
A New Test Data Compression Scheme
Ling Zhang1,2 Jishun Kuang1

1School of computer science Huangshi Institute of Technology Huangshi, China
2School of Computer and Communication, Hunan University Changsha , China

Abstract—With the improvement of technology, more cores
are placed on a single chip to form a system. The volumes of
test data becomes a challenges for circuits test. The paper
presents a test data compression which uses hybrid prefix
code and a new test set regenerating algorithm. In essence,
the technique uses two formats of prefix to encode for the
new regenerated test set, and the regenerated test set is
better suitable to our compression scheme. So it gain better
compression ratio. Experimental results show that the
proposed compression solution could re duce test data
volume effectively with a simple decoding architecture.

Index Terms—hybrid prefix code, embedded core testing,
test data compression, test regeneration

I. INTRODUCTION
The increase in integration density has resulted in a

tremendous increase in the test data volume needed to test
those chips. The large test data volume not only increase
the testing time but may also exceed the tester memory
capacity. To reduce the testing time and cost, it is
necessary to reduce the test data volume.

Test volume reduction can be achieved by utilizing
built-in self test(BIST) and test compression techniques.
BIST solution reduces the need for an expensive ATE as
on-chip pattern generators and signature compaction are
used. In practice, BIST may not always replace other test
methods for the long time needed to detect random pattern
resistant faults[1].

There are extensive works on the test compression
which used to speed up the ATE-SoC interaction during
test. These works are used to compress the precompued
test-data set(TD) which often provided by core vendor, to a
smaller test set TE(|TE|<|TD|) which is then stored in the
ATE’s memory, and an on-chip decoder decompresses TE
to TD to be applied to the system under test.

Some test compression techniques are based on
utilizing structural information of the circuits.
Decompression-based schemes[2] and broadcast-scan-
based schemes[3,4]. Other test compression techniques do
not require structural information, they compress TD to a
smaller volume TE. example of this techniques include
alternating run-length coding[5], Golomb coding[6], FDR
coding[7], EFDR coding[8] and run-length Huffman
coding[9] ,VC9R[1], select Huffman coding[10] . In addition,
there are also some techniques based on LFSR
encoding[11] and dictionary based compression[12]. A
particularly attractive feature of algorithmic strategy for
test compression is that it does not require any redesign of
IP core.

This paper presents a new compression solution which
based on new generated test set and new suitable code

compression scheme. The new compression scheme
achieves a higher compression ratio with carefully use
ATPG process to generate new better suitable test set
based on a given test set, and only requires a very small
decoder. In addition, the proposed technique does not
perform any circuits’ structure modification.

The rest of this paper is organized as follows. Section
II discusses hybrid prefix code scheme and the
corresponding decoding architecture. A new algorithm for
test regeneration based on a given test set without harm
the fault coverage is given in Section III. Experimental
results are shown in Section IV. Section V is devoted to a
simple conclusion for the proposed test compression
solution.

II. TEST REGENERATION FOR COMPRESSION
The section presents how to regenerate new test set

which is better suitable to the proposed encode scheme.
Compared with previous encode schemes which only

use one format prefix, the hybrid encode scheme has
longer codeword for run-length of one. Much run lengths
of one would harm the compression ratio. For achieving
higher compression ratio, an algorithm for regenerating
test set based on a given test set which has very few run-
lengths of one and more run length of longer run-lengths
without harm the fault coverage is given.

The objective of the proposed algorithm is to make as
few as possible run-lengths of one and as more as longer
run-length in the test set based on a given test set while
minimizing the increase in the number of test vectors, and
maintaining the original fault coverage.

We use the solution of TVD[13] to increase the number
of unspecified bits per vector first. TVD is a process of
decomposing a test vector into its atomic components. An
atomic component is a child test vector that is generated
by relaxing its parent test vector for a single fault f, that is,
the child test vector contains the assignments necessary
for the detection of f. Besides, the child test vector may
detect the other faults in addition to f. for example,
consider the test vector tp-010110 that detects the set of
faults Fp={f1,f2,f3}. Using the relaxation algorithm[14], tp
can be decomposed into three atomic components, which
are t1=(f1,01xxxx), t2=(f2,0x01xx) and t3=(f3,x1xx0).
Every atomic component detects the fault associated with
it and may accidentally detect other faults. An atomic
component cannot be decomposed any further because it
contains the assignments necessary for detecting its fault.

