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Abstract— Most embedded database systems are built on
a two-level memory hierarchy, a RAM buffer on top of
flash memory. Both kinds of memories have limited capacity,
thus, how to efficiently utilize them is critical for embedded
systems with resource restrictions. Different from magnetic
hard disk, flash memory has speed asymmetry in reads and
writes, i.e., random reads are over an order of magnitude
faster than random writes. µ-tree [9] is the state-of-the-
art index supporting efficient random updates on the flash
memory. However, we found that the traditional page based
buffer scheme(LRU-P for short) under-utilized the RAM
space. To improve the utilization on the memory resources
and the query performance, we propose a novel buffer
scheme called LRU-N – a node-based LRU policy for the
RAM buffer. In addition, to increase the utilization of the
flash memory, we also present a k-partitioning strategy for µ-
tree. LRU-N uses a page address swizzling scheme to exploit
the co-related locality of accessing multiple tree nodes in the
µ-tree. The k-partitioning strategy determines an optimal k
value for space efficiency by allocating more flash memory
to the leaf nodes and guarantees sufficient space for tree
growth. Our experiments conducted on both simulated data
sets of various distributions and real-world data sets show
that LRU-N can significantly improve buffer hit rate up to
65% for the best cases over the page-based scheme LRU-P;
even with small buffer size, LRU-N can also achieve rather
good performance. And our proposed k-partitioning strategy
can effectively reduce the index size up to 33% over µ-tree.

Index Terms— buffer scheme, LRU, µ-Tree, flash DB

I. INTRODUCTION

Flash memory holds many attractive features such as
low power consumption, small size, light weight, and
shock resistance. Because of these features, flash memory
is widely used in consumer electronics and embedded
systems such as mobile phones and sensors. Recently,
flash memory has been adopted by personal computers
and servers, which might be mounted on the computer
motherboard, a DIMM slot, a PCI board, or within a
standard disk enclosure as solid-state disk (SSD).

There are two types of flash memory, namely NOR
and NAND. NOR flash provides fast read access, slow
write/erase time, low density and a random-access in-
terface. The latter property makes NOR flash ideal for
application or boot code execution in place (XIP) as it

This work was supported by NSFC Project(61070042), Zhejiang
Provincial NSF Project(Y1090096) and China “863” Hi-tech Pro-
gram(2007AA01Z153). Corresponding author: Liang Huai Yang, Email:
yang.lianghuai@gmail.com.

allows direct memory addressing. On the other hand,
NAND-flash has faster write/erase times and requires a
smaller chip area per cell, thus increasing the overall
storage capacity. This also lowers the cost of NAND flash.
However, NAND flash does not allow random access to
any memory location like NOR flash as it operates with a
page-based interface. This character makes NAND flash
suitable for external storage.

As a storage medium, NAND flash distinguishes itself
from traditional hard disk medium with some special fea-
tures. The minimum unit of read/write operation in flash is
a page. Page sizes vary between 256B to 4KB. Each block
consists of a number of pages (with varieties of 32×512B,
64×2KB, 64×4KB and 128×4KB). While reading and
programming is performed on a page basis, erasure can
only be performed on a block basis. Flash updates need to
be preceded by an erase operation. Two consecutive writes
to the same physical location must be interleaved by block
erasure. Updating a page in its original location (in-place-
update) is prohibitively expensive, it requires copying all
valid pages from the erase block, then erasing the block,
and finally copying the valid pages and updated page back
to the block. And data in a block can only be written
sequentially, i.e., after page pi has been written, any page
pj , 1 ≤ j < i can not be written even if it is empty.
The number of times a block can be written or erased
is limited (typically between 10,000 to 100,000 times).
Whereas typically read and write access on a hard disk
are almost identical, in flash it is much faster to read
(≈60µs) than to write (≈800µs).

With the increasing popularity of NAND flash memory
as data storage for embedded systems and the rapid
growth of its capacity, many file systems and database
management systems are being built on it. There exist
two major approaches to use NAND flash memory as a
storage device in embedded systems. One is to employ
Flash Translation Layer (FTL) between applications and
NAND flash memory. The advantage is that legacy file
systems or database systems designed for disks can be
used without any modification. However, Most FTL al-
gorithms are designed based on the principle of locality
in storage access patterns. FTL may experience degraded
performance if the access patterns of the workload do not
match those optimized in FTL. For example, the updates
to the B+-Tree-like index structure results in random
accesses requiring many small flash write operations. In
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Figure 1. A B+-Tree update example for node E

addition, garbage collection, which reclaims invalid pages
by erasing appropriate blocks, may not be efficient due
to the limited information available at block level. For
instance, SQL Sever Everywhere employs a B+-Tree over
FTL and performs poorly. The reason is due to that the
out-place-update (write after erase) feature of the flash
memory, random updates are not only time-consuming but
also consume flash space, which leads to more garbage
collection operations.

