
An Approach of Chunk-based Task Runtime

Prediction for Self-Scheduling on Multi-core

Desk Grid

Peifeng Li, Qiaoming Zhu, Qin Ji, Xiaoxu Zhu
School of Computer Science and Technology, Soochow University, Suzhou, China, 215006

{pfli, qmzhu, qinji, xxzhu @suda.edu.cn}

Abstract—Self-Scheduling is a dynamic and adaptive

loop scheduling approach to reduce the total execution

time for a task running in the cluster or grid

environment. This paper focuses on how to use and

optimize Self-scheduling technologies to allocate tasks

reasonable and achieve better parallel performance. It

introduces the prediction algorithms and proposes a

novel Chunk-based Task Runtime Prediction (CTRP)

algorithm according to the characters of desk grid and

multi-core environment. Our experimental results show

that our approach can predict the execution time more

accurate and achieve better load balancing than that of

others when most slave nodes’ load is changing

frequently and rulelessly in the multi-core desk grid.

Index Terms—Self-Scheduling, Chunk-based Task

Runtime Prediction, desk grid

I. INTRODUCTION

Desk grid is mainly composed of many personal

computers and it’s more complex and dynamic than

others. Using vacant computation abilities in desk

grid can provide an inexpensive and convenient

solution to solve large scale computational problems,

so that how to allocate tasks to these nodes and

achieve better load balancing is an issue in that field.

Self-scheduling [1, 2], a dynamic, adaptive and

distributed scheduling method which works on

application layer, is one of accepted solutions. It

divides a task into a set of subtasks, and then parallels

them on those computing nodes.

Currently, the existed self-scheduling schemes can

achieve good performance in homogeneous

environments or cluster systems. However, the load

unbalancing will occur and the total execution time

will increase greatly if these schemes are applied to

the desk grid [3]. The main reason of that is the load

of desk grid is changing frequently and irregularly,

unlike homogeneous environments or cluster systems.

Unfortunately, these schemes always suppose the

node is dedicated by them, so their assignment

policies just depend on the hardware and the

historical execution information. Therefore,

regardless of the factor of load, they will cause the

load unbalancing and increase the total execution

time greatly.

This paper focuses on how to use and optimize

self-scheduling technologies to allocate tasks

reasonable and achieve better parallel performance. It

introduces the prediction algorithms and proposes a

novel Chunk-based Task Runtime Prediction (CTRP)

algorithm according to the characters of desk grid and

the multi-core systems. That algorithm can predict

execution time more accurate and achieve better load

balancing than that of others when most nodes’ load

is changing frequently and rulelessly in the multi-core

desk grid.

This paper is organized as follows. Section 2

describes the Self-scheduling model and its related

works. Section 3 introduces the methodology of our

scheme. Section 4 gives the approach to predict the

size of prediction chunk. Section 5 reports the

experimental results. Section 6 draws the conclusion.

II. RELATED WORKS

Self-scheduling is a data parallel method and it

divides the data to be executed into many chunks with

same or different size. When the idle nodes request

new chunk, the master assigns one to them. For this,

the Master-Slave architecture [4, 5] used in the

self-scheduling is showed as Fig. 1.

Figure 1. Architecture of self-scheduling

In Fig. 1, master node is a scheduler and it assigns

chunks to slave nodes to parallel. Idle slave nodes

communicate a request to the master for new chunk.

The size of chunk a node should be assigned is an

Master

Slave 1

busy

Slave 2

busy

Slave n

idle …

Transfer chunk
Request chunk

JOURNAL OF COMPUTERS, VOL. 6, NO. 7, JULY 2011 1339

© 2011 ACADEMY PUBLISHER
doi:10.4304/jcp.6.7.1339-1345

important issue in self-scheduling. Due to nodes

heterogeneity and communication overhead,

assigning the wrong node a large chunk at the wrong

time may cause load unbalancing. Also, assigning a

small chunk may cause too much communication and

scheduling overhead.

 In a common self-scheduling scheme, at the i-th

scheduling step, the master computes the chunk size

Ci and the remaining number of task Ri:

R0=N, Ci=f(i,P), Ri=Ri-1-Ci (1)

where N is the total data to be executed, f(i,P)
possibly has more parameters than just i and P and it

is a function to produce the chunk size at each step,

and P is the number of nodes on the grid. The master

assigns Ci task to an idle slave and the load balancing

will depend on the execution time gap between Ti, for

i=1…n. This gap may be large if the first chunk is too

large or (more often) if the last chunk (called the

critical chunk) is too small [6].