The regeneration procedure performs as following. We
classify test set as acceptable vectors which have no run-
lengths of one and decomposed vectors which have run-
lengths of one. Every decomposed vector can be

JOURNAL OF COMPUTERS, VOL. 6, NO. 7, JULY 2011 1297

© 2011 ACADEMY PUBLISHER
doi:10.4304/jcp.6.7.1297-1301

decomposed into subvector(s) in the following manner.
The atomic component for each fault detected by the
decomposed vector is obtained. These atomic components
are then incrementally merged to create new subvectors
which have as few as possible run lengths of one and as
more as longer run-lengths. Sub-vectors are created in this
way until all the faults detected by the parent vector are
covered; thus, the longer run-lengths may appear in this
process. At last, we merged the new sub-vectors with
acceptable vectors to minimize the number of the vectors
without raising the number of run-lengths of one. We
don’t allow any changing on the essential fault which only
has one vector could detect it in the process of
decomposed process.

A simple example is presented to illustrate the
algorithm. The given test set has three test vectors, and we
first make step 1 and 2 of the algorithm and the
corresponding results are given in the table I.

The decomposed vector 3 is decomposed into the
atomic components for each fault detected by vector 3. In
table II, f1 and f2 are not essential faults and f3 is essential
faults, so the corresponding atomic component xxxxx00x
is not removed or changed in our algorithm. The new test
set is given in the table III after performing the algorithm

TABLE I. GIVEN TEST SET AFTER ALGORITHM OF STEM1 AND 2

vectors Faults
detected

acceptable Has essential faults

xxx00111 {f1,f4} yes No
xx100x00 {f2,f5} yes No
0x101001 {f1,f2,f3} no Yes

TABLE II. DECOMPOSE FOR VECTOR3

Atomic components of
vector3

Faults
detected

is essential fault

0x1xx00x {f1} no
0xx01x0x {f2} no
xxxxx001 {f3} yes

TABLE III. LAST TEST SET USING ALGORITHM

Last new test set Faults detected
xxx00111 {f1,f4}
xx100x00 {f2,f5}
xxxxx001 {f3}

III. NEW COMPRESSION SCHEME
This section presents the new compression technique

and the corresponding decoding architecture.
A. New compression scheme

We first review FDR coding and its application to test
data compression[7]. The FDR code is a data compression
code that maps variable-length runs of 0’s to variable-
length codewords. The encoding procedure is illustrated in
Fig.1. The reader is referred to [7] for a detailed
discussion for the FDR code.

The FDR code only uses one format prefix which
starts from ‘1’ and was identified by the first ‘0’ except

run length of zero and one. We use two formats of prefix
in the new compression scheme, which we called hybrid
prefix code.

The new hybrid prefix code was given in Fig.2. It uses
two formats prefix from the group of three and consists
two parts—group prefix and tail. The prefix identifies the
group in which the run-length lies and the tail identifies
the member within the group. For achieving target
compression ratio, the new generated test set based on a
given test set would have very few run lengths of one and
more longer run-lengths. The detailed presentation on the
new test set generation algorithm will be given in the next
section.

Group Run-length

runs of 0’s Group prefix Tail Codeword

A1
0
1 0 0

1
00
01

A2

2

10

00
01
10
11

1000
3 1001
4 1010
5 1011

A3

6

110

000
001
010
….

110000
7 110001
8 110010

…. ….

Fig.1 The FDR coding table

Group Run-length run’s
of 0’s or 1’s Group prefix Tail Codeword

A1 0 0 1 01

A2

1
10

00
01
10
11

1000
2 1001
3 1010
4 1011

A3

5

110(prefix1)

000
001
010
011
100
101
110
111

110000
6 110001
7 110010
8 110011
9 110100

10 110101
11 110110
12 110111
13

001(prefix2)

000
001
010
011
100
101
110
111

001000
14 001001
15 001010
16 001011
17 001100
18 001101
19 001110
20 001111

… …. … …... …..

