalized regression neural network (GRNN) model. 
Consequently, multi-kernel LS-SVR model is a proper 
alternative for forecasting of the runway incursion event. 

Index Terms—airport runways; forecast model; least square 
support vector machine; multi-kernel 

I.  INTRODUCTION 

Runway incursion is a kind of unsafe event, which 
seriously affect airport safety. It is easy to cause 
disastrous collision or accident. Recently, under the 
request of international civil aviation organization 
(ICAO), the various countries begin to solve the problem 
of runway incursion vigorously [1, 2].Civil aviation 
administration of China brings this question into the 
project of the national 863 plans “a new generation 
national of air traffic management system”, and starts 
implementing the project of “civil aviation airport runway 
safety programming” in 2008. Therefore, runway 
incursion event has already become the hot spot research 
in civil aviation. Forecasting runway incursion event 
exactly can provide reliable basis for training people and 
working out flight plan scientifically, guide the job of 
civil aviation safety management and prevent runway 
incursion event occurring. 

At present, artificial neural network (ANN) is a 

popular tool to research the nonlinear system [3, 4]. The 
theory foundation of artificial neural network algorithm is 
based on traditional statistics, consequently, ANN need a 
large amount of training data. However, runway incursion 
is small probability event and its data is generally little. 
Therefore, ANN is not suitable for forecasting of runway 
incursion event. Superior forecasting accuracy can be 
gained with a small quantity of training data by grey 
model, but grey model only depicts a monotonously 
increasing or decreasing process with time as exponential 
law. So a certain error is always generated in forecasting 
runway incursion event by using grey model. Therefore, 
it is imperative to look for a more excellent method in 
forecasting runway incursion event. 

Developed by Vapnik [5，6], SVM is the method 
which is receiving increasing attention with remarkable 
results recently. The main difference between ANN and 
SVM is the principle of risk minimization. ANN 
implements the empirical risk minimization principle to 
minimize the error on the training data. However, SVM 
implements the principle of structural risk minimization 
in place of experiential risk minimization, which makes it 
has excellent generalization ability in the situation of 
small sample. In addition, SVM can change a non-linear 
learning problem into a linear learning problem in order 
to reduce the algorithm complexity through kernel trick, 
which allows every dot product to be replaced simply by 
a kernel function. Different kernel functions can be 
chosen during the SVM regression, corresponding to the 
different transformed feature spaces. So kernel functions 
play an essential role in the SVM regression since they 
determine the feature spaces in which data examples are 
fitted and can directly affect the SVM regression results 
and performances. 

When applying SVM to solve real regression 
problems, one has to deal with the practical difficulty: 
how to select an appropriate kernel function which fits 
particular data better than any other kernel functions. An 
abnormal way is to try many different kernels and choose 
the one which works best. But this approach could be 
time-consuming if the size or the number of attributes of 
training data is huge. In this paper, multi-kernel SVM in 
which several different kernels are combined is been put 
forward. The SVM with multi-kernel model is probably 
expected to outperform the SVM with individual kernel 
model because different kernels might complement each 
other well. SVM regression is defined as support vector 
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regression (SVR). LS-SVR algorithm is improved based 
on SVR algorithm. Therefore, LS-SVR with multi-kernel 
model is used to forecast runway incursion event in this 
study. At last, the LS-SVR with multi-kernel is compared 
to GRNN and LS-SVR individual kernel. 

The organization of the paper is as follows. We will 
review the theories of SVR and LS-SVR in Section II. In 
Section III, we will introduce multi-kernel LS-SVR 
algorithm. Multi-kernel LS-SVR model and parameters 
optimization algorithm will be introduced in Section IV. 
In Section V and VI, we will present the two experiments 
and results. Finally, conclusions are drawn in Section VII. 

II.  ARITHMETIC OF SVR AND LS-SVR 

A. SVR Algorithm 
Recently, SVM has been applied successfully to solve 

non-linear regression estimation problems [7-11]. A 
regression version of SVM has emerged as an alternative 
and powerful technique to solve regression problems by 
introducing an alternative loss function. In the sequel, this 
version is referred to as support vector regression (SVR). 
Here a brief description of SVR is given. 