The different ways to compute Ci has produced

many self-scheduling schemes in the cluster. These

schemes address how to divide a task to chunks and

then dispatch them to each idle slave node in order to

achieve load balancing and reduce the scheduling

overhead. Some notable schemes are listed as

follows.

Chunk Self-Scheduling (CSS) [7]: Ci = k, where

k >=1 is the chunk size chosen by the user. For k = 1,

CSS is the so-called Pure Self-Scheduling (PSS).

Guided Self-Scheduling (GSS) [8]: Ci = [Ri-1/p]

where p is the number of slave nodes in the grid and

Ri is the remaining number of task at i-th step.

Trapezoid Self-Scheduling (TSS) [9]: Ci = Ci-1 –

D with chunk decrement
1M

LF
D where the

first and last chunk-sizes (F, L) are user/compiler-

input or
p

N
F

2
, L=1. p is the number of slave

nodes and M is the number of scheduling steps.

Factoring Self-Scheduling (FSS) [10]: Ci =

[Ri-1/(p)] where the parameter is computed by a

probability distribution or is suboptimal chosen =2.

p is the number of slave nodes and Ri is the remaining

number of task at i-th step.

To fit the characteristic of grid, some dynamic

self-scheduling schemes are proposed to achieve the

load balancing and reduce the scheduling overhead.

Self-Scheduling [11]: % partition of workload

is dispatched according to their performance weighted

by CPU clock in the first phase and the rest (100- %)

of workload is dispatched according to known self-

scheduling in the second phase.

Hybird Parallel Loop Scheduling (HPLS) and

it’s optimized algorithms [12, 13, 14] : % partition

of workload is dispatched according to the

performance ratio of all nodes in the first phase and

the rest workload is dispatched by some known

self-scheduling in the second phase. HPLS is an

optimization of self-scheduling while it considered

the performance of all nodes and the bandwidth

between each node and the master. This approach has

two problems when applied to the grid system.

Firstly, the parameter value is assigned before the

scheduling and it’s fixed during the processing. The

grid is a dynamic computing environment, if the node

set of the grid system is changed, the predefined

value will be out of time.

Secondly, the rest (100- %) of workload is

dispatched according to known self-scheduling in the

second phase, so that it will cause the load

unbalancing because those known self-scheduling

(CSS, GSS, FSS, etc), didn’t consider the

performance of all nodes.

ACSS (Adaptive Chunk Self-Scheduling Scheme)

[3]: It propose an approach to parallel the data

transfer and data processing by using the multiple

threads mechanism to reduce the waiting time firstly,

and then it adjusts scheduling parameters dynamically

based on the node’s performance to achieve shorter

waiting time than other schemes. In the serial

processing mode the slave spends more waiting time

on waiting the new data, and that would increase the

total execution time and depress the efficiency of

slave nodes. ACSS provides a parallel processing

mode to parallel the data transfer and data processing,

so that it can reduce the execution time significantly.

III. METHODOLOGY

In the self-scheduling, the master doesn’t transfer

the data to the slave just one time. To achieve shortest

execution time in it, the master must assign a chunk

with appropriate size to each slave on their processing

ability every time. If all slaves finish their task on the

same time and they are busy during the scheduling,

the scheme can achieve the best performance.

Therefore, how to get the slave’s processing ability is

an important issue.

In the desk grid, the slave’s processing ability is

dynamic and changed with its load. For the chunk

with same size, the slave need more time to execute it

if there are many processes running at that time; on

the contrary, if there are just two or three running

processes the slave only need less time to complete

that chunk. So how to obtain the real-time processing

ability of the slave and assign an appropriate size

chunk to it is one of the key to reduce the execution

time.

For a fixed size task, the real-time processing

ability of the slave reflects in its execution time.

Therefore, the execution time of a fixed task on a

node can represent its real-time processing ability.

