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Abstract—Self-Scheduling is a dynamic and adaptive 

loop scheduling approach to reduce the total execution 

time for a task running in the cluster or grid 

environment. This paper focuses on how to use and 

optimize Self-scheduling technologies to allocate tasks 

reasonable and achieve better parallel performance. It 

introduces the prediction algorithms and proposes a 

novel Chunk-based Task Runtime Prediction (CTRP) 

algorithm according to the characters of desk grid and 

multi-core environment. Our experimental results show 

that our approach can predict the execution time more 

accurate and achieve better load balancing than that of 

others when most slave nodes’ load is changing 

frequently and rulelessly in the multi-core desk grid. 

Index Terms—Self-Scheduling, Chunk-based Task 

Runtime Prediction, desk grid

I. INTRODUCTION

Desk grid is mainly composed of many personal 

computers and it’s more complex and dynamic than 

others. Using vacant computation abilities in desk 

grid can provide an inexpensive and convenient 

solution to solve large scale computational problems, 

so that how to allocate tasks to these nodes and 

achieve better load balancing is an issue in that field. 

Self-scheduling [1, 2], a dynamic, adaptive and 

distributed scheduling method which works on 

application layer, is one of accepted solutions. It 

divides a task into a set of subtasks, and then parallels 

them on those computing nodes. 

Currently, the existed self-scheduling schemes can 

achieve good performance in homogeneous 

environments or cluster systems. However, the load 

unbalancing will occur and the total execution time 

will increase greatly if these schemes are applied to 

the desk grid [3]. The main reason of that is the load 

of desk grid is changing frequently and irregularly, 

unlike homogeneous environments or cluster systems. 

Unfortunately, these schemes always suppose the 

node is dedicated by them, so their assignment 

policies just depend on the hardware and the 

historical execution information. Therefore, 

regardless of the factor of load, they will cause the 

load unbalancing and increase the total execution 

time greatly.  

This paper focuses on how to use and optimize 

self-scheduling technologies to allocate tasks 

reasonable and achieve better parallel performance. It 

introduces the prediction algorithms and proposes a 

novel Chunk-based Task Runtime Prediction (CTRP) 

algorithm according to the characters of desk grid and 

the multi-core systems. That algorithm can predict 

execution time more accurate and achieve better load 

balancing than that of others when most nodes’ load 

is changing frequently and rulelessly in the multi-core 

desk grid. 

This paper is organized as follows. Section 2 

describes the Self-scheduling model and its related 

works. Section 3 introduces the methodology of our 

scheme. Section 4 gives the approach to predict the 

size of prediction chunk. Section 5 reports the 

experimental results. Section 6 draws the conclusion.  

II. RELATED WORKS

Self-scheduling is a data parallel method and it 

divides the data to be executed into many chunks with 

same or different size. When the idle nodes request 

new chunk, the master assigns one to them. For this, 

the Master-Slave architecture [4, 5] used in the 

self-scheduling is showed as Fig. 1.  

Figure 1. Architecture of self-scheduling 

In Fig. 1, master node is a scheduler and it assigns 

chunks to slave nodes to parallel. Idle slave nodes 

communicate a request to the master for new chunk. 

The size of chunk a node should be assigned is an 
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important issue in self-scheduling. Due to nodes 

heterogeneity and communication overhead, 

assigning the wrong node a large chunk at the wrong 

time may cause load unbalancing. Also, assigning a 

small chunk may cause too much communication and 

scheduling overhead. 

 In a common self-scheduling scheme, at the i-th 

scheduling step, the master computes the chunk size 

Ci and the remaining number of task Ri:

R0=N,      Ci=f(i,P),    Ri=Ri-1-Ci        (1) 

where N is the total data to be executed, f(i,P)
possibly has more parameters than just i and P and it 

is a function to produce the chunk size at each step, 

and P is the number of nodes on the grid. The master 

assigns Ci task to an idle slave and the load balancing 

will depend on the execution time gap between Ti, for 

i=1…n. This gap may be large if the first chunk is too 

large or (more often) if the last chunk (called the 

critical chunk) is too small [6]. 