Given a set of data ( , )i ix y , d
ix R∈ ，

( 1, 2,..., )iy R i n∈ = ，where ix denotes the input 

vector, iy denotes the corresponding output value and 
n denotes the total number. In SVR, the regression 
function is approximated by the following function:  

   1
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Where, b is the scalar threshold, W is the weight 
coefficient, and ( )xφ is called the feature nonlinearly 
mapped from the input space x . 

The above problem is equivalent to the solution of the 
following optimal problem: 
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Sometimes, the optimal solutions can not be obtained 
form above equations. We introduce slack 
variables ξ , *ξ  to guarantee that the convex 
optimization problem is feasible. Hence the optimization 
problem is expressed as: 
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The constant C (C>0) determines the tradeoff between 
flatness of f and the amount of tolerable deviations which 
are larger thanε . The formulation above corresponds to 
the solution of a loss function described by: 

     
0 | | ,

| | :
| | .

if
otherwiseε

ξ ε
ξ

ξ ε
≤⎧

= ⎨ −⎩
        (4) 

The loss function is shown in Fig.1. 

 
Figure 1.  The soft margin loss setting for a linear SVR 

Finally, by introducing Lagrange multipliers and kernel 
function, and maximizing the dual function of Eq. (3), the 
regression function given by Eq. (1) has the following 
explicit form: 

  *

1
( ) ( ) ( , )

n
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f x a a K x x b
=
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In Eq. (5), ia  and *
ia  are the so-called Lagrange 

multipliers. They satisfy the equalities * 0i ia a× = , 

0ix ≥  and * 0ia ≥  where 1,2,...,i n= , and are 
obtained by maximizing the dual function of Eq. (3), and 
the maximal dual function in Eq. (3) which has the 
following form: 
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With the constraints, 
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Based on the Karush — Kuhn — Tucker’s (KKT) 
conditions of solving quadratic programming problem, 
( *

i ia a− ) in Eq. (5), only some of them will be held as 
non-zero values. These approximation errors of data point 
on non-zero coefficient will equal to or larger thanε , and 
are referred to as the support vector. That is, these data 
points lie on or outside the ε -bound of decision function. 
According to Eq. (5), the support vectors are clearly the 
only elements of the data points employed in determining 
the decision function as the coefficient *

i ia a−  of other 
data points are all equal to zero. Generally, the larger the 
ε  value, the fewer the number of support vectors, and 
thus the sparser the representation of the solution. 
Nevertheless, increasing ε  decreased the 
approximation accuracy of training data. In this sense, ε  
determines the trade-off between the sparseness of 
representation and closeness to data. 

The term ( , )i jK x x in Eq. (5) is called the kernel 
function. Where the value of kernel function equals the 
inner product of two vectors ix  and jx  in the feature 

space ( )ixφ  and ( )jxφ , meaning that 

( , ) ( ) ( )i j i jK x x x xφ φ= • . The kernel function is 
intended to handle any dimension feature space without 
the need to calculate ( )xφ  accurately [12]. If any 
function can satisfy Mercer’s condition, it can be 
employed as a kernel function [6]. In SVR, several kernel 
functions have been used widely and successfully, such as 
polynomial basis function with degree d  
      ( , ) ( 1) , 1, 2,...T d

i j i iK x y x y d= + =      (8) 

Gaussian RBF kernel with tuning parameter σ， 

     2 2( , ) exp( /2 )i j i jK x x x x σ= − −       (9) 
and sigmoid function with parameterθ, 
     ( , ) tanh( )i j i jK x y x x θ= ⋅ −            (10) 

B. LS-SVR Algorithm 
LS-SVR tries to minimize primal cost function 

subject to equality constraints instead of inequality ones. 
Therefore, LS-SVR solves a set of linear equations 
instead of computational cost quadratic programming 
problem. According to statistics theory and abnormal 
SVR knowledge, the training sample regression problem 
can be described into the Eq. (1). 

According to structural risk minimization, through 
transforming error’s first power to two powers, the 
sample regression problem can be described into the 
following restraint optimization problem: 
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Where, ei∈R denotes slack variables, J denotes loss 
function, C is a regularization parameter.  

By transforming this formula into dual form with 
Lagrange multipliers ai, following formula is obtained. 

1
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Based on the Karush-Kuhn-Tucker’s (KKT) 
conditions: 

     

1

1

0 ( )

0 0

0

0 ( ) 0

n

i i
i

n

i
i

i i
i

T
i i i

i

L W a x
W
L a
b
L a Ce
e
L W x b e y
a

φ

φ

=

=

∂
= → =

∂
∂

= → =
∂
∂

= → =
∂
∂

= → + + − =
∂

∑

∑
   (13) 

From equation set above, W and e can be eliminated.  