Fig.2 codeword table for solution 1 and solution 2

The FDR code is very efficient for compressing data
that has few 1’s and long runs of 0’s for it only maps
variable-length runs of 0’s to variable-length codewords.
However, data streams are composed of both runs of 0’s
and runs of 1’s, so only encoding for run-length runs of
0’s is not always efficient[5]. The new hybrid prefix
encode scheme could encode for both run-length runs of
0’s and run-length runs of 1’s.

There are three solutions for compression test data
using hybrid prefix code. The first one is only encoding
for runs of 0’s as FDR code using codewords described in
Fig. 2 which we called solution 2. The second one is
encoding for both run-length runs of 0’s and 1’s as alt-
FDR which presented in [5] using codewords described
in Fig. 2 which we called solution1. the last one is

1298 JOURNAL OF COMPUTERS, VOL. 6, NO. 7, JULY 2011

© 2011 ACADEMY PUBLISHER

encoding both of them as EFDR which presented in [8]
using codewords described in Fig. 3 which uses two
formats prefix encoding for run-length runs of 0’s and
run-length runs of 1’s, respectively, which we called
solution3.

Group Run-length Prefix1 Tail Codewor

d for 1 Prefix2 Codewor
d for 0

A1 -- --- --- --- --- ---

A2

1
10

00
01
10
11

1000

01

0100
2 1001 0101
3 1010 0110
4 1011 0111

A3

5

110

000
001
010
….

110000

001

001000
6 110001 001001
7

…
110010

…
001010

…

… …. … …... …..

Fig.3 codeword table for solution 1 and solution 2

B. Decompression architecture
The decoder architecture given here could be used for

solution1 and solution 2 which presented in last section.
The decoder architecture for hybrid prefix scheme of
solution 3 is very simple, the decoder for alt-FDR[5]
could be used to it after a very small modification, and
we don’t give the detailed presentation for it.

out
FSM

Log2k bit counter

(K+1)bit counter

T

sel shift dec1 rs1

Counter_in

rs2 dec inc sel

en

bit_in
v

b_out

Clk

bit2

Con

Mapping logic

out1

bit3

sel

out2

⊕

Counter_in1

Fig.4 the decoder architecture for hybrid prefix coding

The decoder architecture for hybrid solution 1 and
solution 2 is shown in Fig.4. It only needs deleting or
retaining the architecture in the broken line when used on
solution2 and solution1, respectively. The FSM based
architecture makes a small modification on the FDR
decoder[5]. An additional simple mapping logic is added to
map the prefix in the codewords to its corresponding
binary representation length.
As shown in Fig.2, the run length in the grouth k(k>2) is
from(2k+1-11) to (3*2k-12) for the prefix1 and from (3*2k-
11) to (2k+2-12) for prefix2; thus, the binary
representations of the run-length identified by prefix1 and
prefix2 are computed as in Fig.5, respectively. The binary

representations of the run-length identified by the tail are
same as the corresponding tail in the codewords.

Group Prefix1 Corresponding binary

representation Prefix2
Corresponding

binary
representation

A3

110

101(5)
 001 1101(13)

A4 1110

10101(21)
 0001 100101(37)

A5 11110

110101(53)
 00001 1010101(85)

A6 111110

1110101(117)
 000001 10110101(181)

A7 1111110

11110101(235)
 0000001 101110101(363)

… … … … …

Fig.5 corresponding binary representations of prefixes

As shown in Fig.4, the bit_in is the input of the FSM,
and the en is an enable signal for the decoder. The signal
of counter_in is used to shift the prefix to the (k+1)-bit
counter through the mapping logic, and the signal of
counter_in1 is used to shift the tail into the k-bit counter.
The signal of shift is used to control the mapped prefix
and tail of the codeword to shift in k-bit counter, the signal
of dec1 controls the counter’s decrement, and rs1 signal is
used as the counter’s reset signal. The signal of sel is used
to choose different hybrid prefixes. Log2k bit counter is
used to count the length of the prefix and tail so as to
identify the group, and the signals of inc and dec are used
to control the counter’s increment and decrement,
respectively. The mapping logic is used to map the prefix
to its corresponding binary representation run length.

The detailed operation of the decoder is described as
follows:

• The en, shift and inc signals are high, the signal
bit_in, sel and counter_in control the prefix shift in
the k-bit counter, log2k bit counter make
increment. Because our solution has two prefix
formats, so we have two situations.