Currently, there are many researches on predicting the

task execution time in the grid environment and two

methods are used to acquire it. 1) Static method [11,

12]. This method just collects all kinds of computer’s

hardware configuration, such as CPU, memory,

1340 JOURNAL OF COMPUTERS, VOL. 6, NO. 7, JULY 2011

© 2011 ACADEMY PUBLISHER

network bandwidth, etc, and then uses an equation to

combine them; 2) Dynamic method. One method [3,

13, 14] is to run a program on the slave firstly, and

then collects the execution information to obtain the

slave’s execution time. Another method [15, 16, 17,

18] is to predict the future execution time based on

the previous running information and some similar

patterns and its basic approaches are Mean Value

Method, Exponential Average Method, KNN

(K-Nearest Neighbor), etc.

The main disadvantage of above two methods is

that they suppose the slave just runs one task and then

miss the load change in it. Different with the other

homogeneous environments or cluster systems, desk

grid is built by many PCs used as desktop and the

load of them are ruleless for the foreground processes.

Ignoring the load change on the slaves would lead to

the load unbalancing for self-scheduling.

According to the characteristic of load change on

the slave, we propose a novel runtime (also called as

execution time) prediction algorithm - Chunk-based

Task Runtime Prediction (CTRP) which predicts the

execution time on the real-time information, not the

historical information. The principle of our approach

is that the load change on the slave can’t be estimated

for its irregularity in a long period. But in a short

period, such as several minutes, the load of the slave

is steady relatively. Therefore, predicting the future

runtime on the real-time information is more reliable

than that on the historical information.

CTRP’s theory is as follows. Each chunk assigned

to the slave is divided into two parts: prediction

chunk and remaining chunk. After the slave has

finished the prediction chunk, it sends the real-time

execution information to the master. Then the master

predicts the size of next chunk and next prediction

chunk based on that real-time execution information

from the slave and master. After that, it transfers the

next chunk to the slave. In the multi-core

environment, multi-thread is used to parallel the data

transfer and processing on the slave to ensure it

doesn’t need to wait the next chunk. This means the

data transfer should be finished before the slave

completes the remaining chunk.

Fig. 2 is the executing flow for i-th chunk based on

multi-thread. We propose an approach to parallel the

data transfer and data processing by using the

multiple threads mechanism and there are three

threads running on the slave: processing thread (PT),

receiving thread (RT) and sending thread (ST). Firstly,

PT processes the prediction chunk and obtains some

real-time execution information. Secondly ST sends

the results to the master. Thirdly, the master receives

the results at the same time and then predicts the size

of next chunk and next prediction chunk. Finally, the

slave receives the next chunk from the master. In the

multi-core environment, PT, ST and RT can be

paralleled and that model can reduce the waiting time

of the slave and keep it busy almost all time.

Figure 2. The executing flow for i-th chunk based on multi-thread

IV. PREDICTING THE SIZE OF PREDICTION CHUNK

It’s obvious that how to determine the prediction

chunk size is an issue for our approach.

Considering the prediction chunk size by oneself,

larger it is, more accurate the execution time of

remaining chunk is. However, if the prediction

chunk size is too large, the time to complete the

remaining chunk is too small to transfer the next

chunk to the execution node. Therefore, PT must

wait and the execution time would be increased.

An appropriate size of the prediction chunk is to

keep the node busy and let the master have enough

time to transfer the next chunk to the slave node.

There are four factors involved with the size of the

prediction chunk, including:

Trm: The execution time of remaining chunk;

Tre: The time to return the result from the

slave to the master;

Tom: The overhead of the master to prepare the

transfer;

Ttr: The time to transfer the data from the

master to the slave.

To keep the slave busy, the master must have

transferred the next chunk to the slave before it

completed the remaining part of current chunk.

Therefore, those four factors must be satisfied with

the equation (2):

Trm >= Tre + Tom + Ttr (2)

The time Tre, Tom and Ttr depend on the network

transfer rate, the size of the data to transfer, the

load of the master and the load of the slave. We use

the following method to collect the real-time

information and then to calculate the Tre, Tom and

Ttr.

