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Abstract— Interesting signals are often contaminated by 
heavy-tailed noise that has more outliers than Gaussian 
noise. Under the introduction of probability model for 
heavy-tailed noises, a robust wavelet threshold based on the 
minimax description length principle is derived in the ε-
contaminated normal family for maximizing the entropy. 
The performance and their measurement criterion for the 
robust wavelet threshold are studied in this paper. By the 
proposed performance measurement criterion, several kinds 
of noisy signals are processed with the wavelet thresholding 
techniques. Compared with classical threshold based on 
Gaussian assumption, the robust threshold can eliminate the 
heavy-tailed noise better, even if the precise value of ε is 
unknown, which shows its robustness. The further 
experiment shows that soft threshold is more suitable than 
hard threshold for robust wavelet threshold technique. 
Finally, the robust threshold technique is applied to denoise 
the practically measured gas sensor dynamic signals. Results 
show its good performances.  
 
Index Terms—heavy-tailed noise, robust wavelet threshold, 
soft threshold, hard threshold, signal detection 
 

I.  INTRODUCTION 

Wavelet analysis has recently played a more and more 
important role in signal processing applications [1-3]. 
Many simple nonlinear thresholding filters based on 
wavelets have acted effectively for denoising [4-6]. 
Based on singularity of signals, Mallat has suppressed 
noise effectively in wavelet transform domain by 
preserving only the local maxima of the transform 
coefficients [7]. The noise suppression is achieved by 
thresholding the wavelet transform of the contaminated 
signal. And Donoho has derived a threshold by a 
minimax approach based on Gaussian noise model [8]. 
This thresholding technique has been applied to many 
areas to reduce the normally distributed white noises, 

such as ECG signals and image signals [4,9].  
However, in practical case, the contaminated signals 

such as radar, sonar echo signals and most other signals 
contain many noises with large magnitudes, which do not 
subject to Gaussian distribution, but a heavy-tailed noise 
model [10]. The noise is assumed to be independent and 
identically distributed (i.i.d) with a density which is a 
member of an ε -contamination class for which the 
nominal distribution has heavier than exponential tails 
[11]. For heavy-tailed noise has more outliers than 
Gaussian noise, many methods based on Gaussian noise 
model cannot gain perfect effectiveness for heavy-tailed 
noise [12]. Thus a robust wavelet threshold method based 
on the minimax description length principle is derived, 
which determines the least favorable distribution in the 
ε -contaminated normal family as the member that 
maximizes the entropy [12]. This robust wavelet 
threshold technique is in detail studied including its 
performances, and the measurements of performances, 
and the application to denoise the practically measured 
gas sensor signals.  

This paper is constructed as follows. Firstly the 
probability model for heavy-tailed noises and the robust 
wavelet threshold technique are introduced and analyzed. 
Then based on an appropriate effectiveness measure for 
removing heavy-tailed noise, the classical threshold 
method and the robust wavelet threshold method are 
compared by Monte Carlo simulation. Moreover, the soft 
threshold and hard threshold for robust wavelet threshold 
technique are also analyzed and compared. An 
application in gas sensor signal denoising shows the 
prospect of the robust wavelet threshold technique. 
Finally, some conclusions are given as well as the hints 
for future work. 

II.  MODEL FOR HEAVY-TAILED NOISES 

Generally, the observed signals are illustrated through 
the additive noise model, which is given by 

 ( ) ( ) ( )tntstx +=   (1) 

where s(t) is an unknown deterministic signal, n(t) is the 
zero-mean noise process, and x(t) is the observed signal. 
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The aim of denoising is to recover the signal s(t) from the  
noisy signal x(t). In order to reach this purpose, the noise 
process is usually supposed to subject to Gaussian 
distribution. Under this assumption, many methods have 
been proposed.  

In most applications, the data are assumed to be 
conditionally normal, and the likelihood is therefore 
Gaussian. Here for heavy-tailed noises, the noise 
probabilistic distribution model is constructed by Huber 
[13]. Assuming that the noise distribution f is a scaled 
version of an unknown member of the family of ε -
contaminated normal distribution, 

 ( ){ }FGGP ∈+Φ−= :1 εεε        (2) 

where Φ  denotes the standard normal distribution, F  
denotes the set of all suitably smooth distribution 
functions, and ），（ 10∈ε  is the known fraction of 
contamination.  