① If bit_in begins as 1, then sel is high, until the
bit_in is 0 which identifies the end input of the
prefix, then shift and inc is low, and the signal sel,
bit2 and bit3 control the mapping logic to map the
prefix to the corresponding run length then shift in
the k-bit counter.

② If the bit_in begins as 0, then in the next cycle, if
the bit_in is 1, then dec and sel control the counter
make decrement, and dec1 and sel1 control the k-
bit counter make decrement; if the bit_in is 0, sel
is low, until the bit_in is 1 which identifies the end
input of the prefix, then the shift is low, and the
signal sel, bit2 and bit3 the mapping logic to map
counter_in to its corresponding value and then
shift in the k-bit counter.

• The FSM outputs 0’s, decrements the (k+1)-bit
counter, and makes the signal dec1 high. It
continues to output 0’s until rs1 goes high .the
signal v is used to indication a valid output.

JOURNAL OF COMPUTERS, VOL. 6, NO. 7, JULY 2011 1299

© 2011 ACADEMY PUBLISHER

TABLE IV. COMPRESSION RATIO FOR MINTEST TEST SETS

circuit TD solution 1 solution 2 solution3
S5378 23754 53.52 58.52 52.81
S9234 39273 46.56 50.56 47.64

S13207 165200 81.47 83.95 81.96
S15850 76986 66.26 70.76 68.41
S38417 164736 62.08 66.59 51.25

S38584 199104 63.30 66.39 62.17
average ----- 64.16 66.13 60.70

TABLE V. COMPARISON OF COMPRESSION RATIO WITH OTHER COMPRESSION SOLUTIONS

circuit FDR[7] Alt-
FDR[5] EFDR[8] VC9[1]

RL
Huffman

[9]

SL
Huffman

[10]

Block
Code [17] solution 2

S5378 48.02 50.77 53.67 51.64 53.75 55.10 54.98 58.52
S9234 43.59 44.96 48.66 50.91 47.59 54.20 51.19 50.56

S13207 81.30 80.23 82.49 82.31 82.51 77.00 84.89 83.95
S15850 66.22 65.83 68.66 66.38 67.34 66.00 69.49 70.76
S38417 43.26 60.55 62.02 60.63 64.17 59.00 59.39 66.59
S38584 60.91 61.13 64.28 65.53 62.40 64.10 66.86 66.39
average 57.21 60.57 63.30 62.90 62.96 62.57 64.47 66.13

• The tail part is shifted in until the log2k bit counter
resets to 0, the dec2 signal is then goes high, the
counter is decremented. And the signal rs2
indicates when it is in the zero state.

• Like the decoding of the prefix, the FSM ouput 0’s
corresponding to the tail followed by a zero.

IV. EXPERIMENTAL RESULTS
The experiments were conducted on a series of ISCAS

89 circuits on a Pentium with a 3.0GHz processor and 512
MB of memory. The algorithm is programmed using C++
language under linux environment based on the ATPG
tools of atom[15] to regenerate the new test set on the
given test set of mintest[16].The experimental results are
given in Table IV and TableV.

The compression ratios of the proposed solution are
shown in Table IV. the compression rate (CR) is defined
as follows: CR=(TD-TE)/TD The third, fourth and fifth
column in the table are the compression ratio for solution1,
solution2 and solution 3, respectively. As is evident in the
Table, the proposed hybrid prefix code scheme which uses
two formats prefix and regenerates test set based on a
given test set achieves higher reduction rate.

We compare the compression ratio of our scheme with
other several classical compression techniques in table V,
from the second to the ninth column are the compression
ratio results for the FDR[7], alt_FDR[5], EFDR[8], VC9[1],
run length Huffman coding[9], select Huffman coding[10]
and block merging[16]. As is evident from the table, the
proposed hybrid prefix code provides an improved
compression rate without harm fault coverage if the
ATPG process is executed carefully.

V. CONCLUSION

This paper presents a new compression solution which
uses new generated test set algorithm and suitable hybrid
prefix code compression scheme The hybrid prefix code
scheme achieves a higher compression ratio with carefully

use ATPG process to generate new better suitable test set
based on a given test set, and only requires a very small
decoder. In addition, the proposed technique does not
perform any circuits’ structure modification and uses a
small decoder and achieves a higher compression ratio.
The experimental results show that the proposed
technique achieves higher compression ratio with very
low overhead.

