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Abstract—In this paper, a novel image denoising algorithm 
named fractional integral image denoising algorithm 
(FIIDA) is proposed, which based on fractional calculus 
Riemann-Liouville definition. The structures of n*n 
fractional integral masks of this algorithm on the directions 
of 135 degrees, 90 degrees, 45 degrees, 0 degrees, 180 
degrees, 315 degrees, 270 degrees and 225 degrees are 
constructed and discussed. The denoising performance of 
FIIDA is measured using experiments according to 
subjective and objective standards of visual perception and 
PSNR values. The simulation results show that the FIIDA’s 
performance is prior to the Gaussian smoothing filter, 
especially when the noise standard deviation is less than 30.  
 
Index Terms—fractional calculus, fractional integral, 
fractional integral mask, image denoising, Gaussian 
smoothing filter 
 

I.  INTRODUCTION 

Fractional calculus has long history as same as integral 
calculus and was presented 300 years ago relative to 
traditional integral calculus. Along with successful 
application in the research fields of diffusion process , 
viscoelastic theory and stochastic fractal dynamic , the 
fractional calculus is applied to the research field of 
modern signal analysis and processing [1] available at 
http://mechatronics.ece.usu.edu/foc/ 
fo_sigpro.html. Now, this research field, especially 
applying it to digital image processing, has obtained 
some results [2]. On the basis of fractional calculus 
Grümwald-Letnikov definition, some researchers 
established the theory of image texture enhancement 
fractional differentiation operation-based, designed and 
implemented fractional differentiation filter of digital 
image [3,4].  

As is well known, in existing fractional calculus 
definition, the fractional differential operation is 
performed if the order is positive; oppositely, the 
fractional integral operation is performed if the order is 
negative. Denoising algorithm is substantially performing 
an integral calculation for the blocks consisting of image 
pixels and neighborhood pixels. Otherwise, modern 
signal analysis and processing is essentially researching 

non-linear, non-causal, non-minimum phase system, non-
Gaussian, non-steady, non-integer dimension (or fractal) 
signal and non-white additive noise [5]. Researches show 
that some fractional operation-based methods are power 
tools for analyzing and processing said non problems, 
such as fractional Fourier transform[6,7], fractional 
wavelet packet transform[8], fractional wavelet spline 
transform[9], and fractional Brownian motion[10]. These 
researches show that fractional calculus is also a power 
tool for analyzing and processing said non problems. In a 
digital image, the gray values between pixels in 
neighborhood have great dependency, image signals are 
highly self-similar, most fractal structures are evolution 
process (e.g. fractal growing) and final products of 
evolution (e.g. fracture), and the similar fractal structure 
in an image is usually featured by edge and texture detail. 
Meanwhile, fractional calculus is a powerful tool for 
processing fractal [11,12]. Accordingly, we can think of 
naturally that whether the fractional calculus theory can 
be introduced to the digital image with reserving edge 
and texture detail information when denoising? Thus, this 
paper aims to introduce fractional calculus to digital 
image processing, and on the basis of fractional calculus 
Riemann-Liouville definition, provides a novel fractional 
integral image denoising algorithm, which is prior to the 
Gaussian smoothing filter [13], especially when the noise 
standard deviation is less than 30.  

The remainder of this paper is as follows. In section II, 
we introduce the fractional integral image denoising 
algorithm (FIIDA), constructing the fractional integral 
mask on eight directions. In section III, we analyze and 
discuss the FIIDA by comparative results on test images. 
Finally, conclusions are drawn in Section IV.  

II.  CONSTRUCTION OF FRACTIONAL INTEGRAL MASK 

Under the Euclidean measure, except for fractional 
calculus Grümwald-Letnikov definition, fractional 
calculus Riemann-Liouville definition also be widely 
applied and researched. This definition is derived from 
integer integral definition [2, 14]. For analytic function 

)(xs  of complex plane, the Cauchy Integral Formula is: 
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wherein +∈ Zn  is integral times of n
ta D − , xa、  are 

integral upper and lower limits respectively; )(⋅Γ  is 

Gamma function and defined as ∫
∞

−−=Γ
0

1dtten nt)( , and 

)()!( nn Γ=−1 ; Cauchy Integral Formula is directly 
extended from integer +∈ Zn  to real number v , and then 
fractional integral’s definition is obtained: 
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wherein atv >< ,0 ; for 0>v , we can obtain the 
corresponding fractional integral definition after doing 
differential operation to formula (2): 
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wherein atv >< ,0 , this formula is fractional calculus 
Riemann-Liouville definition, which comes from Cauchy 
Integral Formula, the conception of common derivative 
and multiple integral. For distinguishing the 
representation of fractional integral from fractional 
differential, the fractional integral Riemann-Liouville 
definition of signal s(x) based formula (2) can be 
expressed as follows:  
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wherein vJ  represents operator of fractional integral with 
order v, s(x) is one-dimensional real signal having 
duration of [a,x]. 