(1) Assume half of the first chunk as the prediction

chunk;
(2) Choose the total chunk size ct following the

CHSS scheme and then assigns the data with the

size ct to all slaves. The first chunk for slave PRi

is assigned to ct* apfi,1 and the performance ratio

apfi,1 is defined as

Snode

i

Snode

j

i

j

j

j

i

bw

bw
w

et

et
wapf 21,

/1

/1
1

 (3)

i-th chunk

Prediction chunk Remaining chunk

Return

Transfer next

chunk

PT

ST

RT

Master

S
lav

es …
…

t

JOURNAL OF COMPUTERS, VOL. 6, NO. 7, JULY 2011 1341

© 2011 ACADEMY PUBLISHER

where

S is the set of all grid nodes;

bwi is the bandwidth between PRi and the master;

eti is the execution time of PRi for a special

program used to test the computing performance;

w1 is the weight of the first term;

w2 is the weight of the second term.

w3 is the weight of the third term;

In our experiments, the parameters of w1, w2

and w3 are assigned as 0.7, 0.2 and 0.1 by the

linear regression on our experiments. Furthermore,

eti for PRi is acquired by executing the matrix

multiplication for size 256×256 while bwi is

gathered by a combination of PING and FTP.

(3) For each slave PRi

a) The master transfers the j-th chunk with the

size ct* apfi,j to it and also sends it the size of

j-th prediction chunk;

b) PRi receives the j-th chunk from the master

and then processes it. After PRi has finished

the j-th prediction chunk, it sends Tsi,j, Texi,j

and SLi,j to the master where Tsi,j is the

transfer time to send the j-th chunk from the

master to PRi, Texi,j is the execution time PRi

used to process the j-th prediction chunk, and

SLi,j is the average CPU utilization ratio

when PRi processes the j-th prediction

chunk.

(4) If j-th chunk is the last chunk, then it’s end;

(5) If the master has received the Tri,j, Texi,j and

SLi,j from PRi, it also obtians MLi,j which is the

current CPU utilization ratio in the master.

(6) The master calculates the performance ratio

apfi,j+1 as

Snode

k

Snode

apfct

Ts

ji

ji

ji

k

k

k

jk

jk bw

bw
w

apfct
Ts

wapf 2

)*(

,

,

1,

,

,
1

)*((4)

(7) The master estimates the
1, jireT and

1, jitrT

following the equation (5) and (6):

)*(*
1

)*(
1,

,

,

,

1, ji

ji

ji

Ts

re afpct
ML

afpct
T

ji

ji

=

jiji

jiji

afpML

afpTs

,,

1,,

*)1(

* (5)

)*(*
1

*
1,

,

,

,

1, ji

ji

ji

Ts

tr afpct
SL

afpct
T

ji

ji

=

jiji

jiji

afpSL

afpTs

,,

1,,

*)1(

*
 (6)

where
1, jireT is the estimated time to return

the (j+1)-th results from PRi to the master while

1, jitrT is estimated time to transfer (j+1)-th

chunk from the master to PRi.
1, jiomT , the

estimated overhead of the mater to prepare

(j+1)-th chunk for PRi, is equal to current

overhead.

(8) Following the equation (2), (5) and (6), the

execution time to process (j+1)-th remaining

chunk
1, jirmT is

1,1, *)1(

*

*)1(

* 1,,1,,

jiji om

iij

jiji

iij

jiji

rm T
afpML

afpTs

afpSL

afpTs
T (7)

and the size of (j+1)-th remaining chunk Cri,j+1

is

ji

ji

rmji
Tex

Cp
TCr

ji

,

,

1, *
1,

 (8)

where Cpi,j is the size of j-th prediction chunk.

The size of (j+1)-th prediction chunk Cpi,j+1 is

Cpi,j+1=ct* apfi,j+1 - Cri,j+1 (9)

(9) Go to (3).

V. EXPERIMENTAL RESULTS

To verify our approach, we test it on a test bed grid

– ZHHZGrid [19, 20]. ZHHZGrid is a desk grid

oriented to process natural language and provides

some common services (parsing, name entity

recognition, part of speed, word segmentation, etc) in

natural language processing. That grid is built by

more than 60 PCs and servers which are used by our

graduate students. The test bed includes 40 multi-core

PCs, one of them being assigned the role of master.

We want to test our approach in the heterogeneous

computing environment, so we apply a combination

of computer types in three subnets and the hardware

configurations of those PCs are various.