       
1
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Where, a = [a1, a2… al]; Ωij = K(xi, xj) = Φ(xi)TΦ(xj). 
The solution of ai and b can be obtained. Hence, the 

LS-SVR decision function is: 

          
1

( ) ( , )
n

i i
i

y x a K x x b
=

= +∑          (15) 

III.  MULTI-KERNEL LS-SVR ALTORITHM 

Eq. (15) is the decision function of LS-SVR with 
individual kernel. It has the following limitations [13, 14]: 
first, this decision function can only correspond to some 
special function sets, but it can not correspond to some 
mixed function sets. For example, if kernel function is 
RBF function, then the decision function correspond to 
some radial basis function sets, not mixed function sets of 
radial basis function and polynomial function. Second, 
the majority of kernel functions have a free parameter to 
control its generalization performance (for example, RBF 
kernel with σ parameter). This individual kernel function 
can not select several free parameters. Therefore, based 
on abnormal LS-SVR algorithm, multi-kernel LS-SVR 
algorithm is presented. 

Due to select several kernel functions at the same time, 
the Eq. (1) becomes: 
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Where, 1 2[ , ,..., ]T
k k k khW W W W= , r is the number of 

select kernel functions.  
Optimization objective function is: 
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Where, , 1, 2,...,kC k r= are penalty factors of kernel 
functions. 

Lagrange function is: 
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Based on KKT conditions, Eq. (13) becomes: 
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From equation set above, kW  and ie can be 
eliminated. 
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The multi-kernel LS-SVR decision function is: 
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Where, j
ia  denote the weight of the jth kernel function 

correspond to the ith training sample. 

1 2, , rK K K denote different kernel functions.  

IV.  MULTI-KERNEL LS-SVR MODEL IN FORECASTING 
THE RUNWAY INCURSION NEVENT 

Forecasting of runway incursion event is the time 
series forecasting problem. And the goal is to search a 
forecasting model with excellent generalization ability by 
utilizing the training sample obtained by historical data. 

The process of constructing multi-kernel LS-SVR model 
is described below. 

A.  Construction of Training Sample Sets 

For a time series An= {a1, a2, …, an}, training sample 
sets T= {(x1, y1), …, (xn-m, yn-m)} are established. Where 

1 2 1

2 3 1 2
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 (22) 

xi={ai,ai+1,…,ai+m-1} is the input vector, yi={ai+m} is the 
output value, m is the embedded dimension. 

B.  Optimizing Parameters of the Multi-kernel LS-SVR 
Model 

Despite its superior features, LS-SVR is limited in 
academic research and industrial applications, because 
the user must define various parameters appropriately. To 
construct the LS-SVR model efficiently, LS-SVR’s 
parameters must be set carefully [14, 15]. Inappropriate 
parameters in LS-SVR lead to over-fitting or under-fitting. 
Different parameter settings can cause significant 
differences in performance. Therefore, selecting the 
optimal hyper-parameter is an important step in 
multi-kernel LS-SVR model design. The parameters 
include: 
(1) Kernel function: The kernel function is used to 

construct a nonlinear decision hyper-surface on the 
LS-SVR input space. In this paper, Polynomial 
basis function with d and Gaussian RBF function 
with tuning parameter 1σ  and 2σ  are selected as 
kernel functions. 

(2) Regularization parameter C: C determines the trade-off 
cost between minimizing the training error and 
minimizing the model’s complexity. 

Multi-kernel LS-SVR model generalization performance 
(estimation accuracy) and efficiency depends on the 
hyper-parameters (C, d, 1σ  and 2σ ) being set correctly. 
Therefore, following discuss the step of parameters 
optimization. 

Step 1: sketchy initialization C and d are C′ and 
d ′ . 

Step 2: set C C′= and d d ′= , seeks for a group 
superior *

1σ  and *
2σ . 

Step 3: set *
1 1σ σ=  and *

2 2σ σ= , seeks for a group 

superior *C and *d . 