According to fractional integral Riemann-Liouville 
definition in formula (4), if duration of signal s(x) is [0, 
x], following formula can be derived: 

0
1

                 

1

0

1

0

1

<
−

−Γ
=

−−Γ
=

∫

∫

+

+−

vdxs
v

d
x

s
v

xsJ

x

v

x

vLR

v

,)(
)(

)(
)(

)(
)(

ξ
ξ

ξ

ξ
ξ
ξ

(5) 

for converting continuous integral into discrete sum so as 
to can numerically calculate formula (5), integral section 
[0, x] is equally divided into N parts, and when N is great 
enough, an approximate formula of following formula 
can be obtained: 
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So, integral on section [0, x] is converted into the sum of 
the integrals of N sub-sections. In the same manner, when 
N is great enough, an approximate formula can be 
obtained as follows: 
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Following formula can be derived from formula (7): 
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Following formula can be obtained by substituting 
formula (8) into formula (6): 
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wherein, the fractional integral operation of s(x) is 
resolved as simple multiplication operation and addition 
operation such that numerical implementation algorithm 
for fractional integral of one-dimension signal is derived. 

Based on formula (9), when 1−≤= Nnk , numerical 
implementation algorithms for fractional integral 
operations of two-dimension signal s(x, y) on the 
negative direction of x and y coordinates can be derived 
as: 
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Based on the numerical implementation algorithms for 
fractional integral operations of two-dimension signal 
s(x, y) on the negative direction of x and y coordinates in 
formulae (10) and (11), the sums of first n terms thereof 
are taken as the similar coefficient values for fractional 
integral of s(x, y) on the negative direction of x and y 
coordinates respectively, shown as formula (12) and (13): 
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N none-zero values of corresponding terms in formula 
(12) and (13) are 
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integral masks’ coefficients according to fractional 
integral Riemann-Liouville definition. To make the 
fractional integral mask with rotation invariant, we 
constructed eight fractional integral masks on direction 
135 degrees, 90 degrees, 45 degrees, 0 degrees, 180 
degrees, 315 degrees, 270 degrees and 225 degrees 
respectively. The details of each fractional integral mask 
are as Fig.1:  

 

  

  (a)                                                                            (b) 

1334 JOURNAL OF COMPUTERS, VOL. 6, NO. 7, JULY 2011

© 2011 ACADEMY PUBLISHER



  

(c)                                                                             (d) 

  

(e)                                                                             (f) 

  

(g)                                                                                (h) 

Fig.1 Fractional integral masks on directions of °135 , 90° , °45 , °0 ,180° , °315 , °270 , °225 , and which represented by. 

(a): °135FIM ,(b): °90FIM , (c): °45FIM , (d): °0FIM , (e): °801FIM , (f): °315FIM , (g): °270FIM  ,(h): °225FIM  respectively. 

 

Formula (10) and (11) show that, when k→n=3 , FIMs 
on eight directions is 3×3 mask; when k→n=5 , it is 5×
5 mask. n is usually taken odd number. A natural image 
becomes into digital image after sampling and quantizing, 
and the processing for digital image is based on discrete 
pixels in image. So the FIMs on eight directions filter 
digital image spatially by moving fractional integral mask 

from one pixel to another on image to be filtered. 
Because the properties of gray image and color image are 
concerned, they have great differences, the FIIDA uses 
two different modes to process the gray image and the 
color image respectively. When processing digital gray 
image ),( yxS , we do convolution filter on the above 
eight directions by using the FIMs on eight directions 
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respectively. And when processing digital color image, 
there are correlations among R, G and B components and 
intensity value is usually limited in [0,255], if we directly 
do convolution filter on the R, G and B components 
directly as same as the gray image, the correlations 
among R, G and B components may be destroyed, which 
leads to the color distortion. Therefore, we only do 
convolution filter by FIMs on eight directions for color 
image on I component in HSI color space.  

III.  EXPERIMENTS 

This section aims at demonstrating the denoising 
performance of FIIDA. At first, we show the comparison 

to the Gaussian smoothing filter and obtain the qualitative 
and quantitative analysis for denoising performance of 
FIIDA. All of the experiments were performed on a set of 
images (shown in Fig. 2) including those used by Portilla 
etal [15]. Then, we also quantitatively discuss the 
relationship between different value of order v and the 
performance of FIIDA. The PSNR value in this paper is 
defined as follows: 

MSE/)ˆ,max(log10PSNR 2
10 ff=         (14) 
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Lena                         Bacteria                         Barbara                      Peppers                        Boat 

Fig. 2. Images used in the experiments. 