The second approach is the native approach, directly
managing NAND flash memory without an intermediate
layer. In this approach, all is under user’s control. De-
signers can take into account of the peculiarities of flash
memory, such as speed asymmetry in reads and writes,
and out-place-update. This is especially useful in the case
of resource-restricted embedded system. As such, lots of
efforts [9], [13], [20] are put into the design of an efficient
index structure to locate a particular item quickly from
database in embedded devices. In this study, we focus on
the native approach for flexibility.

Kang et al [9] proposed an index structure µ-tree that
operates native flash memories without FTL. µ-tree is the
state-of-the-art index supporting efficient random updates
on the flash memory. It is similar to B+-Tree and is
a balanced tree, which is well fit for query over large
volume of data. If B+-Tree is applied to a native flash-
based database, an update to a B+-Tree leaf node results in
the updates along the path from leaf to root. Taking Fig.1
as an example, Fig.1 (a) shows a B+-tree before updating
node E. When updating node E, one feasible approach
is to write the update to a new page and discarding the
original node page E without incurring the expensive
block erasure cost immediately. With E changing to a
page, its physical address changes as well. Since E’s
parent node B is pointing to it, B has to update its pointer,
and B has to be moved to a new page as a result due to the
out-place-update rule. Such cascading updates continues
to propagate upward along the path till to the root. Fig.1
(b) shows the final B+-tree after updating E, where all the
invalid nodes are shaded in gray, and its net effect looks
like a “Wandering Trees” [3]. Unlike B+-Tree, where
each node corresponds to a page, µ-tree organizes those
nodes to be updated along the path from root to leaf into
one page. Thus, µ-tree requires only a single flash write
operation whenever any node in the tree is updated.

However, µ-tree has two shortcomings: (1) µ-tree uses
read- and write-buffers separately, where the write-buffer
is used for buffering those updated pages, which is flushed
out to flash memory when full, and read-buffer adopts

LRU as its buffer policy. Since multiple nodes along the
path in the µ-tree reside in the same page, an update
operation on one node can induce invalid node (s) in other
µ-tree page (s). This greatly degrades the buffer space
utilization. (2) The node size of µ-tree is dissimilar to the
traditional index. A node in the µ-tree is only a fraction
of the entire page, and decreases as the height of µ-
tree increases. The space of µ-tree can be approximately
estimated as the number of pages to hold all leaf nodes.
Let the fanout be f and the total number of records be n,
the space for B+-Tree is around Vb ≈ ⌈n

f ⌉,and the space
for µ-tree is around Vµ ≈ ⌈ n

f/2⌉.Given the same n and
f , the space needed for µ-tree is about twice larger than
the corresponding B+-Tree; It would be even worse, if
the number of records are large or multiple indexes are
needed in the embedded system. This piece of work aims
to overcome these two shortcomings.

Our contributions are as follows:
• To tackle the first shortcoming, we propose a node-

based LRU policy named LRU-N as the buffer
management scheme, which aims at increasing the
buffer space utilization. LRU-N uses a page-address
swizzling scheme to exploit the co-related locality
of accessing multiple tree nodes in the µ-tree. Our
experimental evaluation shows that our proposed
method can improve the performance up to 65%
in the best cases. Even with small buffer size, our
scheme achieves rather good performance.

• For the second issue, we propose a k-partitioning
strategy for increasing utilization of the flash mem-
ory. The strategy determines an optimal k value for
space efficiency by allocating more flash memory to
the leaf nodes and guarantees sufficient space for tree
growth. This enables the µ-tree to be applied to em-
bedded system with a smaller storage requirement.
The experiments show that the space reduction is
achieved up to 33%.

For differentiation, we call it a kµ-tree when a µ-tree
adopts k value other than 0.5 determined by k-partitioning
strategy.

The rest of the paper is organized as follows. Section II
discusses the related work. Section III presents our node-
based LRU placement/replacement policy named LRU-N
for the RAM buffer, and details a page-address swizzling
scheme to keep some useful nodes in buffer. Section IV
describes a k-partitioning method which aims for high
space utilization of kµ-tree. Performance evaluations are
given in section V; and finally, we conclude in Section
VI.

II. RELATED WORK

As the research on flash-based DBMS is gaining mo-
mentum [7], [11], [14], [17], several indexes for flash
memory are proposed [1], [2], [9], [13], [18]–[20].