The matrix multiplication and Chinese word

segmentation are used as examples while the former

is a CPU-bound application and the latter is an

I/O-bound application. For the CPU-bound

application, the total execution time mostly depends

on each node’s execution time. By contrary, the total

execution time mainly consists of each node’s

execution time and transfer time for the I/O-bound

application. We test our approach on these two types

application.

The grid middleware is Globus Toolkit 4.0 and all

services are written in JAVA. We have implemented

the Matrix Multiplication Service and the Word

Segmentation Service and deployed them on all

nodes.

We apply four runtime prediction approaches

(Mean Value Method (MV), Exponential Average

Method (EA), KNN and chunk-based task runtime

prediction) to our self-scheduling scheme ACSS. In

that experiment, k in the CSS is assigned to 12 and

100KB in matrix multiplication and Chinese word

segmentation respectively.

To verify all prediction approaches, we provide two

1342 JOURNAL OF COMPUTERS, VOL. 6, NO. 7, JULY 2011

© 2011 ACADEMY PUBLISHER

test environments: dedicated model and no-dedicated

model. In the dedicated model, each node just runs

our test task and the load of such node is steady. In

the no-dedicated model, each node runs many tasks

and the load change is frequent and irregular.

Firstly, we test above four prediction approaches

and the CHSS without prediction (NOP) on the

matrix multiplication with input matrix size

1024×1024 and Chinese word segmentation with text

size 16MB. Fig. 3 and 4 illustrate average execution

time (the average of five tests) of above five schemes.

Otherwise, all 40 PCs are running all kinds of

foreground threads (MS word, Internet Explorer, etc)

during the no-dedicated test.

Matrix 1024*1024

127.87 126.98 129.71

242.02

121.75

0

50

100

150

200

250

300

MV EA KNN NOP CTRP

E
x

ec
u

ti
o

n
 T

im
e(

se
c.

)

a) Dedicated model

Matrix 1024*1024

54.67

44.32 45.54
42.65

36.54

0

10

20

30

40

50

60

MV EA KNN NOP CTRP

E
x

ec
u

ti
o

n
 T

im
e(

se
c.

)

b) No-dedicated model

Figure 3. Execution time of matrix multiplication

Word Segmentation(16M)

469.78 460.87 472.62

896.43

455.68

0

200

400

600

800

1000

MV EA KNN NOP CTRP

E
x

ec
u

ti
o

n
 T

im
e(

se
c.

)

 a) Dedicated model

Word Segmentation(16M)
232.23

197.45 195.64
170.54

145.65

0

50

100

150

200

250

MV EA KNN NOP CTRP

E
x

ec
u

ti
o

n
 T

im
e(

se
c.

)

b) No-dedicated model

Figure 4. Execution time of Chinese word segmentation

Experimental results showed that our approach got

better performance than that of others. In the case of

dedicated environment, our scheme got 4.8%, 4.1%,

6.1% and 49.7% performance improvement over that

of MV, EA KNN and NOP respectively in the test of

matrix multiplication and also got 3.0%, 1.1%, 3.6%

and 49.2% performance improvement over them

respectively in the test of Chinese word segmentation.

That results show that the runtime prediction

approach is benefit to the self-scheduling and can

reduce the execution time. In the dedicated

environment, the load of each node is almost steady

and the prediction approach based on historical

execution information, such as exponential average,

KNN, etc, also can predict the execution time

correctly.

In the case of no-dedicated environment, our

scheme improves the performance significantly. It got

33.2%, 17.6%, 20.0% and 14.3% performance

improvement over that of MV, EA KNN and NOP in

the test of matrix multiplication and also got 37.3%,

26.2%, 25.6% and 14.6% performance improvement

over them respectively in the test of Chinese word

segmentation. In such environment, the load of each

node is changing frequently and irregularly, so that

the error of all the prediction approaches based on

historical execution information are increasing and

their performance is worse than that of the approach

with no prediction. As for our approach, it’s based on

current running information, so it fits the load change

on every node and gets more small error.

Then, we apply our prediction approach to three

classic self-scheduling (CSS, HPLS and CHSS) and

call them as PCSS, PHLPS and PCHSS. We test those

six scheme on the matrix multiplication with input

matrix size 1024×1024 and Chinese word

segmentation with text size 16MB in the no-dedicated

model. Fig. 5 and 6 illustrate average execution time

(the average of five tests) of above six schemes. In

consideration of the fairness, we also reconstruct the

CSS and HLPS with our parallel model.