 
Firstly, we study the performance of the proposed 

approach using images corrupted with additive, 
independent Gaussian noise with standard deviation σ  
5, 10, 15, 20, 25, 35, 50, wherein the fractional integral 
mask has a size of n=3, experiment results on Lena is as 
Fig.3. Fig.3 (a) shows Lena after being corrupted with 
white Gaussian noise with a standard deviation 15, its 
PSNR value is 25.55; Fig.3 (b) shows Lena after filtering 
with Gaussian smoothing filter; Fig.3 (c) shows Lena 
after filtering with FIIDA, the fractional integral order 
thereof v=-0.001; (d), (e) and (f); (g), (h) and (i) have 
similar description with (a), (b) and (c) respectively. 

From visual sense effect of human eyes, Fig. 3 shows that 
FIIDA has good denoising performance for Lena 
corrupted by different level noise; especially when the 
noise standard deviation is less than 30, FIIDA not only 
removes the noise well but also reserves the edge and 
texture details information in the image, in particular for 
the weak edge; in addition, compared with some 
algorithms based on TV, anisotropy diffusion, 
wavelet[16,17,18], because of there is no canonical 
hypothesis, the FIIDA does not cause the negative effect 
such as Gibbs vibration or staircase. 

 

   

                 (a) 15=σ ,PSNR=25.55                             (b) PSNR=27.52                            (c) PSNR=28.71,v=-0.441 
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                (d) 25=σ ,PSNR=19.57                          (e) PSNR=25.87                              (f) PSNR=27.35,v=-0.879 

   

              (g) 50=σ ,PSNR=19.57                       (h) PSNR=24.16                                   (i) PSNR=25.2,v=-1.1 

Fig. 3 Denoising results on Lena. Left: Noisy image; Middle: GSF; Right: FIIDA. 

 
Table 1 shows the PSNR values of FIIDA and 

Gaussian smoothing filter for the test images, wherein NP 
represents the PSNR values of a noisy image, GSF(s) 
represents PSNR values of the noisy image after denoised 
by Gaussian smoothing filter with Gaussian mask having 
standard deviation s (the size of mask is specified as 
5x5), FIIDA(v) represents PSNR value of the image after 
denoised by FIIDA to noisy image using the FIMs on 
eight directions with fractional integral order v, and 

FIIDA GSFPSNR PSNR∆ = − . Data in the table shows that the 
PSNR values of the image denoised with FIIDA are 
higher than that with GSF in various extents, and shows 
that FIIDA’s performance is prior to the Gaussian 
smoothing filter. 

IV.  CONCLUSIONS 

In this paper, we devote to introduce factional calculus 
theory into the research field of digital image processing, 
propose a novel fractional integral image denoising 
algorithm (FIIDA) which is based on fractional calculus 
Riemann-Liouville definition, and construct the fractional 
integral masks on eight directions. Simulation 
experiments show the availability of FIIDA, that it is 
prior to the Gaussian smoothing filter, especially when 
the noise standard deviation is less than 30. Certain 
aspects of FIIDA need to be studied more carefully. 

 

 

TABLE I. 
 COMPARISON OF DENOISING PERFORMANCE BETWEEN FIIDA AND GSF 

Bacteria.bmp Peppers.png 

σ  NP GSF(s) FIIDA(v) ∆  σ  NP GSF(s) FIIDA(v) ∆  

10 27.83 30.57(0.58) 31.3(-0.004) 0.73 10 28.75 29.73(0.52) 30.63(-0.001) 0.9 

15 24.94 28.72(0.7) 29.33(-0.36) 0.61 15 24.94 27.97(0.61) 28.47(-0.045) 0.5 

20 22.68 27.81(0.86) 28.29(-0.48) 0.48 20 23.14 26.62(0.7) 27.09(-0.28) 0.47 

25 20.61 26.59(0.98) 26.99(-0.87) 0.4 25 21.43 25.61(0.8) 26.04(-0.49) 0.43 

50 16.6 23.77(1.5) 24.18(-1.3) 0.41 50 17.46 22.69(1.4) 23.25(-1.1) 0.56 

Barbara.png Boat.png 

σ  NP GSF(s) FIIDA(v) ∆  σ  NP GSF(s) FIIDA(v) ∆  

10 28.48 28.24(0.46) 29.81(-0.001) 0.51 10 28.49 30.73(0.56) 31.2(-0.001) 0.47 

15 25.96 27.41(0.53) 27.78(-0.001) 0.37 15 25.63 28.66(0.67) 29.2( -0.053) 0.54 

20 23.47 26.02(0.59) 26.26(0.0031) 0.24 20 23.48 27.4(0.78) 27.91(-0.411) 0.51 

25 22.12 25.04(0.64) 25.26(-0.219) 0.22 25 21.66 26.46(0.9) 26.97(-0.628) 0.51 

50 18.4 22.88(1.08) 22.89(-0.751) 0.31 50 18.1 23.7(1.35) 24.41(-0.991) 0.71 
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