REFERENCES

[1] M. Tehranipoor, M. Nourani, K. Chakrabarty. “Nine-
Coded Compression Technique for Testing Embedded
Cores in SoCs”, IEEE transactions on very large scale
integration(VLSI) systems. Vol.13,2005,pp 719-731.

[2] Janusz Rajski, Jerzy Tyszer, Mark Kassab and Nilanjan
Mukherjee. “Embedded Deterministic test”, IEEE
transactions on computer-aided design of integrated
circuits and systems, Vol.23, No.5 2004, pp,776-792.

[3] F. Hsu,K.Butler, and J. Patel, “A case study on the
implementation of the Illinois scan architecture,” in proc.
Int. Test Conf. (ITC’01),2001, pp.538-547.

[4] Laung-Terng Wang, Zhigang Wang, Xiaoqing wen,etc.
“VirtualScan: Test Compression Technology Using
Combinatioal Logic and One-Pass ATPG”, IEEE Design
& Test of Computers.2008.pp.122-129

[5] A. Chandra, A. Chandrabarty, “a Unified Approach to
Reduce SOC Test Data Volum, Scan Power and Testing
Time”,IEEE Transactions on Computer-aided design of
integrated circuits and system. Vol.22.No.3, 2003, PP:
352-362

[6] A.Chandra, K.Chakrabarty, “System-on-a-chip Test-data
Compression and Decompression Integrated Circuits and
Systems” IEEE transaction on computer-Aided design of
integrated circuits and systems. Vol.20, 2001, pp.355-368.

[7] A.Chandra, K.Chakrabarty. “Frequency-diredted Run-
length(FDR) Codes with Application to System-on-a-Chip
Test Data Compression”. Proceedings of 19th IEEE VLSI
Test Symposium(VTS2001).2001pp. 42-47.

[8] A.H.EL-Maleh, “Test data compression for system-on-a-
chip using extended Frequency-Directed Run-Length

1300 JOURNAL OF COMPUTERS, VOL. 6, NO. 7, JULY 2011

© 2011 ACADEMY PUBLISHER

Code”. IET Computers & Digital Techniques. 2008, pp.
155-163.

[9] NOURANI M, Tehranipour. M, “RL-Huffman encoding
for test compression and power reduction in scan
applicaiton”, ACM trans.Des. AUTOM. Electron. Syst.
2005, 10, (1), pp. 91-115

[10] JAS A., GOSH-DASTIDAR J., NG M., TOUBA N.: ‘An
effcient test vector compression scheme using selective
Huffman coding’, IEEE Trans. Comput. Aided Des., 2003,
22, (6), pp. 797–806

[11] A. Jutman, Igor. Alekejev, J. Raik, etc, “Reseeding using
Compaction of Pre-Generated LFSR Sub-Sequences”,
IEEE. 2008. pp: 1290-1295

[12] M. Knieser, F. Wolff, C.Papachristou, D.Wyer, and D.
McIntyre, “A technique for high ratio LZW compression,”
in Proc. Design Automation Test in Europe, 2003, pp. 116-
121.

[13] EL-MALEH A., OSAIS Y.E.: ‘Test vector decomposition-
based static compaction algorithms for combinational
circuits’,ACM Trans. Des. Autom. Electron. Syst., 2003, 8,
(4),pp. 430 – 459

[14] EL-MALEH A., AL-SUWAIYAN A.: ‘An effcient test
relaxationtechnique for combinational and full-scan
sequentialcircuits’. VTS ‘02: Proc. 20th IEEE VLSI Test
Symp.,Washington, DC, USA, 2002, p. 53

[15] Ilker Hamzaoglu and Janak H. Patel, “New Techniques for
Deterministic Test Pattern Generation,” Proceedings of the
VLSI Test Symposium,1998, pp. 446-452

[16] I.Hamzaoglu and J.H.Patel, “Test set compaction
algorithms for combinational circuits,” in Proc. Int,Conf.
Computer-Aided Design,1998, pp,283-289

[17] A.H.EL-Maleh, “efficient test compression technique
based on block merging”, IET compter& Digital
Techniques.2007.pp:327-335.

JOURNAL OF COMPUTERS, VOL. 6, NO. 7, JULY 2011 1301

© 2011 ACADEMY PUBLISHER

