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Abstract— C4.5 and NB are two of the top 10 algorithms
in data mining thanks to their simplicity, effectiveness, and
efficiency. In order to integrate their advantages, NBTree
builds a naive Bayes classifier on each leaf node of the built
decision tree. NBTree significantly outperforms C4.5 and
NB in terms of classification accuracy. However, it incurs
very high time complexity. In this paper, we propose a very
simple, effective, and efficient algorithm based on C4.5 and
NB. We simply denote it C4.5-NB. Our motivation is to keep
the high classification accuracy of NBTree without incurring
the high time complexity. In C4.5-NB, C4.5 and NB are
built and evaluated independently at the training time, and
the class-membership probabilities are weightily averaged
according to their classification accuracies on training data
at the test time. Empirical studies on a large number of UCI
data sets show that it performs as well as NBTree in terms
of classification accuracy, but is significantly more efficient
than NBTree.

Index Terms— naive Bayes, decision trees, class-membership
probabilities, weights, classification, ranking

I. INTRODUCTION

Classification is one of the fundamental problems in
data mining. In classification, the goal is to learn a clas-
sifier from a given set of instances with class labels, which
correctly assigns a class label to a test instance. The per-
formance of a classifier is usually measured by its classifi-
cation accuracy. Classification has been extensively stud-
ied and various learning algorithms have been developed,
such as decision trees and Bayesian networks, that can be
categorized into two major approaches: probability-based
approaches and decision boundary-based approaches. In
this paper, we focus on probability-based approaches.

Assume that A1, A2, · · ·, Am are m attributes. A test
instance x is represented by a vector < a1, a2, · · · , am >,
where ai is the value of Ai. We use C to denote the
class variable and c to denote its value, and c(x) to
denote the class of the test instance x. In a probability-
based learning algorithm, a joint probability distribution
P (a1, a2, · · · , am, c) is learned from the training data,
and x is classified into the class c(x) with the maximum
posterior class probability P (c|a1, a2, · · · , am) (or simply,
class probability), as shown below:

c(x) = arg max
c∈C

P (c|x) (1)

where
P (c|x) = P (c|a1, a2, · · · , am) (2)

C4.5 and NB are two of the top 10 algorithms in
data mining [1] thanks to their simplicity, effectiveness,
and efficiency. In order to integrate their advantages,
Kohavi [2] proposes a hybrid algorithm, simply called
NBTree, which builds a naive Bayes classifier on each
leaf node of the built decision tree. Just as the author
expected, NBTree significantly outperforms C4.5 and NB
in terms of classification performance. However, it incurs
the high time complexity. In this paper, we propose a very
simple, effective, and efficient algorithm based on C4.5
and NB. We simply denote it C4.5-NB. Our motivation is
to keep the high classification accuracy of NBTree without
incurring the high time complexity.

The rest of the paper is organized as follows. In Section
II, III, and IV, we briefly review the naive Bayes classi-
fiers, the decision tree classifiers, and naive Bayes tree
classifiers. In Section V, we propose our new algorithm
C4.5-NB. In Section VI, we describe the experimental
methods and results in detail. In Section VII, we draw
conclusions and outline our main directions for future
work.

II. C4.5: A DECISION TREE CLASSIFIER

The basic process of building a decision tree can be
expressed recursively [3]. First, a best attribute is selected
to place at the root node of the tree and create one child
node for each possible value of this selected attribute.
For each child node, if it isn’t a leaf node, the entire
process is then repeated recursively only using those
training instances that actually reach this node. If it is
a leaf node, stop splitting this branch of the tree. Once a
decision tree has been built, it classify a test instance by
sorting it down the tree from the root node to one leaf
node, which provides the classification of this instance
via simply voting.

Among decision tree classification algorithms, C4.5 [4]
is the most popular one, which is the improved version of
ID3 [5]. C4.5 estimates the probability of a test instance x
belonging to class c using simple voting at the leaf where
x falls into. The detailed equation is:

P (c|x)C4.5 =
∑k

i=1 δ(ci, c)
k

(3)

where k is the number of training instances in the leaf
node, δ(•) is a binary function, which is one if its two
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parameters are identical and zero otherwise.
To our knowledge, the recursive partition methods used

in C4.5 suffer from the fragmentation problem, and they
have been observed to produce poor performance of class
probability estimation [6].