JOURNAL OF COMPUTERS, VOL. 6, NO. 7, JULY 2011 1343

© 2011 ACADEMY PUBLISHER

Matrix 1024*1024

43.95
41.74

37.9738.66 38.22 36.54

0

10

20

30

40

50

PCSS/CSS PHPLS/HPLS PCHSS/CHSS

E
x

ec
u

ti
o

n
 T

im
e(

se
c.

)

Figure 5. Execution time of matrix multiplication on six schemes

Word Segmentation(16M)
229.36

168.98 159.34

204.01

153.91 145.65

0

50

100

150

200

250

PCSS/CSS PHPLS/HPLS PCHSS/CHSS

E
x

ec
u

ti
o

n
 T

im
e(

se
c.

)

Figure 6. Execution time of Chinese word segmentation on six

schemes

In Fig. 5 and 6, we found out that our prediction

approach also can improve the performance of other

schemes besides CHSS. Our approach CTRP got

12.0%, 8.4%, 3.8% performance improvement on

CSS, HPLS and CHSS n the test of matrix

multiplication and also got 11.0%, 8.9%, 8.6%

performance improvement over them in the test of

Chinese word segmentation. This experimental results

show that our prediction approach is useful for the

multi-core desk grid.

VI. CONCLUSION

In this paper we have proposed a novel runtime

prediction approach – CTRP for the self-scheduling

on the multi-core desk grid. CTRP predicts the

execution time on the current real-time execution

information and node’s load, not the historical

information. It meets the real load change on the

multi-core desk grid. The experimental results

showed that our approach could reduce the total

execution time and achieve better load balancing than

other similar prediction schemes. Our future work

will focus on how to apply it to the cloud computing

environment.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous

reviewers for their comments on this paper. This

research was supported by the National Natural

Science Foundation of China under Grant No.

61070123 and No. 60873150, the Natural Science

Major Fundamental Research Program of the Jiangsu

Higher Education Institutions, China under Grant No.

08KJA520002.

REFERENCES

[1] E. P. Markatos and T. J. Leblanc, Using Processor

Affinity in Loop Scheduling on Shared-Memory

Multiprocessor, IEEE Trans. on Parallel and

Distributed System, Vol. 5, No. 4, April 1994, pp.

379-400.

[2] Y. Yan, C. Jin, X. Zhang, Adaptively Scheduling

Parallel Loops in Distributed Shared-Memory

Systems, IEEE Trans. on Parallel and Distributed
System, Vol. 8, No. 1, Jan. 1997, pp. 70-81.

[3]P. Li, Q. Ji, Y. Zhang, Q. Zhu, An Adaptive

Chunk Self-Scheduling Scheme on Service Grid, In

Proc. of the 3rd IEEE Asia-Pacific Services

Computing Conference (APSCC 2008), Yilan,

Taiwan, 2008, pp. 39-44.
[4] A. T. Chronopoulos, S. Penmatsa, N. Yu, D. Yu,

Scalable Loop Self-scheduling Schemes for

Heterogeneous Clusters, Int. Journal of

Computational Science and Engineering, 2005, Vol. 1,

No. 2/3/4, pp. 110 - 117.

[5] A. T. Chronopoulos, M. Benche, D. Grosu, R.

Andonie, A Class of Loop Self-Scheduling for

Heterogeneous Clusters, In Proc. of the 3rd IEEE Intl.
Conf. on Cluster Computing, 2001, pp. 282-291.

[6] P. Tang and P. C. Yew, Processor Self-scheduling

for Multiple-nested Parallel Loops, In Proc. of the

1986 Intl. Conf. on Parallel Processing, 1986, pp.

528-535.

[7] M. Benche and D. Grosu, A Class of Loop

Self-Scheduling for Heterogeneous Clusters, In Proc.

of the 2001 IEEE Intl. Conf. on Cluster Computing,

2001, pp. 282.

[8] C. D. Polychronopoulos and D. Kuck, Guided

Self-Scheduling: a Practical Scheduling Scheme for

Parallel Supercomputers, IEEE Trans. on Computer,

Vol. 36, Dec. 1987, pp. 1425-1439.