Due to out-of-place update feature in flash memory, an
update to a B+-Tree leaf node results in the updates along
the path from leaf to root, which is known as “Wandering
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Trees”. JFFS3 [3] adopts a log-structured design to amor-
tize the update costs in the B+Tree. Insertions are logged
in a journal and are applied to the B+Tree in a batch
mode. A journal index is maintained in RAM recoverable
at the boot time so that a key lookup is first performed on
the journal index and then in the B+Tree. Wu et al [19]
introduced a B+-Tree layer over FTL, namely BFTL, for
flash memory to reduce the update cost. BFTL does not
suffer from the out-of-place update problem. However,
when a new record is inserted, its key is added to a
B+-Tree leaf node, incurring an out-of-place update of
the corresponding flash page. To avoid expensive update
cost for each node, the changes are sequentially written
to logs. The node mapping in the log is maintained by an
in-memory data structure called Node Translation Table
(NTT). While BFTL reduces the cost of random writes
to the flash memory, the read cost is degraded by over
a factor of two because many log pages related to the
requested node must be accessed. Adopting the similar
idea, Wu et al [18] presented an R-tree layer over FTL.
Nath et al. [14] proposed a hybrid approach by mixing
B+Tree and BFTL, and used a self-tuning scheme via
grouping nodes into read-intensive and write-intensive
nodes based on the workload characteristics.

Most recently, Chang et al. [2] propose a native index
structure for NOR-Flash memory. However, as the authors
point out, this index structure is suitable for NOR flash
but not for NAND since NOR flash is byte-addressable
while NAND flash is page-oriented. Agrawal et al. [1]
present a lazy-adaptive tree (LATree) - a novel index
structure that exploits flash-resident buffers for batching
the update (insert and delete) operations. Meng et al. [21],
[22] invent a flash index structure called PBFilter which
tackles applications where insertions are more frequent
and critical than deletions or updates. The above methods
is orthogonal to our approach.

Both log-based and FTL-based indexes do not fit
well for resource-restricted embedded systems because
the memory footprint of journal is proportional to the
number of nodes. The updates to B+-Tree reveal many
small writes which are distributed randomly across many
blocks, but most FTL algorithms perform poorly for such
a workload [8], [10]. The use of log pages does lessen
the problem since the log entries in the same node are
eventually merged together.

Lin et al. [20] proposed MicroHash indexing structure
to speed up lookups on sensor devices. Mani et al. [13]
presented an index called TINX for sensor devices based
on an unbalanced binary tree structure. Both methods are
not scalable to a large number of records. It is also hardly
applicable to file systems or DBMSs because it assumes
that all stale records written a certain amount of time ago
are abandoned in the deletion phase.

Our work is based on µ-tree [9]–the state-of-the-art
index supporting efficient random updates on the flash
memory. In particular, we address the space efficiency of
the µ-tree, while preserving the good search performance.
In order to improve the read/write efficiency of flash

memory, buffer management scheme (BMS) is exten-
sively studied. Kim and Ahn [6] proposed BPLRU (Block
Padding LRU) to improve the random write performance
of flash storage over FTL. Park et al. [15], [16] described
CFLRU (Clean first LRU) for operating systems over flash
storage. The idea is to trade reads for expensive writes by
choosing a clean page as a victim rather than a dirty one.
Jo et al. [5] presented another BMS–FAB (flash aware
buffer policy) for flash memory by selecting a victim
based on its page utilization rather than based on the
traditional LRU policy. Jiang et al. [4] proposed DULO
to exploit both temporal and spatial locality over FTL.
Lee et al [12] reduced the power consumption via power-
aware buffer cache (PABC). In contrast, we focus on the
buffer efficiency of the index, and aim at improving the
index performance via identifying the co-related buffering
locality in the tree search.

III. BUFFER MANAGEMENT SCHEME

In this section, we present our node-based LRU replace-
ment policy, namely LRU-N. A good buffer management
scheme should capture the locality of data accesses in
order to reduce the number of accesses to secondary stor-
age in query processing. Compared with the traditional
page-based LRU replacement policy, LRU-N exploits the
correlated access locality during the search of the µ-tree.

A. Motivations

µ-tree [8] uses read and write-buffer separately, where
write-buffer is used for buffering those updated page
and is flushed out to flash memory when the buffer is
full. However, there exist two features which lead the
LRU strategy does not fit µ-tree well. First, µ-tree stores
nodes in the same path into one page, thus, an update
operation on one node may results invalid node (s) in
other µ-tree page (s) see Fig. 2 for reference. Since the
LRU replacement policy manipulates on pages, the invalid
nodes may waste a lot of space and degrade the buffer
space utilization. For example, in case of updating a µ-tree
node E in Fig. 2, it causes node A invalid and wastes the
buffer space as a consequence according to page-based
LRU policy. In addition, the memory space above node
D in page 3 is also wasted.

Second, a µ-tree page stores multiple nodes from dif-
ferent levels. The nodes at different levels have different
access probabilities. Due to the tree structure, the nodes
at lower level have a lower probability to be accessed.
In particular, the probability of a node being accessed at
level L is the sum of its child nodes’ access probability.
Consequently, a page-based LRU policy is not aware of
such correlated locality in the tree search.