Therefore, Improving the class probability estimation
performance of the built tree has attracted much attention
from researchers. The related methods include the Laplace
estimate [6], [7], the m-estimate [3], the similarity-
weighted estimate and the naive Bayes-based estimate
[8], the kernel-based estimate [9], and so on. Besides,
averaging probability estimates from all leaf nodes of the
single tree [10] and averaging probability estimates from
a bag of trees [7] have achieved significant improvements.

III. NB: A NAIVE BAYES CLASSIFIER

A Bayesian network [11] consists of a structural model
and a set of conditional probabilities. The structural model
is a directed acyclic graph in which nodes represent
attributes and arcs represent attribute dependencies. At-
tribute dependencies are quantified by conditional proba-
bilities for each node given its parents. Bayesian networks
are often used for the classification problems, in which a
learner attempts to construct Bayesian network classifiers
from a given set of training instances with class labels.
Assume that all attributes are fully independent given the
class, then the resulting Bayesian network classifiers are
called naive Bayesian classifiers (simply NB).

NB uses Equation 4 to estimate the probability of a test
instance x belonging to class c.

P (c|x)NB = P (c)
m∏

j=1

P (aj |c) (4)

where m is the number of attributes, aj is the jth attribute
value of x, the prior probability P (c) and the conditional
probability P (aj |c) are defined using Equation 5 and
Equation 6 respectively.

P (c) =
∑n

i=1 δ(ci, c) + 1
n + nc

(5)

P (aj |c) =
∑n

i=1 δ(aij , aj)δ(ci, c) + 1∑n
i=1 δ(ci, c) + nj

(6)

where n is the number of training instances, nc is the
number of classes, ci is class label of the ith training
instance, nj is the number of values of the jth attribute,
and aij is the jth attribute value of the ith training
instance.

To construct naive Bayes classifiers, we only need to
estimate the probability values of P (c) and P (aj |c), j =
1, 2, · · · ,m, from the training data. So naive Bayes clas-
sifiers are very simple, effective, and efficient. However,
they require making a strong conditional independence
assumption, which often harms its classification perfor-
mance in many realistic data mining applications.

In order to weaken its conditional independence as-
sumption, many approaches are proposed. The related
work can be broadly divided into five main categories

[12]: 1) structure extension [13]; 2) attribute weighting
[14]; 3) attribute selection [15]; 4) instance weighting
[16]; 5) instance selection, also called local learning [17].

IV. NBTREE: A NAIVE BAYES TREE CLASSIFIER

Although the attribute independence assumption of
naive Bayes is always violated on the whole training data,
it could be expected that the dependencies within the local
training data is weaker than that on the whole training
data. Thus, NBTree [2] builds a naive Bayes classifier
on each leaf node of the built decision tree, which just
integrate the advantages of the decision tree classifiers and
the naive Bayes classifiers. Simply speaking, it firstly uses
decision tree to segment the training data, in which each
segment of the training data is represented by a leaf node
of tree, and then builds a naive Bayes classifier on each
segment.

A fundamental issue in building decision trees is the
attribute selection measure at each non-terminal node of
the tree. Namely, the utility of each non-terminal node and
a split needs to be measured in building decision trees. In
NBTree, the utility of a node is measured by computing
the 5-fold cross-validation accuracy estimate of using NB
at the node. To avoid splits with little value and to address
the fragmentation problem confronting C4.5, the author
defines a split to be significant if the relative reduction in
error is greater than 5% and there are at least 30 instances
in the node. All these are totally different from those of
C4.5.

NBTree significantly outperforms naive Bayes and C4.5
in terms of classification performance indeed. However, it
incurs the high time complexity, because it needs to build
and evaluate naive Bayes classifiers again and again in
creating a split.

V. C4.5-NB: A VERY SIMPLE, EFFECTIVE, AND
EFFICIENT CLASSIFIER BASED ON C4.5 AND NB

In this Section, we propose a very simple, effective,
and efficient classifier based on C4.5 and NB. We simply
denote it C4.5-NB. Our motivation is to keep the high
classification accuracy of NBTree without incurring the
high time complexity.