Krim and Shick [12] also followed this assumption and 
obtained same model by solving a minimax problem. 
They denoted that the signal estimation problem can be 
cast as one of location parameter estimation and the 
estimators can be assumed to be in the set of all 
integrable mappings from ℜ  to ℜ . By solving a minimax 
problems where the entropy is maximized over all 
distributions in εP , the least favorable noise distribution 
is found and the minimax description length(MDL) 
criterion for that distribution is evaluated. And the 
description length is minimized over all estimators in the 
set of all integrable mappings from ℜ  to ℜ . 

The least favorable noise distribution in εP  which 
maximizes the entropy, is precisely the same as that 
found by Huber to maximize the asymptotic variance: it 
is Gaussian in the center and Laplacian in the tails, and 
switches from one to the other at a point whose value 
depends on the fraction of contamination ε . Larger 
fractions corresponding to smaller switching points and 
vice versa. This distribution 

εPfH ∈  that minimizes the 
negentropy is obtained and defined as 
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where 
σφ  is the normal density function with mean zero 

and variance 2σ , and a is related to ε . 
Let 

σΦ  be the normal distribution function with mean 
zero. According to the symmetry of fH, the relationship 
between a and ε  is given by 
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The above propositions and their proofs can be found 
in [12].  

According to (4), let 1=σ , the relationship between a 
and ε  is shown in Fig. 1. In the interval (0, 0.1), a 

decreases sharply as ε  increases, but in the interval (0.1, 
1) the variation curve is flat. When 1→ε  and 0→a , the 
noise distribution approaches Laplacian, but when 0→ε  
and ∞→a , the noise distribution approaches purely 
Gaussian.  

 

 

III.  ROBUST  WAVELET THRESHOLD TECHNIQUE 

A.  The Basic Principle of Wavelet Transform 
Wavelet transforms have become well known as useful 

tools for various signal processing applications [14]. 
Given a time-varying signal x(t), wavelet transforms 
consist of computing coefficients that are inner products 
of the signal and a family of “wavelets”. In a continuous 
wavelet transform, the wavelet corresponding to scale a 
and time location b is  

 )(
||

1)(, a
bt

a
tba

−
= ψψ  (5) 

where )(tψ is the wavelet “prototype”, which can be 
thought of a band-pass function. The factor 2/1|| −a is used 
to ensure energy preservation.  

The continuous wavelet transform (CWT) was 
originally introduced by Goupillaud, Grossmann, and 
Morlet [15]. Time t and the time-scale parameters vary 
continuously: 

 ∫= dtttxbatxCWT ba )()(},);({ *
,ψ . (6) 

 ( the asterisk stands for complex conjugate). 
Wavelet series coefficients are sampled CWT 

coefficients. There are various ways of discretizing time-
scale parameters (b, a), each one yields a different type of 
wavelet transform. The time-scale parameters (b, a) are 
usually sampled on a so-called “dyadic” grid in the time-
scale plane (b, a), where the dilation or scale is supposed 
to ja 2= , the translation b is supposed to jkb 2= , 

Zj∈ , Zk ∈ . Hence the scale and translation are 
denoted through j and k. And the discrete wavelet 
transform (DWT) is defined as  
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Figure 1.  The relationship between a and ε (Epsilon) 
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 ∫= dtttxC kjkj )()( *
,, ψ . (7) 

The wavelet transform is used to transform the noisy 
signal into wavelet domain by decomposing the noisy 
signal into different levels of details coefficient. And the 
signal could be reconstructed through the inverse wavelet 
transform 

 ∑∑
∈ ∈

=
Zj Zk

kjkj tCtx )(~)( ,, ψ . (8) 

If )(~)( tt ψψ = , the wavelet basis is called orthogonal 
basis. Wavelet series have been popularized under the 
form of signal decomposition onto “orthogonal wavelets” 
by Meyer, Mallat, Daubechies, and other authors [16-17]. 

kjC , is also called the wavelet coefficient, j, k are 
usually integers which show the scale and translation 
parameters. For signal denoising, we do not concern the j, 
k parameters, but the amplitude. To simplify, let the set of 
wavelet coefficients obtained from the observed signal be 
denoted by },,,{ 21

x
N

xxN CCCC = . Considering the 
orthogonal wavelets, equation (8) is changed to  

 ∑
∈

=
Ni

i
x
i tCtx )()( ψ . (9) 

And the signal and noise can be expressed with an 
orthonormal basis: 

 ( ) ( )∑=
i

i
s
i tCts ψ .       (10) 
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i
n
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As wavelet transform is linear, x(t) can be given by 
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i

s
i

x
i CCC += .       (12) 

Let exactly K of these coefficients contain signal 
information, while the remainder only contains noise. If 
necessary, these coefficients are reindexed as 
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By assumption, the set of noise coefficients { }n
iC is a 

sample of independent and identically distributed random 
variates drawn from Huber’s distribution Hf .  