V.  ONE EXPERIMENTAL ANALYSIS 

A.  Selection of Sample Data 
The data of runway incursion event form 1988 to 

2007 in American’s civil aviation airports are selected as 
sample sets, among which the data form 1988 to 2002 are 
training data and the data form 2003 to 2007 are testing 
data. 
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B.  Determination of the Embedded Dimension m 
The election of embedded dimension m has a great 

influence on the forecasting performance of LS-SVR. 
Sample data are used to test the effect of embedded 
dimension m on forecasting accuracy.  

In this study, root mean square relative error (RMSRE) 
is used as the performance index, which is as follows: 

      2

1

ˆ1 ( ) 100%
l

i i

i i

y yRMSRE
l y=

−
= ×∑    (23) 

Where iy  and ˆ iy  represent the actual and 
validation values respectively, l is the number of testing 
samples. 

RMSRE values of testing data gained by LS-SVR 
which trained with various m values are shown in Fig.2, 
It indicates that the election of embedded dimension m 
has a great influence on the forecasting accuracy. 

 
Figure 2.  Effect of embedded dimension m on forecasting accuracy 

As shown in Fig.2, when m=5, RMSRE achieves the 
minimum value. Therefore, in this study, take m=5 as the 
optimal embedded dimension. 

C.  Optimizing the Model Parameters 
The process of parameters optimization is shown in 

TABLE I and II. Where, “*” values denote the superior 
parameters. 

TABLE I.  SELECTION PROCEDURE OF 1σ  AND 2σ  WHILE C=1, 

d=3. 

1σ  2σ  RMSRE 

0.01 1000 0.221 
0.1 1000 0.214 
1 1000 0.212 

10* 1000* 0.141* 

100 1000 0.189 
10 0.01 0.256 
10 0.1 0.213 
10* 1* 0.089* 

10 10 0.197 
10 100 0.263 

 

TABLE II.  SELECTION PROCEDURE OF C AND d WHILE 

1 10σ = AND 2 1σ = . 

C d RMSRE 
0.01 1 0.136 
0.1 2 0.093 
1 3 0.089 

10* 4* 0.036* 

100 5 0.104 

  According to TABLE I and II, 
* * * *

1 210, 4, 10, 1.C d σ σ= = = =  

D.  Analysis the Results of Forecasting Model 

Using the parameters of m, C, d, 1σ  and 2σ  
which were determined above to train the multi-kernel 
LS-SVR model.  The regression model is achieved. The 
regression curve of runway incursion event is shown in 
Fig.3. 

 
Figure 3.  Regression curve of runway incursion event 

As shown in Fig.3, the LS-SVR with multi-kernel 
model exactly depicts the distributing of the sample data.    
Using the model to predict the number of runway 
incursion event from 2003 to 2007, then testing curve is 
shown in Fig.4. 

 
Figure 4.  Testing curve of runway incursion event 
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As shown in Fig.4, the LS-SVR with multi-kernel 
model basically forecast the tendency of runway 
incursion event from 2003 to 2007. Although the 

difference between real value and predicted value of the 
certain spot is big, but the overall change tendencies of 
two curves are consistent. 

TALBE  III.   TRAINING PERFORMANCE OF THREE MODELS 
  MKLS-SVR LS-SVR GRNN 

year real value predicted value predicted value predicted value 

1993 186 186.025 186.153 187.089 

1994 200 200.023 200.987 201.456 

1995 240 239.956 239.023 238.458 

1996 275 275.031 275.631 276.542 

1997 292 292.142 292.753 293.980 

1998 325 325.027 325.346 326.273 

1999 327 327.145 327.360 328.781 

2000 405 405.070 405.321 407.046 

2001 407 407.324 408.163 410.683 

2002 339 339.056 339.793 340.056 

MAE  0.089 0.649 1.745 

RMSE  0.126 0.725 1.888 

TALBE  IV.    PREDICTION PERFORMANCE OF THREE MODELS 

  MKLS-SVR LS-SVR GRNN 

year real value predicted value predicted value predicted value 

2003 323 323.039 323.142 323.864 

2004 326 325.895 325.670 324.888 

2005 327 328.227 328.615 329.487 

2006 330 330.670 331.621 332.005 

2007 370 338.330 336.210 331.245 

MAE  6.742 7.500 9.045 

RMSE  14.177 15.147 17.402 

In order to analysis the performance of the LS-SVR 
with multi-kernel (MKLS-SVR) model, the LS-SVR 
with individual kernel (LS-SVR) model and GRNN 
model are established at the same time. Mean absolute 
error (MAE) and root mean square error (RMSE) are 
used to evaluate the training and forecasting accuracy of 
the three models. The training and forecasting results of 
three models are shown in TABLE III and IV. As shown 
in TABLE III and IV, MAE and RMSE of multi-kernel 
LS-SVR model are smaller than the other models. It 
indicates: in the aspect of training and forecasting 
performance, LS-SVR model has better training and 
forecasting ability than GRNN model; in the aspect of 
kernel function, multi-kernel function is better than 
individual function. 