At the training time, C4.5-NB independently builds
C4.5 and NB, and then evaluates their classification accu-
racies (respectively denoted by ACCC4.5 and ACCNB)
on the training data. At the test time, C4.5-NB estimates
the class-membership probabilities using the weighted
average of the class-membership probabilities produced
by C4.5 and NB respectively, where the related weights
are the estimated ACCC4.5 and ACCNB respectively.
Namely, C4.5-NB uses Equation 7 to estimate the proba-
bility of a test instance x belonging to class c.

P (c|x)C4.5−NB = ACCC4.5×P (c|x)C4.5+ACCNB×P (c|x)NB

ACCC4.5+ACCNB

(7)
Thus, the whole algorithm of C4.5-NB can be parti-

tioned into a training algorithm (Training) and a test
algorithm (Test). They are depicted as:

1326 JOURNAL OF COMPUTERS, VOL. 6, NO. 7, JULY 2011

© 2011 ACADEMY PUBLISHER



AlgorithmTraining (D)
Input : the training data D
Output: the C4.5 and NB classifiers, ACCC4.5, and

ACCNB

1) Builds a C4.5 classifier using D
2) Evaluates ACCC4.5 on D
3) Builds a NB classifier using D
4) Evaluates ACCNB on D
5) Returns the built C4.5 and NB classifiers,

ACCC4.5, and ACCNB

AlgorithmTest (C4.5, NB, ACCC4.5, ACCNB , x)
Input : the built C4.5 and NB, ACCC4.5, ACCNB ,

and a test instance x
Output: the class label of x

1) For each possible class label c
2) Uses C4.5 to estimate P (c|x)C4.5

3) Uses NB to estimate P (c|x)NB

4) Estimates P (c|x)C4.5−NB

5) Returns c with maximal P (c|x)C4.5−NB

as the class label of x
In learning C4.5-NB, we need to define the weights

of the class-membership probabilities produced by C4.5
and NB. For simplicity, we currently define them as their
classification accuracies on the training data, which is
called the re-substitution accuracy. Although it is not a
reliable predictor of the true accuracy on the new data, it
is nevertheless often useful to know.

The time complexity of C4.5-NB is almost equal to the
sum of the time complexity of C4.5 and NB. Thinking of
the very low time complexity of C4.5 and NB, C4.5-NB
also has very low time complexity, and should be widely
used for classification in real-world applications.

To some extent, C4.5-NB also is an ensemble classifier,
which constructs two classifiers, C4.5 and NB, from
training data and then averages their class-membership
probabilities when classifying a test instance. However,
only simple weighted average, instead of bagging and
boosting, is used. Therefore, the efficiency and com-
prehensibility of it are all better than other ensemble
algorithms using bagging [18], [19] and boosting [19],
[20] etc.

VI. EXPERIMENTAL METHODS AND RESULTS

We run our experiments on 36 UCI datasets published
on the main web site of Weka platform [21], which rep-
resent a wide range of domains and data characteristics.
We downloaded these data sets in the format of arff from
the main web site of Weka. The description of the 36 data
sets is shown in Table I.

We conducted empirical experiments to compare C4.5-
NB with C4.5, NB, NBtree, Boosted C4.5, Boosted NB,
Bagged C4.5, and Bagged NB in terms of classification
accuracy and running time. We implement our C4.5-NB
in the Weka software and use the implementation of
naive Bayes (NiaveBayes), C4.5 (J48 with default setting),
NBTree, Boosted C4.5 (AdaBoostM1 with J48 as the
basic classifier), Boosted NB (AdaBoostM1 with Niave-
Bayes as the basic classifier), Bagged C4.5 (Bagging with

TABLE I.
DESCRIPTIONS OF UCI DATA SETS USED IN THE EXPERIMENTS.