From the above equations, if 0=s
iC  for a given i, it 

implies that the corresponding observation coefficients 
x
iC  represent “pure noise”. The wavelet denoising 

determines which wavelet coefficients represent signal 
primarily and which represent noise mainly.  

B.  Wavelet Threshold Denoising 
Wavelet threshold denoising is based on the idea that 

the energy of the signal to be defined concentrates on 
some wavelet coefficients, while the energy of noise 
spreads throughout all wavelet coefficients. Similarity 

between the basic wavelet and the signal to be defined 
plays a very important role, making it possible for the 
signal to concentrate on fewer coefficients. Wavelet 
threshold denoising is a very efficient method, the purpose 
of which is to remove the noises [18].  

Generally, the wavelet threshold denoising procedure 
has the following steps [8]:  

(1) Transform signal to the time-scale plane by means 
of a wavelet transform. It is possible to acquire the results 
of the wavelet coefficients on different scales.  

(2) Assess the threshold and in accordance with the 
established rules, shrink the wavelet coefficients. 

(3) Use the shrunken coefficients to carry out the 
inverse wavelet transform. The series recovered is the 
estimation of the determined signal.  

The second step has a large impact upon the 
effectiveness of the procedure.  

Thresholding is one of the important steps to remove 
noise. Thresholding function in this study covers hard and 
soft thresholding. Thresholding function is the wavelet 
shrinkage function which determines how the threshold is 
applied to wavelet coefficients. The definition of soft and 
hard threshold is given by [8].  

The soft thresholding function is defined as  

 ( ) ( )( )
⎩
⎨
⎧

≤
>−

=
thC
thCthCC

thCTsoft                        ,0
  ,sgn

, . (14) 

where C and th are wavelet coefficient and threshold. And 
the sgn(x) is the symbol function: 
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It is called thrink or kill which is an extension of hard 
thresholding, first setting the elements whose absolute 
values are lower than the threshold to zero, and then 
shrinking the other coefficients.  

 The hard thresholding function used by Donoho is: 

 ( )
⎩
⎨
⎧

≤
>

=
thC
thCC

thCThard   ,0
  ,

, . (16) 

where C and th are wavelet coefficient and threshold. 
It is called keep or kill, keep the elements whose 

absolute value is greater than the threshold, set the 
elements lower than the threshold to zero.   

C.  Robust Wavelet Threshold 
No matter hard thresholding or soft thresholding, the 

determination of the threshold is most critical. According 
to Donoho, the universal threshold rule should be applied 
in the second step. The universal threshold is defined as 
follows:  

 Nth ln2σ＝ . (17) 

Where σ refers to the standard deviation of the noise and 
if it is unknown, a robust median estimator is used from 
the finest scale wavelet coefficients: 6745.0/MAD＝σ , 
where MAD refers to the median absolute value of the 
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finest scale wavelet coefficients, whereas N refers to the 
number of data samples in the measured signal. [18] 

Equation (17) has been widely used as the threshold, 
which is quite classical. However, for heavy-tailed noises, 
according to fH, the robust threshold technique is obtained 
as 

1) When 22 2/log σaN > , the coefficients x
iC  will 

be truncated if 

 N
a

aC x
i log

2

2σ
+< . (18) 

2) When 22 2/log σaN ≤ , the coefficients x
iC  will 

be truncated if 

 NC x
i log2σ< . (19) 

where N denotes the length of coefficients at a given 
level. 

The robust wavelet threshold adopts data description 
length as the criterion of choice for quantifying the 
tradeoff between noise removing and signal retaining. It 
can resolve the tradeoff between model complexity and 
goodness-of-fit well. 

IV.  SIMULATION RESULTS AND ANALYSIS 

For comparison, the threshold defined by (17) is called 
as the classical threshold. Hence in the simulations, the 
classical threshold and the robust threshold are compared 
firstly. And then the sensitivity of robust threshold to ε  
is discussed. By comparing the results of soft threshold 
and hard threshold, the better one for robust wavelet 
threshold technique is determined. Finally, the real gas 
sensor’s signal is denoised with the method.  