The different ways to compute Ci has produced 

many self-scheduling schemes in the cluster. These 

schemes address how to divide a task to chunks and 

then dispatch them to each idle slave node in order to 

achieve load balancing and reduce the scheduling 

overhead. Some notable schemes are listed as 

follows. 

Chunk Self-Scheduling (CSS) [7]: Ci = k, where 

k >=1 is the chunk size chosen by the user. For k = 1, 

CSS is the so-called Pure Self-Scheduling (PSS). 

Guided Self-Scheduling (GSS) [8]: Ci = [Ri-1/p]

where p is the number of slave nodes in the grid and 

Ri is the remaining number of task at i-th step. 

Trapezoid Self-Scheduling (TSS) [9]: Ci = Ci-1 – 

D with chunk decrement 
1M

LF
D  where the 

first and last chunk-sizes (F, L) are user/compiler- 

input or 
p

N
F

2
, L=1. p is the number of slave 

nodes and M is the number of scheduling steps. 

Factoring Self-Scheduling (FSS) [10]: Ci = 

[Ri-1/( p)] where the parameter  is computed by a 

probability distribution or is suboptimal chosen  =2. 

p is the number of slave nodes and Ri is the remaining 

number of task at i-th step. 

To fit the characteristic of grid, some dynamic 

self-scheduling schemes are proposed to achieve the 

load balancing and reduce the scheduling overhead.  

Self-Scheduling [11]: % partition of workload 

is dispatched according to their performance weighted 

by CPU clock in the first phase and the rest (100- %)

of workload is dispatched according to known self- 

scheduling in the second phase.  

Hybird Parallel Loop Scheduling (HPLS) and 

it’s optimized algorithms [12, 13, 14] : % partition 

of workload is dispatched according to the 

performance ratio of all nodes in the first phase and 

the rest workload is dispatched by some known 

self-scheduling in the second phase. HPLS is an 

optimization of self-scheduling while it considered 

the performance of all nodes and the bandwidth 

between each node and the master. This approach has 

two problems when applied to the grid system. 

Firstly, the parameter value is assigned before the 

scheduling and it’s fixed during the processing. The 

grid is a dynamic computing environment, if the node 

set of the grid system is changed, the predefined 

value will be out of time. 

Secondly, the rest (100- %) of workload is 

dispatched according to known self-scheduling in the 

second phase, so that it will cause the load 

unbalancing because those known self-scheduling 

(CSS, GSS, FSS, etc), didn’t consider the 

performance of all nodes. 

ACSS (Adaptive Chunk Self-Scheduling Scheme) 

[3]: It propose an approach to parallel the data 

transfer and data processing by using the multiple 

threads mechanism to reduce the waiting time firstly, 

and then it adjusts scheduling parameters dynamically 

based on the node’s performance to achieve shorter 

waiting time than other schemes. In the serial 

processing mode the slave spends more waiting time 

on waiting the new data, and that would increase the 

total execution time and depress the efficiency of 

slave nodes. ACSS provides a parallel processing 

mode to parallel the data transfer and data processing, 

so that it can reduce the execution time significantly. 

III. METHODOLOGY

In the self-scheduling, the master doesn’t transfer 

the data to the slave just one time. To achieve shortest 

execution time in it, the master must assign a chunk 

with appropriate size to each slave on their processing 

ability every time. If all slaves finish their task on the 

same time and they are busy during the scheduling, 

the scheme can achieve the best performance. 

Therefore, how to get the slave’s processing ability is 

an important issue.  

In the desk grid, the slave’s processing ability is 

dynamic and changed with its load. For the chunk 

with same size, the slave need more time to execute it 

if there are many processes running at that time; on 

the contrary, if there are just two or three running 

processes the slave only need less time to complete 

that chunk. So how to obtain the real-time processing 

ability of the slave and assign an appropriate size 

chunk to it is one of the key to reduce the execution 

time. 

For a fixed size task, the real-time processing 

ability of the slave reflects in its execution time. 

Therefore, the execution time of a fixed task on a 

node can represent its real-time processing ability. 