Dataset Size Attributes Classes Miss. Num.
anneal 898 39 6 Y Y
anneal.ORIG 898 39 6 Y Y
audiology 226 70 24 Y N
autos 205 26 7 Y Y
balance-scale 625 5 3 N Y
breast-cancer 286 10 2 Y N
breast-w 699 10 2 Y N
colic 368 23 2 Y Y
colic.ORIG 368 28 2 Y Y
credit-a 690 16 2 Y Y
credit-g 1000 21 2 N Y
diabetes 768 9 2 N Y
Glass 214 10 7 N Y
heart-c 303 14 5 Y Y
heart-h 294 14 5 Y Y
heart-statlog 270 14 2 N Y
hepatitis 155 20 2 Y Y
hypothyroid 3772 30 4 Y Y
ionosphere 351 35 2 N Y
iris 150 5 3 N Y
kr-vs-kp 3196 37 2 N N
labor 57 17 2 Y Y
letter 20000 17 26 N Y
lymph 148 19 4 N Y
mushroom 8124 23 2 Y N
primary-tumor 339 18 21 Y N
segment 2310 20 7 N Y
sick 3772 30 2 Y Y
sonar 208 61 2 N Y
soybean 683 36 19 Y N
splice 3190 62 3 N N
vehicle 846 19 4 N Y
vote 435 17 2 Y N
vowel 990 14 11 N Y
waveform-5000 5000 41 3 N Y
zoo 101 18 7 N Y

J48 as the basic classifier), and Bagged NB (Bagging with
NiaveBayes as the basic classifier) in Weka software.

In all experiments, the classification accuracy and run-
ning time of an algorithm on each data set are obtained via
10 runs of 10-fold cross-validation. Finally, we conducted
a two-tailed t-test with 95% confidence level [22] to
compare C4.5-NB with C4.5, NB, NBtree, Boosted C4.5,
Boosted NB, Bagged C4.5, and Bagged NB.

Table II shows the detailed classification accuracy of
each algorithm on each data set, and the symbols ◦ and •
in the tables respectively denote statistically significant
upgradation or degradation over C4.5-NB with a 95%
confidence level. Besides, The averaged classification
accuracies and w/t/l values are summarized at the bottom
of the table. Each entry w/t/l in the table means that C4.5,
NB, NBtree, Boosted C4.5, Boosted NB, Bagged C4.5,
and Bagged NB win on w data sets, tie on t data sets,
and lose on l data sets, compared to our C4.5-NB.

In the same way, we also observe their running time.
The running time of each algorithm is the averaged CPU
time in millisecond. Our experiments are performed on a
dual-processor 2.93 Ghz Pentium 4 Windows computer
with 2Gb RAM. The detailed experimental results are
shown in Table III. Please also note that the meaning of
the t-test symbols in this table is opposite to that in Table
II. Because for running time, a small number is better
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TABLE II.
CLASSIFICATION ACCURACY COMPARISONS FOR C4.5-NB VERSUS C4.5, NB, NBTREE, BOOSTED C4.5, BOOSTED NB, BAGGED C4.5, AND

BAGGED NB.