To improve buffer space utilization and exploit the co-
related locality, we propose a node based LRU policy
named LRU-N for a better performance on the µ-tree.
For differentiation, we denote the traditional page-based
LRU as LRU-P.
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Figure 2. A µ-tree update example for node E

B. LRU-N

In view of the peculiarities of µ-tree, a new buffer
management scheme should take into account the fact that
higher level nodes have higher probability to be accessed
than lower level ones while the nodes at higher level are
much fewer than those at lower level, and try to keep as
more higher level nodes in-memory as possible to fully
utilize those wasted memory space. With these aspects
in mind, we propose a novel replacement scheme called
LRU-N, where, instead of applying LRU to the whole
flash index page, LRU is applied level-wise to nodes
of each level in µ-tree index page. To be specific, for
index pages in the buffer pool, nodes of each level are
logically organized into a list, where least recently used
nodes are placed at the list head while recent frequently
used nodes are put at the tail. Newly fetched valid node
is also appended to the tail. When buffer pool is full,
the head node is selected as the victim to be replaced.
However, since the number of nodes in the higher level
is fewer than that of the lower level in buffer pages, there
exists some unused space which can retain in memory the
valid node of the victim buffer page at the same level. As
such, LRU-N takes advantage of this fact. When a valid
node is moved to and retained in another memory page at
some level, it will be annotated with its flash page address
(hereafter FPA for short).

Since root is always kept in write-buffer [9], there is no
need for read-buffer to manage it. A buffer pool and its
corresponding LRU lists are illustrated in Fig. 3, where
the leaf node number shown in the buffer page (here 3,
4, 5, 6) stands for FPA, and other node number of upper

 

 

 

Figure 3. Buffer pool and its corresponding LRU lists

 

 

 

Figure 4. Buffer page layout for “page address swizzling” scheme

hierarchy means the node’s FPA. For example, the FPAs
in level 3 are 7, 9, 4, 6, where flash pages of 7 and 9
only have nodes of level 3 in buffer while their child
nodes of the lower levels were evicted from buffer, and
similarly, flash pages of 4 and 6 are kept in buffer but their
nodes of different levels are kept in different buffer pages
after certain LRU-N placement/replacement operations.
Note that, for issue of presentation and implementation,
the node number of each node shown in LRU lists uses
the leaf node number of the buffer page where this node
resides. The actual FPA for an upper level node is set by
“page address swizzling” scheme described below.

Since nodes from different levels of µ-tree are orga-
nized into independent LRU lists, when buffer pool is full,
the victim nodes (VNs for short) from different LRU lists
may be from different flash pages. However, if DBMS
requests a non-resident flash page, it needs a whole buffer
page to adopt this flash page. To solve this problem, we
contrive a “page address swizzling” scheme wherein some
FPA slots are reserved at the end of each buffer page. An
example buffer page layout is shown in Fig. 4, where the
FPA of level 2 node is kept in the left most slot and FPA
of level 3 node in the next slot. Note there is no need to
keep the FPAs in the slots for leaves and root level node
because, as stated before, root node is not managed in the
read-buffer, while leaf node’s FPA is always the original
FPA of the corresponding flash page. When a node access
request arrives, LRU-N works as follows:

1) If the node is found in buffer pool, the node is
returned.

2) Otherwise, see if the buffer pool is full.
a) If the buffer pool is not full, we fetch the node

into the buffer and the node is returned.
b) Otherwise, this event triggers LRU replace-

ment and chooses a victim for each LRU list.
Let VPA be the victim page address of the
victim leaf node and VBP the victim buffer
page, in order to keep as many upper level
tree nodes in-memory as possible and not
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Figure 5. An execution example of LRU-N to make room for a new
flash page

waste unused space, the scheme performs the
following actions:
i) Check if there are any in-memory nodes

of the flash page to be adopted in the LRU
lists. If there is any, move this node to the
head of lists as the victim since these nodes
will be brought in again and should make
room for other nodes;

ii) Check the page address FPA of each victim
node VNi of each LRU list from bottom
up (except leaf and root) for level i=2,
· · ·, h-1, if this victim’s page address is
the same as VPA, repeat this step until
it checks all LRU lists; otherwise, since
the content of VNi will be invalidated,
and VNi is not part of the VBP which is
about to be replaced, so a natural idea is to
retain the valid node in VBP by migrating
it to VNi. Hence, copy the level i node
content (if valid) of VBP to node VNi,
set its corresponding buffer page’s slot to
VPA, and exchange the positions of VNi

and VBP’s level i node in the LRU list
where VNi lies. Repeat this step until it
checks all LRU lists;

iii) Finally, the normal LRU placing/replacing
is performed: removing all victims from
the LRU lists, reading the flash page into
the buffer page, and adjusting each LRU
list of each level by placing new valid
nodes at the list’s tail or placing the empty
(invalid) node at the head.

Incidently, though we illustrate the buffer pool pages by
including the top level nodes, in actual implementation,
there is no need to allocate buffer space for the top level
nodes.