Currently, there are many researches on predicting the 

task execution time in the grid environment and two 

methods are used to acquire it. 1) Static method [11, 

12]. This method just collects all kinds of computer’s 

hardware configuration, such as CPU, memory, 
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network bandwidth, etc, and then uses an equation to 

combine them; 2) Dynamic method. One method [3, 

13, 14] is to run a program on the slave firstly, and 

then collects the execution information to obtain the 

slave’s execution time. Another method [15, 16, 17, 

18] is to predict the future execution time based on 

the previous running information and some similar 

patterns and its basic approaches are Mean Value 

Method, Exponential Average Method, KNN 

(K-Nearest Neighbor), etc.  

The main disadvantage of above two methods is 

that they suppose the slave just runs one task and then 

miss the load change in it. Different with the other 

homogeneous environments or cluster systems, desk 

grid is built by many PCs used as desktop and the 

load of them are ruleless for the foreground processes. 

Ignoring the load change on the slaves would lead to 

the load unbalancing for self-scheduling. 

According to the characteristic of load change on 

the slave, we propose a novel runtime (also called as 

execution time) prediction algorithm - Chunk-based 

Task Runtime Prediction (CTRP) which predicts the 

execution time on the real-time information, not the 

historical information. The principle of our approach 

is that the load change on the slave can’t be estimated 

for its irregularity in a long period. But in a short 

period, such as several minutes, the load of the slave 

is steady relatively. Therefore, predicting the future 

runtime on the real-time information is more reliable 

than that on the historical information.  

CTRP’s theory is as follows. Each chunk assigned 

to the slave is divided into two parts: prediction 

chunk and remaining chunk. After the slave has 

finished the prediction chunk, it sends the real-time 

execution information to the master. Then the master 

predicts the size of next chunk and next prediction 

chunk based on that real-time execution information 

from the slave and master. After that, it transfers the 

next chunk to the slave. In the multi-core 

environment, multi-thread is used to parallel the data 

transfer and processing on the slave to ensure it 

doesn’t need to wait the next chunk. This means the 

data transfer should be finished before the slave 

completes the remaining chunk.  

Fig. 2 is the executing flow for i-th chunk based on 

multi-thread. We propose an approach to parallel the 

data transfer and data processing by using the 

multiple threads mechanism and there are three 

threads running on the slave: processing thread (PT), 

receiving thread (RT) and sending thread (ST). Firstly, 

PT processes the prediction chunk and obtains some 

real-time execution information. Secondly ST sends 

the results to the master. Thirdly, the master receives 

the results at the same time and then predicts the size 

of next chunk and next prediction chunk. Finally, the 

slave receives the next chunk from the master. In the 

multi-core environment, PT, ST and RT can be 

paralleled and that model can reduce the waiting time 

of the slave and keep it busy almost all time.  

Figure 2. The executing flow for i-th chunk based on multi-thread 

IV. PREDICTING THE SIZE OF PREDICTION CHUNK

It’s obvious that how to determine the prediction 

chunk size is an issue for our approach. 

Considering the prediction chunk size by oneself, 

larger it is, more accurate the execution time of 

remaining chunk is. However, if the prediction 

chunk size is too large, the time to complete the 

remaining chunk is too small to transfer the next 

chunk to the execution node. Therefore, PT must 

wait and the execution time would be increased.  

An appropriate size of the prediction chunk is to 

keep the node busy and let the master have enough 

time to transfer the next chunk to the slave node. 

There are four factors involved with the size of the 

prediction chunk, including: 

Trm: The execution time of remaining chunk; 

Tre: The time to return the result from the 

slave to the master; 

Tom: The overhead of the master to prepare the 

transfer; 

Ttr: The time to transfer the data from the 

master to the slave. 

To keep the slave busy, the master must have 

transferred the next chunk to the slave before it 

completed the remaining part of current chunk. 

Therefore, those four factors must be satisfied with 

the equation (2): 

Trm >= Tre + Tom + Ttr       (2)

The time Tre, Tom and Ttr depend on the network 

transfer rate, the size of the data to transfer, the 

load of the master and the load of the slave. We use 

the following method to collect the real-time 

information and then to calculate the Tre, Tom and 

Ttr.