Dataset C4.5-NB C4.5 NB NBtree Boosted C4.5 Boosted NB Bagged C4.5 Bagged NB
anneal 98.78 98.57 86.59 • 98.42 99.59 ◦ 94.05 • 98.90 86.95 •
anneal.ORIG 94.00 92.35 • 75.03 • 97.13 ◦ 95.17 80.14 • 93.97 76.60 •
audiology 76.32 77.26 72.64 76.82 84.75 ◦ 79.26 80.84 ◦ 71.49
autos 81.56 81.77 57.41 • 77.87 85.46 57.12 • 82.24 57.12 •
balance-scale 78.41 77.82 90.53 ◦ 75.97 78.35 91.68 ◦ 82.04 ◦ 90.29 ◦
breast-cancer 71.66 74.28 72.70 70.99 66.89 68.68 72.71 73.12
breast-w 95.77 95.01 96.07 96.38 96.08 95.55 96.07 96.04
colic 83.35 85.16 78.70 • 81.71 81.63 77.62 • 85.34 78.73 •
colic.ORIG 66.08 66.31 66.18 69.24 66.31 67.35 66.31 65.96
credit-a 84.12 85.57 77.86 • 85.46 84.01 81.04 • 85.71 77.99 •
credit-g 72.44 71.25 75.16 ◦ 74.27 70.75 75.14 ◦ 73.89 75.20 ◦
diabetes 75.79 74.49 75.75 75.24 71.69 • 75.86 75.65 75.64
glass 68.61 67.63 49.45 • 69.90 75.15 ◦ 49.63 • 73.50 49.99 •
heart-c 80.11 76.94 • 83.34 80.43 78.79 82.97 78.88 83.37
heart-h 84.06 80.22 • 83.95 82.26 78.68 • 84.81 79.93 • 84.13
heart-statlog 80.26 78.15 83.59 79.26 78.59 82.59 80.59 83.59
hepatitis 80.98 79.22 83.81 80.93 82.38 84.62 80.73 84.13
hypothyroid 99.52 99.54 95.30 • 99.57 99.65 95.28 • 99.58 95.46 •
ionosphere 90.63 89.74 82.17 • 89.15 93.05 91.06 92.17 82.00 •
iris 95.53 94.73 95.53 93.80 94.33 94.80 94.67 95.53
kr-vs-kp 99.44 99.44 87.79 • 97.81 • 99.59 94.38 • 99.42 87.69 •
labor 89.30 78.60 • 93.57 92.27 87.17 89.60 82.60 93.73
letter 88.31 88.03 • 64.07 • 86.60 • 95.53 ◦ 64.07 • 92.73 ◦ 64.15 •
lymphography 78.46 75.84 83.13 80.80 80.87 81.27 77.25 83.76
mushroom 100.00 100.00 95.76 • 100.00 100.00 100.00 100.00 95.77 •
primary-tumor 45.49 41.39 • 49.71 ◦ 47.50 41.65 • 49.71 ◦ 43.90 49.35
segment 96.36 96.79 ◦ 80.17 • 95.28 • 98.12 ◦ 80.17 • 97.39 ◦ 80.28 •
sick 98.45 98.72 92.75 • 97.82 • 98.99 ◦ 93.60 • 98.81 ◦ 92.72 •
sonar 74.49 73.61 67.71 77.07 79.13 80.77 78.51 68.21
soybean 93.54 91.78 • 92.94 92.87 92.83 92.98 92.78 92.78
splice 95.83 94.03 • 95.41 95.40 93.59 • 93.68 • 94.34 • 95.43
vehicle 72.41 72.28 44.68 • 70.99 75.59 ◦ 44.68 • 74.48 45.58 •
vote 96.32 96.57 90.02 • 95.03 95.51 95.01 96.27 90.02 •
vowel 80.78 80.20 62.90 • 92.34 ◦ 92.88 ◦ 80.14 90.28 ◦ 63.43 •
waveform-5000 76.44 75.25 • 80.01 ◦ 80.16 ◦ 81.40 ◦ 80.01 ◦ 81.79 ◦ 79.98 ◦
zoo 95.48 92.61 94.97 94.44 95.18 97.23 93.21 95.07
Average 84.42 83.37 79.37 84.76 85.26 81.29 85.21 79.48
w/t/l - 1/26/9 4/16/16 3/29/4 9/23/4 4/19/13 7/27/2 3/17/16

than a large number, which is opposite to classification
accuracy. So • represents statistically significant better
than C4.5-NB in terms of running time and ◦ represents
worse.

From our experiments, we can see that C4.5-NB per-
forms as well as NBTree in classification accuracy, but
is significantly more efficient than NBTree. Now, we
summarize some highlights briefly as follows:

1) C4.5-NB significantly outperforms C4.5. C4.5-NB
wins C4.5 on 9 data sets, whereas C4.5 only wins
C4.5-NB on 1 data sets. Besides, the averaged clas-
sification accuracy of C4.5-NB (84.42%) is much
higher than that of C4.5 (83.37%).

2) C4.5-NB significantly outperforms NB. C4.5-NB
wins NB on 16 data sets, whereas NB only wins
C4.5-NB on 4 data sets. Besides, the averaged clas-
sification accuracy of C4.5-NB (84.42%) is much
higher than that of NB (79.37%).

3) C4.5-NB performs as well as NBTree in classi-
fication accuracy (4 wins and 3 losses), but is
significantly more efficient than NBTree (34 wins
and 0 losses).

4) In terms of classification accuracy, C4.5-NB sig-

nificantly outperforms boosted NB (13 wins and 4
losses) and bagged NB (16 wins and 3 losses), and
almost ties boosted C4.5 (4 wins and 9 losses) and
bagged C4.5 (2 wins and 7 losses).