Example: Assume the DBMS need to adopt a new page
from the NAND flash block and the read-buffer is full
as shown in Fig. 3. According to the LRU-N strategy,
the buffer page indicated by the leaf node in LRU lists
is selected to be the victim buffer page VBP and its
VPA is 3. Next, LRU-N will check the upper level LRU
lists’ victim nodes. Since VN2’s buffer page address 5 is

Input: L-level of the node to be found in the tree 

      D-page address 

Output: N-the node 

1:  for each buffer page i= 1, ..., M 

/** check the corresponding slot for the page address 

*  of the level L node of buffer page i; 

**/ 

2:    if found slotL=D in the page Di then  

3:       return N←GetNodeFromPage(Di, L); 

4:    end if 

5:  end for 

6:  if page D not found in the buffer pool then 

7:    for each buffer page i= 1, ..., M     

8:      if Di = D then 

9:       return N←GetNodeFromPage(D, L); 

10:     end if 

11:   end for 

12:  end if 

13:  fetch page D into buffer from flash memory; 

14:  return N←GetNodeFromPage(D, L); 

 
Figure 6. Retrieving a node from a buffer page

different from VPA, thus the content of level 2 node of
VBP 3 is migrated to VN2, i.e., the level 2 node 6 of the
third buffer page, and its corresponding physical address
slot is set appropriately (here 13); similarly, LRU-N will
check VN3=6, it differs from VPA again, so the content of
level 3 node of VBP is transferred to VN3 and the slot is
set as well (here 7). By this time, it’s ready for adopting
the new flash page. The resulting example is shown in
Fig. 5.

C. Node Retrieval in LRU-N buffer page

Since the logical structure of kµ-tree and µ-tree are
identical, the retrieval process of kµ-tree is essentially
the same as that of µ-tree. However, when retrieving a
node in a buffer page from kµ-tree, it needs some extra
checking because of our “page address swizzling” scheme
used in buffer management. Similar to µ-tree, GetNode-
FromPage() is used iteratively during the retrieval process
to locate the correct node. We will present its detailed
algorithm on the “k-partitioning” method. Fig. 6 outlines
pseudo code for retrieving the level L node from page D.

IV. k-Partitioning MODEL

The particular way of organizing µ-tree results in that
its total used flash memory space depends on its allocated
leaf node size. To obtain a small size kµ-tree, we should
allocate to the leaf node a portion of a page as large as
possible. For the sake of addressing convenience, a fixed
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M : the number of buffer pages
i: level i (leaf nodes are in level
1, root is in level h)
Di: the ith page number
fi: maximum fanout in level i
p: flash page size
J(i): nodes total in level i
F : maximum fanout of nodes
S: node size
n: records total
k: partitioning rate (0<k<1)

 

 

 

Figure 7. Page layout evolution of a kµ-tree

allocation proportion k is used and can be applied to the
top level nodes for space partitioning as necessary.

For example, let the flash page size be p. Initially the
entire page is used for the root; as more records are
inserted, the root node splits and the height of kµ-tree
increases by one level as a result. By then, the leaf nodes
has the size of kp while the root node gets (1 − k)p in
size. This process proceeds as necessary and applies to
the root node in the end. The page layout evolution of a
kµ-tree is illustrated in Fig. 7, where node of each level
is annotated with its node size.

The symbols used in our model are listed below:
The number of pages accessed during record retrieval

depends on the height of kµ-tree. Since the fanouts of
nodes in the same level may not be same, it is difficult to
work out the exact height of kµ-tree. Thus, we estimate
the maximum height of the tree as its height.

Firstly, let’s figure out the max node fanout for each
level of kµ-tree. According to proposed k-partitioning
model, the node size of the lower level is always allocated
by k ratio of the space to be partitioned. As a result, we
arrive at the formula for maximum node fanout at each
level:

fi =

{
k(1− k)i−1F, i<h;
(1− k)h−1F, i=h.

Next, we will work out the max height h of the kµ-tree
with n index entries. Assume that there exists another T ′

with the minimum number of index entries n′ among all
those kµ-tree with height h. It is not difficult to know that
T ′ has single index entry; otherwise, we can find another
tree with less index entries and this is a contradiction.
Similarly, for other nodes of T ′, they have the minimum
number of index entries. Similar to B+-tree, kµ-tree is a
balanced tree and the number of index entries for each
node is no less than half of the max fanout of this node.
Thus, the number of nodes in the i-th level of T ′ can be
computed as:

J(i) =


1, i=h
2, i=h-1
h−2∏
j=i

⌈
k(1−k)jF

2

⌉
, i<h-1

,

hence,

n′ =
h−2∏
i=1

⌈
k(1− k)iF

2

⌉⌈
kF

2
− 1

⌉
By some simplification, we have:

n′ =

(
kF

2

)h−2

(1− k)(
(h−1)(h−2)

2 )

(
kF

2
− 1

)
Take the logarithms of both sides of the equation above:

lg(1− k)h2 +

(
2 lg

kF

2
− 3 lg(1− k)