(1) Assume half of the first chunk as the prediction 

chunk;  
(2) Choose the total chunk size ct following the 

CHSS scheme and then assigns the data with the 

size ct to all slaves. The first chunk for slave PRi

is assigned to ct* apfi,1 and the performance ratio 

apfi,1 is defined as  
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where  

S is the set of all grid nodes; 

bwi is the bandwidth between PRi and the master; 

eti is the execution time of PRi for a special 

program used to test the computing performance; 

w1 is the weight of the first term; 

w2 is the weight of the second term.  

w3 is the weight of the third term; 

In our experiments, the parameters of w1, w2

and w3 are assigned as 0.7, 0.2 and 0.1 by the 

linear regression on our experiments. Furthermore, 

eti for PRi is acquired by executing the matrix 

multiplication for size 256×256 while bwi is 

gathered by a combination of PING and FTP. 

(3) For each slave PRi

a) The master transfers the j-th chunk with the 

size ct* apfi,j to it and also sends it the size of 

j-th prediction chunk;

b) PRi receives the j-th chunk from the master 

and then processes it. After PRi has finished 

the j-th prediction chunk, it sends Tsi,j, Texi,j 

and SLi,j to the master where Tsi,j is the 

transfer time to send the j-th chunk from the 

master to PRi, Texi,j is the execution time PRi

used to process the j-th prediction chunk, and 

SLi,j is the average CPU utilization ratio 

when PRi processes the j-th prediction 

chunk. 

(4) If j-th chunk is the last chunk, then it’s end;  

(5) If the master has received the Tri,j, Texi,j and

SLi,j from PRi, it also obtians MLi,j which is the 

current CPU utilization ratio in the master.  

(6) The master calculates the performance ratio 

apfi,j+1 as  
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,
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1
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(7) The master estimates the 
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following the equation (5) and (6): 
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where
1, jireT  is the estimated time to return 

the (j+1)-th results from PRi to the master while 

1, jitrT  is estimated time to transfer (j+1)-th

chunk from the master to PRi.
1, jiomT , the 

estimated overhead of the mater to prepare 

(j+1)-th chunk for PRi, is equal to current 

overhead. 

(8) Following the equation (2), (5) and (6), the 

execution time to process (j+1)-th remaining 

chunk 
1, jirmT is

1,1, *)1(

*

*)1(

* 1,,1,,

jiji om

iij

jiji

iij

jiji

rm T
afpML

afpTs

afpSL

afpTs
T  (7)

and the size of (j+1)-th remaining chunk Cri,j+1

is

ji

ji

rmji
Tex

Cp
TCr

ji

,

,

1, *
1,

           (8)

where Cpi,j is the size of j-th prediction chunk. 

The size of (j+1)-th prediction chunk Cpi,j+1 is 

Cpi,j+1=ct* apfi,j+1 - Cri,j+1      (9)

(9) Go to (3).  

V. EXPERIMENTAL RESULTS

To verify our approach, we test it on a test bed grid 

– ZHHZGrid [19, 20]. ZHHZGrid is a desk grid 

oriented to process natural language and provides 

some common services (parsing, name entity 

recognition, part of speed, word segmentation, etc) in 

natural language processing. That grid is built by 

more than 60 PCs and servers which are used by our 

graduate students. The test bed includes 40 multi-core 

PCs, one of them being assigned the role of master. 

We want to test our approach in the heterogeneous 

computing environment, so we apply a combination 

of computer types in three subnets and the hardware 

configurations of those PCs are various.  

The matrix multiplication and Chinese word 

segmentation are used as examples while the former 

is a CPU-bound application and the latter is an 

I/O-bound application. For the CPU-bound 

application, the total execution time mostly depends 

on each node’s execution time. By contrary, the total 

execution time mainly consists of each node’s 

execution time and transfer time for the I/O-bound 

application. We test our approach on these two types 

application. 

The grid middleware is Globus Toolkit 4.0 and all 

services are written in JAVA. We have implemented 

the Matrix Multiplication Service and the Word 

Segmentation Service and deployed them on all 

nodes.  