5) In terms of running time, C4.5-NB significantly
outperforms boosted C4.5 (34 wins and 1 losses),
boosted NB (32 wins and 1 losses) and bagged C4.5
(34 wins and 0 losses), and almost ties bagged NB
(6 wins and 7 losses).

In our another group of experiments, we investigate
the ranking performance of our C4.5-NB in term of the
area under the Receiver Operating Characteristics curve,
simply AUC [23]. The experimental results in Table IV
show that its ranking performance almost ties NBTree (6
wins and 1 losses) and boosted C4.5 (9 wins and 7 losses)
and significantly outperforms all the other algorithms used
to compare.

Besides, we design a group of experiments to compare
our proposed method with following two methods [24],
[25]: 1) Simple voting using average of probabilities of
NB and C4.5, simply denoted by Averaged. 2) Simple
voting using product of probabilities of NB and C4.5,
simply denoted by Producted. The experimental results

1328 JOURNAL OF COMPUTERS, VOL. 6, NO. 7, JULY 2011

© 2011 ACADEMY PUBLISHER



TABLE III.
RUNNING TIME COMPARISONS FOR C4.5-NB VERSUS C4.5, NB, NBTREE, BOOSTED C4.5, BOOSTED NB, BAGGED C4.5, AND BAGGED NB.

Dataset C4.5-NB C4.5 NB NBtree Boosted C4.5 Boosted NB Bagged C4.5 Bagged NB
anneal 94.87 51.41 • 9.69 • 6453.88 ◦ 389.69 ◦ 734.22 ◦ 468.61 ◦ 91.05
anneal.ORIG 129.48 90.47 • 9.83 • 7271.88 ◦ 627.63 ◦ 643.82 ◦ 894.49 ◦ 90.97 •
audiology 34.36 13.92 • 4.08 • 20351.01 ◦ 202.97 ◦ 354.22 ◦ 137.67 ◦ 31.78
autos 31.57 14.05 • 3.14 • 2219.03 ◦ 167.84 ◦ 146.24 ◦ 138.43 ◦ 34.38
balance-scale 19.83 12.97 1.88 • 285.00 ◦ 178.61 ◦ 119.48 ◦ 117.84 ◦ 20.21
breast-cancer 2.97 2.33 0.31 362.01 ◦ 34.99 ◦ 12.05 ◦ 24.22 ◦ 3.27
breast-w 25.75 12.81 • 4.53 • 328.76 ◦ 201.41 ◦ 166.45 ◦ 117.18 ◦ 42.69 ◦
colic 20.47 15.47 1.86 • 3031.58 ◦ 257.49 ◦ 75.13 ◦ 144.54 ◦ 20.36
colic.ORIG 11.13 5.94 1.56 • 8774.37 ◦ 22.17 ◦ 88.24 ◦ 61.71 ◦ 22.22 ◦
credit-a 33.12 22.19 • 2.34 • 1395.45 ◦ 295.47 ◦ 110.42 ◦ 197.32 ◦ 34.84
credit-g 58.15 40.79 • 5.95 • 1476.26 ◦ 488.26 ◦ 270.30 ◦ 375.94 ◦ 63.41
diabetes 38.09 26.70 • 4.04 • 288.60 ◦ 416.85 ◦ 178.02 ◦ 321.06 ◦ 42.83
glass 25.14 15.15 2.05 • 494.36 ◦ 164.18 ◦ 47.52 ◦ 132.07 ◦ 20.34
heart-c 16.88 9.07 1.90 • 776.74 ◦ 125.17 ◦ 137.47 ◦ 84.82 ◦ 19.43
heart-h 16.86 9.85 1.71 • 550.45 ◦ 208.28 ◦ 100.07 ◦ 89.70 ◦ 16.23
heart-statlog 17.52 11.55 2.03 • 516.11 ◦ 145.49 ◦ 107.92 ◦ 103.75 ◦ 24.07
hepatitis 6.12 5.32 0.78 799.23 ◦ 67.36 ◦ 32.14 ◦ 45.15 ◦ 7.66
hypothyroid 170.90 69.39 • 29.19 • 13648.25 ◦ 1204.20 ◦ 1275.95 ◦ 683.74 ◦ 288.61 ◦
ionosphere 91.07 70.93 • 7.81 • 5378.47 ◦ 664.39 ◦ 367.61 ◦ 577.97 ◦ 76.66 •
iris 3.43 0.94 0.47 62.66 ◦ 15.31 ◦ 34.33 ◦ 11.09 4.51
kr-vs-kp 83.94 58.15 • 12.82 • 14048.86 ◦ 1177.28 ◦ 432.10 ◦ 567.03 ◦ 104.09 ◦
labor 2.19 0.93 0.16 266.12 ◦ 15.16 ◦ 10.63 ◦ 10.14 2.96
letter 11697.27 5366.53 • 835.33 • 375519.68 ◦ 57571.08 ◦ 59671.13 ◦ 42855.57 ◦ 8467.89 •
lymphography 4.72 2.67 0.62 982.06 ◦ 34.06 ◦ 45.43 ◦ 25.17 ◦ 7.20
mushroom 70.26 30.18 • 16.91 • 4244.40 ◦ 47.51 • 756.86 ◦ 286.88 ◦ 177.04 ◦
primary-tumor 20.17 11.38 1.59 • 1727.95 ◦ 83.03 ◦ 26.86 116.75 ◦ 10.78
segment 515.22 243.44 • 52.11 • 19271.12 ◦ 2916.71 ◦ 1293.38 ◦ 2233.40 ◦ 520.45
sick 219.26 157.82 • 23.94 • 21547.88 ◦ 2416.82 ◦ 855.01 ◦ 1199.52 ◦ 247.83 ◦
sonar 82.07 61.09 • 7.20 • 4870.48 ◦ 656.26 ◦ 367.56 ◦ 540.45 ◦ 80.59
soybean 55.94 29.82 • 4.23 • 22639.24 ◦ 369.70 ◦ 419.90 ◦ 269.74 ◦ 42.42 •
splice 212.25 161.86 • 17.39 • 26710.00 342.84 ◦ 857.37 ◦ 1628.01 ◦ 185.11 •
vehicle 135.46 -1638.15 12.35 • 6526.88 ◦ 1047.53 ◦ 49.03 • 898.29 ◦ 125.06
vote 6.55 4.39 1.10 -474.36 68.73 ◦ 30.94 ◦ 39.85 ◦ 7.49
vowel 274.52 178.89 • 13.28 • 5898.73 ◦ 1968.59 ◦ 1571.30 ◦ 1573.05 ◦ 139.11 •
waveform-5000 2476.40 1907.95 • 170.32 • 47266.21 ◦ 23350.11 ◦ 7053.99 17715.85 ◦ 1705.89 •
zoo 2.96 0.78 0.47 831.21 ◦ 10.62 8.74 13.12 ◦ 0.78
Average 464.08 196.64 35.14 17398.35 2720.94 2179.22 2075.00 355.01
w/t/l - 0/16/20 0/7/29 34/2/0 34/1/1 32/3/1 34/2/0 6/23/7