[9] S. F. Hummel, E. Schonberg, L. E. Flynn,

Factoring, a Method for Scheduling Parallel Loops,

Communications of the ACM, Vol. 35, No. 8, 1992.

[10] T. H. Tzen and L. M. Ni, Trapezoid

Self-Scheduling: A Practical Scheduling Scheme for

Parallel Compilers, IEEE Trans. On Parallel and

Distributed System, Vol. 4, No. 1, Jan. 1993, pp.

87-98.

[11] C. Yang, K. Cheng, K. Li, An Efficient Parallel

Loop Self-Scheduling on Grid Environments, In Proc.

of 2004 IFIP Intl. Conf. on Network and Parallel

Computing, LNCS 3222, 2004, pp. 92-100.

[12] W. Shih, C. Yang, S. Tseng, A Hybrid Parallel

Loop Scheduling Scheme on Grid Environments, In

Proc. of the 4th Intl. Conf. on Cooperative Computing,

LNCS 3795, 2005, pp. 370-381.

[13] C. Yang, K. Cheng, W. Shih, On Development of

an Efficient Parallel Loop Self-Scheduling for Grid

Computing Environments, Parallel Computing, 2007,

1344 JOURNAL OF COMPUTERS, VOL. 6, NO. 7, JULY 2011

© 2011 ACADEMY PUBLISHER

Vol. 33, pp. 467-487.

[14]C. Wu, L. Huang, L. Lai, M. Chen, Enhanced

Parallel Loop Self-Scheduling for Heterogeneous

Multi-Core Cluster Systems, In proc. of 10th Int. Sym.

on Pervasive Systems, Algorithms, and Networks,

2009, pp. 568-573.

[15] L. Yang, I. Foster, J. M. Schopf, Homeostatic and

Tendency-Based CPU Load Predictions, In Proc. of
the 17th Int. Sym. on Parallel and Distributed

Processing, April 22-26, 2003, pp. 42.2.

[16] W. Smith, I. Foster, V. Taylor, Predicting

Application Run Times with Historical Information,

Journal of Parallel and Distributed Computing, Vol.

64, No. 9, 2004, pp. 1007-1016.

[17] Y. Zhang, W. Sun, Y. Inoguchi, Predict Task

Running Time in Grid Environments Based on CPU

Load Prediction, Future Generation Computer

Systems, Vol. 24, No. 6, 2008, pp. 489-497.

[18] X. Che, L. Hu, D. Guo, Information Service

Prototype System for Run-time Prediction of Grid

Applications In Proc. of the 2nd Int. Conf. on

Pervasive Computing and Applications, 2007, pp.

530-535.

[19] P. Li, Q. Zhu, L. Zhi, Design of Grid Resource

Management System Oriented to Information Service,

Computer Engineering, 2008, Vol. 34, No. 3, pp.

49-51, 58.

[20] Q. Zhu, P. Li, Z. Gong, L. Xu, ADJSA: An

Adaptable Dynamic Job Scheduling Approach Based

on Historical Information, In Proc. of the 2nd Intl.
Conf. on Scalable Information Systems, 2007.

Peifeng Li, born in Jiangsu Province, China, in 1979. He

has received his B.S., M.S. and Ph.D. degrees in computer

science from Soochow University in 1994, 1997 and 2006

respectively. Currently he is an Associate Professor in

school of computer science and technology of Soochow

University since 2004. His research interests include

computer network, distributed computing, cloud computing

etc.

Qiaoming Zhu, received his Ph.D. degree in computer

science from Soochow University in 2006. He is now a

Professor of school of computer science and technology of

Soochow University. His research interests include grid

computing, cloud computing, natural language processing,

etc.

Qin Ji, received her M.S. degrees in computer science from

Soochow University in 2008. Her research interests include

grid computing, cloud computing, etc.

Xiaoxu Zhu, received his M.S. degrees in computer

science from Soochow University in 2004. He is now

working towards his Ph.D. degree in computer science at

Soochow University. His research interests include

computer network, distributed computing, cloud computing,

etc.

JOURNAL OF COMPUTERS, VOL. 6, NO. 7, JULY 2011 1345

© 2011 ACADEMY PUBLISHER