)
h−

4 lg
kF

2
+ 2 lg(1− k)− 2 lg

2n′

kF − 2
= 0

By solving the quadratic equation, we have:

h =

3 lg(1− k)− 2 lg kF
2 +

√
(lg(1−k)+2 lg kF

2 )
2
+

8 lg(1−k) lg 2n′
kF−2

2 lg(1− k)
(1)

Let h(k, n′, F ) , h, it holds: h(k, n′, F ) ≤ h(k, n, F ).
From formula (1) and given n records, we know that the

maximum height of kµ-tree depends on k value and max
fanout F , while height h and value k is in proportion.
The larger the k value is, the bigger the space will be
allocated to the lower level tree nodes, especially the
leaf nodes. In kµ-tree, one flash page may hold all the
nodes of the path from root to leaf, consequently the
space (pages) of kµ-tree, denoted as Skµ−Tree is equal
to the number of leaves. Since the size of a leaf node is
k fraction of the flash page, and the leaf node’s fanout
is kF , therefore the space (pages) of kµ-tree can be
approximated as Skµ−Tree ≈

⌈
n
kF

⌉
. That is, Skµ−Tree

is inversely proportional to k, the larger the k value the
smaller the kµ-tree size. On the other hand, if k is too
large, then the upper level nodes do not have enough space
to organize the kµ-tree.

In reality, applications usually have the knowledge of
upper limit of records or the system has limited secondary
storage, therefore n can be pre-defined. The index entry
size depends on the application, so does the max fan-out.
By feeding these two parameters to the index system, the
max k value according to (1) can be found easily.

We demonstrate the relationships among k, n, h, and
F in Figs 8 and 9. Fig. 8 shows the relationship between
n, k, h, and F=512. Fig. 9 (a) illustrates the relationships
between the optimal value k and the number of records
by fixing the max fanout, while Fig. 9 (b) shows the
relationships between the optimal value k and index entry
size when n is fixed. As the number of records increases
or the index entry size increases, the suitable k value
decreases.

1312 JOURNAL OF COMPUTERS, VOL. 6, NO. 7, JULY 2011

© 2011 ACADEMY PUBLISHER



 

 

  

  
 

Figure 8. The relationship between k and h (h=0 is caused by too big
k to have real h solution).

 

 

 
(a)The number of records n vs its optimal k 

 
(b)The index entry size vs the optimal value k 

Figure 9. the optimal value k vs the number of records, the index entry
size.

Due to the k-partitioning strategy, the node of kµ-tree
will not take an entire page. The algorithm for getting a
node within a page for kµ-tree is shown in Fig. 10. Lines
1 to 7 computes the offset for locating the node and the
size for the node.

V. EVALUATION

In this section, we introduce the results of the experi-
ments, with which we have implemented the µ-tree with
our enhanced buffer scheme on a NAND flash simulator
[23] to evaluate the effectiveness of our proposed buffer
scheme and the effect of the k-partitioning method.

A. Experimental Setup

All the experiments of this work were conducted on a
PC with an Intel dual-core processor, 2GB memory, and
Linux with kernel 2.6.28.

Simulator. NAND simulator (nandsim) [23] is an ex-
tremely useful debugging and development tool which
simulates NAND flashes in RAM or a file. We used
NAND simulator to simulate a 1GB flash memory with
2KB page size by specifying the simulated flash type
with parameters: first id byte=0xec second id byte=0xd3
third id byte=0x51 fourth id byte=0x95. Compared with

 

 

GetNodeFromPage () 
Input: Page address D, Level L 
Output: N 
1:  if  L=h  then 

2:      S← 1(1 )hk p− −   /*S-the node size*/ 

3:      O←0                         /*O-page offset*/ 
4:  else  

5:      S← 1(1 )Lk k p− −   

6:      O← (1 )Lk p −   

7:  end if 
8:  N←read at page D from offset O with size S 
9:  return N 

 
Figure 10. The algorithm for getting a node within a page in kµ-tree.

the access time of a flash page, the access time of in-
memory page is negligible. Thus, we only present the
number of buffer misses m, i.e., the number of flash
memory accesses, during the key search.

In our experiments, we investigate the performance
of our proposed techniques by varying the number of
query requests, the buffer size, and query access patterns
generated according to random (uniform), normal and zipf
distributions of the search key values; we’ll also look into
the effect of tree height, buffer size, and the partition
value k on the performance of the buffer scheme. To see
the effect of the partition value k on µ-tree space, we’ll
demonstrate the space performance of µ-tree by varying
the index entry size. By going one step further, we validate
the results by using the real-world data from the UMass
Trace Repository1.

Datasets. Since we focus on the index search per-
formance, the query sequences (access patterns) were
generated by varying the distributions on the key values,
including random (uniform) distribution, normal distri-
bution (µ = maximalKeyValue/2, σ = 500), and Zipf
distribution (skew=0.5). The length of query sequences
ranges from 104, 105, 2×105, 5×105, 106. µ-trees with
different tree heights (hence different number of index
entries accordingly) also are used to show what effect of
tree height will have on our proposed buffer scheme. The
tree height ranges from 3 to 5.