We apply four runtime prediction approaches 

(Mean Value Method (MV), Exponential Average 

Method (EA), KNN and chunk-based task runtime 

prediction) to our self-scheduling scheme ACSS. In 

that experiment, k in the CSS is assigned to 12 and 

100KB in matrix multiplication and Chinese word 

segmentation respectively.  

To verify all prediction approaches, we provide two 
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test environments: dedicated model and no-dedicated 

model. In the dedicated model, each node just runs 

our test task and the load of such node is steady. In 

the no-dedicated model, each node runs many tasks 

and the load change is frequent and irregular. 

Firstly, we test above four prediction approaches 

and the CHSS without prediction (NOP) on the 

matrix multiplication with input matrix size 

1024×1024 and Chinese word segmentation with text 

size 16MB. Fig. 3 and 4 illustrate average execution 

time (the average of five tests) of above five schemes. 

Otherwise, all 40 PCs are running all kinds of 

foreground threads (MS word, Internet Explorer, etc) 

during the no-dedicated test. 
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Figure 3. Execution time of matrix multiplication
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Figure 4. Execution time of Chinese word segmentation 

Experimental results showed that our approach got 

better performance than that of others. In the case of 

dedicated environment, our scheme got 4.8%, 4.1%, 

6.1% and 49.7% performance improvement over that 

of MV, EA KNN and NOP respectively in the test of 

matrix multiplication and also got 3.0%, 1.1%, 3.6% 

and 49.2% performance improvement over them 

respectively in the test of Chinese word segmentation. 

That results show that the runtime prediction 

approach is benefit to the self-scheduling and can 

reduce the execution time. In the dedicated 

environment, the load of each node is almost steady 

and the prediction approach based on historical 

execution information, such as exponential average, 

KNN, etc, also can predict the execution time 

correctly. 

In the case of no-dedicated environment, our 

scheme improves the performance significantly. It got 

33.2%, 17.6%, 20.0% and 14.3% performance 

improvement over that of MV, EA KNN and NOP in 

the test of matrix multiplication and also got 37.3%, 

26.2%, 25.6% and 14.6% performance improvement 

over them respectively in the test of Chinese word 

segmentation. In such environment, the load of each 

node is changing frequently and irregularly, so that 

the error of all the prediction approaches based on 

historical execution information are increasing and 

their performance is worse than that of the approach 

with no prediction. As for our approach, it’s based on 

current running information, so it fits the load change 

on every node and gets more small error.  

Then, we apply our prediction approach to three 

classic self-scheduling (CSS, HPLS and CHSS) and 

call them as PCSS, PHLPS and PCHSS. We test those 

six scheme on the matrix multiplication with input 

matrix size 1024×1024 and Chinese word 

segmentation with text size 16MB in the no-dedicated 

model. Fig. 5 and 6 illustrate average execution time 

(the average of five tests) of above six schemes. In 

consideration of the fairness, we also reconstruct the 

CSS and HLPS with our parallel model. 
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Figure 5. Execution time of matrix multiplication on six schemes
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Figure 6. Execution time of Chinese word segmentation on six 

schemes

In Fig. 5 and 6, we found out that our prediction 

approach also can improve the performance of other 

schemes besides CHSS. Our approach CTRP got 

12.0%, 8.4%, 3.8% performance improvement on 

CSS, HPLS and CHSS n the test of matrix 

multiplication and also got 11.0%, 8.9%, 8.6% 

performance improvement over them in the test of 

Chinese word segmentation. This experimental results 

show that our prediction approach is useful for the 

multi-core desk grid. 

VI. CONCLUSION

In this paper we have proposed a novel runtime 

prediction approach – CTRP for the self-scheduling 

on the multi-core desk grid. CTRP predicts the 

execution time on the current real-time execution 

information and node’s load, not the historical 

information. It meets the real load change on the 

multi-core desk grid. The experimental results 

showed that our approach could reduce the total 

execution time and achieve better load balancing than 

other similar prediction schemes. Our future work 

will focus on how to apply it to the cloud computing 

environment. 
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