VI.  ANOTHER EXPERIMENTAL ANALYSIS 

A.  Selection of Sample Data and Parameters 
 The sample data is the same of the above experiment. 

The regularization parameter C of LS-SVR is set 1 
during the LS-SVR training. The two kinds of kernels: 
polynomial kernels and RBF kernels are selected to train 
the data. The degree of the polynomial kernels is set to 1, 
2, 3, 4, 5 and the parameter σ  of the RBF kernels is set 
to 0.001, 0.01, 0.1, 1, and 10. TABLE V shows the 
forecasting accuracies of the sample dataset. Next, we 
select three kernels randomly which ensemble 
multi-kernel LS-SVR to obtain the forecasting accuracies, 
as show in TABLE VI. 

TABLE  V.   FORECASTING ACCURACIES OF SEVERAL KERNEL FUNCTIONS 
Poly_kernel d RMSRE RBF_kernel σ RMSRE 

Poly_1 1 0.138 rbf_0.001 0.001 0.054 
Poly_2 2 0.068 rbf_0.01 0.01 0.052 
Poly_3 3 0.061 rbf_0.1 0.1 0.049 
Poly_4 4 0.068 rbf_1 1 0.046 
Poly_5 5 0.080 rbf_10 10 0.043 
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TABLE  VI.   FORECASTING ACCURACIES OF THREE SELECTED KERNEL FUNCTIONS 

Forecast  RMSRE  RMSRE  RMSRE Average MKLS-SVR 
1 Poly_1 0.138 Poly_2 0.068 rbf_0.01 0.052 0.086 0.048 
2 Poly_1 0.138 Poly_3 0.061 rbf_0.1 0.049 0.083 0.046 
3 Poly_4 0.068 rbf_1 0.046 rbf_0.01 0.052 0.055 0.043 
4 Poly_1 0.138 Poly_3 0.061 Poly_5 0.080 0.093 0.064 
5 rbf_0.1 0.049 rbf_1 0.046 rbf_10 0.043 0.046 0.044 

 

B.  Performance Analysis 
The following gives the detailed analysis about the 

experimental results from the multi-kernel LS-SVR 
model. 

In three of the five forecasts (forecasts 1-3), the 
multi-kernel LS-SVR model outperforms the best 
LS-SVR with individual kernel function model. Even if 
one or two of the three LS-SVR with individual kernel 
model have big RMSRE (0.138), the multi-kernel 
LS-SVR model can still achieve small RMSRE (0.049). 
For example, in forecast 2, the forecasting RMSRE of 
the three LS-SVR with individual model are 0.138, 0.061 
and 0.049, while the RMSRE from the multi-kernel 
LS-SVR is 0.046. This is a good example to demonstrate 
that different kernel functions can complement each 
other in the multi-kernel LS-SVR model to achieve a 
better performance than any of the LS-SVR with 
individual kernel. In forecast 4 and 5, the multi-kernel 
LS-SVR model does not beat the best of the LS-SVR 
with individual model though it achieves better 
performance than the average and the second best. The 
possible reason is that in either of the forecasts, the two 
multi-kernel LS-SVR models have the same type of the 
kernel function but different parameters of the kernels. 
The two multi-kernel LS-SVR models with the same 
kernel type may work similarly for the same data and do 
not have too much information to complement. 

VII.  CONCLUSION 

In this paper, multi-kernel LS-SVR model is applied 
to forecast runway incursion event. The real data sets are 
used to investigate its feasibility in forecasting runway 
incursion. LS-SVR implements the principle of structural 
risk minimization in place of experiential risk 
minimization, which makes it have excellent 
generalization ability in the situation of small sample. In 
addition, multi-kernel LS-SVR model is suitable for 
forecasting runway incursion event, which different 
kernel functions can complement each other well. The 
two experimental results reveal the potential of the 
proposed approach for forecasting runway incursion 
event.  
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