To validate the simulation result, we use the storage
data sets of the UMass Trace Repository as our data sets,
where there are two I/O traces from OLTP applications
running at two large financial institutions. Since we have
limited nand flash storage, here we map 10,000 logical
I/O block address of the trace access patterns as our real
query access patterns for µ-trees index while we filter out
those blocks falling out of this scope. The data sets and
their requests are shown in Table I.

Metrics. We used the number of index page accesses
to evaluate the effectiveness of different buffer schemes

1http://traces.cs.umass.edu/. It provides network, storage, and other
traces to the research community for analysis.
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TABLE I.
NUMBER OF REQUESTS.

data sets requests
Financial 1 49406
Financial 2 78800
Websearch 1 27984
Websearch 2 26934
Websearch 3 26772

 
1 10 20 50 100 

Random 15590 155910 312038 780047 1559907 
Normal 
(µ=N/2) 8440 84557 168774 421593 843000 

Zipf 
(skew=0.5) 6323 62601 125389 313557 627857 

(a)LRU-N  1 10 20 50 100 

Random 17055 170927 342033 854324 1708855 
Normal 
(µ=N/2) 11204 112373 224522 560877 1122580 

Zipf 
(skew=0.5) 8789 87335 174897 438076 877579 

(b)LRU-P 

Query reqs  
(*10^4) / 
Query Pattern 

Query reqs  
(*10^4) / 
Query Pattern 

Figure 11. Comparisons between LRU-N and LRU-P under various
distributions (k=0.5,buffer=4P,H=3,N=10000).

(i.e.,the conventional page based LRU-P vs our pro-
posed node based LRU-N), the occupied index space
size in flash storage to compare the space efficiency
of the k-partitioning method, the estimated elapsed time
to compare the overall performance. Here, we define
the improvement brought by our proposed technique as
|vLRU−P−vLRU−N |

vLRU−P
× 100% where vLRU−N and vLRU−P

are the metric value (the number of index page accesses,
the index space size, and the elapsed time) with and
without our techniques, respectively.

For simplicity, we use the following notations in all
the illustrated diagrams: k for k-partition value, H for
tree height, B for buffer size, P for page, N for the
number of index entries in the index. For the convenience
of statement, when we say a query requests conforming
to random distribution, we’ll use Random queries for
short; similarly, we’ll use Normal queries and Zipf queries
for the query requests of normal distribution and Zipf
distribution respectively.

B. Results on LRU-N

For the first set of experiments, we set the page size of
the flash memory to be 2048 bytes. The key value is eight
bytes, consisting of a 4-byte key and a four-byte pointer.
The buffer size is set to 4 pages (8KB).

Fig. 11 (a) - (c) report the number of page accesses
to the flash memory of µ-tree with the LRU-P and the
LRU-N replacement policies. By using query requests of
different data distributions on the search key values, we
varied the length of query requests and fixed partition
value k to 0.5, buffer size B to 4 pages, tree height H to 3,
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(b) B=8P 

k=0.5,B=16P,H=3,N=10^4
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(c) B=16P 
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Figure 12. Percentage improvement of LRU-N over LRU-P under
various buffer size (k=0.5, H=3, N=10000).

the number of index entries N to 10000. From the results,
we can observe that overall the LRU-N replacement
policy improves the buffer effectiveness, reducing the
number of page accesses from 8% to 20%. We further
analyze the results on various distributions:
⋄ Random distribution: the improvement of LRU-N

over LRU-P is about 9%. This trend keeps stable for
different lengths of query requests. Since we only use
a small buffer size (4P), achieving this improvement
is not easy.

⋄ Zipf distribution: Given the same data scale, the
number of page accesses for Zipf queries is smaller
than that for Random queries. This is because the
search key values in Zipf queries is more skew than
that in Random queries, especially for the key values
with larger weight, which results in more buffer
reuse. The improvement of LRU-N over LRU-P is
about 18%.

⋄ Normal distribution: the improvement of LRU-N
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for Normal queries achieves more than 20%.
To see the above trends clear, we redraw the above

results in Fig. 12 (a), where we show the percentage
improvement of LRU-N over LRU-P for each kind of
query requests.

We performed next set of experiments by varying the
buffer size. Fig. 12 (a) through (c) shows the effect of
buffer size on the performance of LRU-N. As buffer size
increases from 4 pages to 16 pages, we witnessed an
interesting performance changes of LRU-N:
⋄ Random distribution: the improvement increases

from 8% for 4P, 28% for 8P and 20% for 16P.
Note that both performance of LRU-N and LRU-
P increases as the larger buffer size results in more
index pages can be buffered.

⋄ Zipf distribution: For query requests of this dis-
tribution, the improvement of LRU-N over LRU-P
varies from 18% for 4P, 21% for 8P and 17% for
16P.