in Table V and Table VI show that:
1) Our proposed method significantly outperforms

simple voting using average of probabilities of NB
and C4.5 in terms of classification accuracy (8 wins
and 1 losses).

2) Our proposed method significantly outperforms
simple voting using product of probabilities of NB
and C4.5 in terms of AUC (19 wins and 0 losses).

VII. CONCLUSIONS AND FUTURE WORK

Due to the simplicity, effectiveness, and efficiency, C4.5
and NB are two very important algorithms for addressing
the classification problems. In this paper, we propose a
very simple, effective, and efficient algorithm based on
C4.5 and NB. We simply denote it C4.5-NB. In C4.5-NB,
C4.5 and NB are built and evaluated independently at the
training time, and the class-membership probabilities are
weightily averaged according to their classification accu-
racies on training data at the test time. The experimental
results on a large number of UCI data sets show that it
performs as well as NBTree in classification accuracy, but
is significantly more efficient than NBTree.

C4.5-NB needs to define the weights of the class-
membership probabilities produced by C4.5 and NB. In

our current version, we simply define them as their clas-
sification accuracies on the training data. Therefore, we
believe that the use of more sophisticated methods, such
as the accuracy estimates based on k-fold cross-validation
or leave-one-out, could improve the performance of the
current C4.5-NB and make its advantage stronger. This is
the main research direction for our future work.
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