⋄ Normal distribution: the improvement of LRU-N
in the normal distribution witnessed an interesting
variation from 20% for 4P, about 4% for 8P and
16P. For this distribution, both performance of LRU-
N and LRU-P increases as buffer size increases but
their ratio is not a simple linear relationship.

In the mean time, we also validate our new buffer
scheme on the UMass Trace and the results are shown
in Fig. 13 and Fig. 14. By varying the buffer size from 4
pages to 16 pages, LRU-N shows an improved hit rates
over LRU-P about 20% to 65%. The reason is that LRU-
N makes use of the memory space wasted by invalid
index nodes and considers both the temporal and spacial
locality of the access patterns while its counterpart LRU-
P fails to do so. Again in this real-world trace, we noticed
the gradual drop-down of the LRU-N/LRU-P ratio as the
buffer size increases. LRU-N can perform excellently even
with small buffer size. In whatever case, LRU-N always
gives better hit rate.

To understand the effect of tree height on the perfor-
mance improvement of LRU-N, we carried out another set
of experiments by varying the number of index entries and
the buffer size. Fig. 15 (a) - (c) gives the results. We can
observe the general trends. For small buffer size 4P, LRU-
N outperforms LRU-P by 20% at H=3, 52% at H=4 and
43% at H=5 for Normal queries; For larger buffer size
16P, LRU-N outperforms LRU-P by 4% at H=3, 10% at
H=4, and 25% at H=5. An outstanding fact is that for
all access patterns LRU-N outperforms LRU-P by more
than 21% at H=5 and buffer size 16P. Similar results are
also observed for Random queries (8% to 28%)and Zipf
queries ( 10% to 20%). In this set of experiments, we
found that even with 4 pages small buffer size, LRU-N
outperforms LRU-P by 9 - 16% for Random queries, 20 -
52% for Normal queries, and 10 - 17% for Zipf queries.

C. Impact of k-Partitioning on the Buffer Scheme

Now let’s look into the performance impact of the
various partition value k. We performed experiments on
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Figure 13. Percentage improvement of LRU-N over LRU-P under
various buffer size and k values (Financial, N=10000).

k=0.3, k=0.5 and k=0.7. The experimental results are
shown in Fig. 16 (a) - (c). As stated above, for small buffer
size 4P, the performance of Normal queries or Zipf queries
is better than that of Random queries. On the other hand,
for larger buffer size, the performance of Random queries
or Zipf queries is better than that of Normal queries. It
reaches up to 24%.

With respect to real-world data sets, it can be inferred
from Fig. 17 and Fig.18 that, as k increases, the per-
centage of improvement tends to increase as well. The
improvement of LRU-N over LRU-P ranges from 15% to
65%. For small buffer size, LRU-N performs significantly
better than LRU-P. Such a feature is definitely desired for
resource restricted embedded system.

D. Space efficiency of K-Partitioning

In this section, we’ll see the effect of k value on the
space performance of µ-tree. For small flash page size, a
big k will result in limited number of records indexed. The
relationship between k and tree height has been detailed
in Section IV and Fig. 8.

In this set of experiments, the flash page size is set to
2KB as before, k values take 0.7 and 0.5, and the numbers
of indexed entries varies from 5000, 10000, 20000 and
30000. Fig. 16 (a) - (b) shows the space usage of µ-tree
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Figure 14. Percentage improvement of LRU-N over LRU-P under
various buffer size and k values (WebSearch, N=10000).

and kµ-tree by varying the number of indexed entries
and the index entry size respectively. As the number of
indexed entries varies, the improvement in the index size
of kµ-tree over µ-tree ranges from 25% to 35%; Similarly,
for the index entry sizes, the space improvement is around
20% to 33%.

VI. CONCLUSION

µ-tree is the state-of-the-art flash-aware tree index for
flash-based embedded database systems. In this paper, we
investigated the novel buffer scheme to enhance the µ-
tree query performance. We proposed a node-based buffer
replacement policy LRU-N and a k-partitioning method to
improve the buffer effectiveness and the space efficiency
for µ-tree, respectively. We evaluated our techniques
using workloads under various scales and distributions.
The experimental results demonstrate that our node-based
buffer scheme is very effective and has good performance.
It reduces the number of page accesses up to 52% in
the best cases compared with that of the LRU-P scheme.
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Figure 15. Percentage improvement of LRU-N over LRU-P under
various tree height (k=0.5).

It is worth to note that, even with 4 pages small buffer
size, LRU-N outperforms LRU-P by 9 - 16% for Random
queries, 20 - 52% for Normal queries, and 10 - 17% for
Zipf queries; with regards to real-world data sets, LRU-N
outperforms LRU-P by 26 - 56% for Financial data set
and 29 - 65% for WebSearch data set. This characteristics
is very useful for embedded applications with memory
restrictions. In addition, the k-partitioning method reduces
the index size up to 33%.
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