A.  Signal Denoising 
In simulation experiments, both the sine wave signal 

and square wave signal are chosen as the original signals 
with length 1024. The additive noise is independent 
identically distributed and obeys 

εP  with 1.0=ε . Suppose 

that Φ~ N(0,1), A~ N(0, 2σ ) and the heavy-tailed noise 
obeys G= A3 [17]. Let σ=1.6 and SNR=8.5dB. The soft 
thresholding is adopted for the experiment. The db4 
wavelet is chosen for decomposition in MATLAB. The 
decomposition layer is set 5. 

 Fig. 2 shows the simulated sine wave signal and the 
noisy signal, where S(n) and X(n) are the original signal 
and contaminated signal respectively. Fig. 3 shows the 
detected sine wave signal with classical threshold and 
robust threshold, where S1(n) and S2(n) are the detected 
signal with classical threshold and robust threshold 
respectively. According to Fig. 2, compared with 
Gaussian noise, the heavy-tailed noise has more outliers.  
From Fig. 3 it can be seen that the classical threshold 
cannot suppress outliers in heavy-tailed noise effectively, 
while the robust threshold is efficient to decrease the 
heavy-tailed noise.  

Fig. 4 shows the simulated square wave signal and the 
noisy signal, where S(n) and X(n) are the original signal 

and contaminated signal respectively. And Fig. 5 shows 
the detected square wave signal with classical threshold 
and robust threshold, where S1(n) and S2(n) are the 
detected signal with classical threshold and robust 
threshold respectively. It gives the same result as Fig. 2 
and 3. And it can be seen that the robust wavelet 
threshold is robust both for narrow band signal and broad 
band signal.  

 

 
B.  Sensitivity to ε  

ε is the fraction of contamination from the heavy-
tailed noise, it shows the noise distribution probability. 
According to (4), given ε , the parameter a can be 
obtained and the noise distribution probability is set. 
Different values are set to ε and the sensitivity of 
proposed threshold to ε  is discussed. 

Assuming 1.0=ε , 01.0=ε , 99.0=ε , correspondingly a 
is obtained as 14.1=a , 95.1=a , 008.0=a  respectively. Fig. 
6 shows the detection results with robust threshold under 
different estimated values of ε , where S2(n), S3(n) and 
S4(n) correspond to the exact estimation of 1.0=ε , 

01.0=ε  and 99.0=ε  respectively. Compared with S1(n), 
the robust threshold can suppress outliers more 
effectively than the classical threshold. Although S3(n) 
retains outliers near n=930, it is still better than S1(n). 
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Figure 3.  Detected sine wave signal with classical  and robust threshold
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Figure 2.  Original signal and the contaminated sine wave signal 
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Hence it can be seen that the mixture parameter ε plays 
little influence on the robust threshold, which shows its 
robustness. 

 

 
C.  Performance Measurement 

To evaluate the accuracy of different denoising 
methods, the L2 norm is generally adopted as the error 
criterion [18], which is defined as  

 NxxL
N

i
ii /ˆ

1

2
2 ∑

=

−= . (20) 

Under this criterion, the reconstructed error of S1 and 
S2 are computed and found less different. However, from 
the results it can be seen that the robust threshold is better 
than the classical one. Therefore, the L2 norm only could 
not measure the efficiency. Under this reason, the SNR 
(signal-to-noise ratio) enhanced (named as SNRenh) is 
proposed to denote the effectiveness [19], which is 
defined as  

 12 SNRSNRSNRenh −=  (21) 

where 1SNR and 2SNR are the SNR before and after 
denoising, with dB as the unit. The SNR is defined as 
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where ( )lS , ( )lN and Nµ are signal series, noise series 
and noise mean value respectively [20].  

 

 
 

SNRenh denote the average level of the noises in revised 
signals. Comparing to Gaussian noise, the heavy-tailed 
noise has more outliers. To denote the ability to suppress 
the outliers, the maximum error (named as Errmax) is 
proposed as a measure [19]. It is defined as 
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where 0N is the data length, )(' lErr is the sorted error 

values, 10 ≤≤ β . The Errmax is an average relative 

error of the maximum 0Nβ  error values.  
For different denoising methods, the SNR enhanced 

(SNRenh) can denote the global effectiveness of denoising 
and the maximum error (Errmax) can denote the ability to 
suppress outliers in heavy-tailed noise; the combination 
of SNRenh and Errmax can measure the ability to suppress 
heavy-tailed noise [19].  

According to SNRenh and Errmax, the robust threshold is 
compared with classical threshold in Fig. 7. The original 
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Figure 5.  Detected square wave signal with classical and robust 
threshold 
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signal is sine wave signal, and Monte Carlo simulation is 
used to evaluate SNRenh and Errmax of two thresholds over 
a range of SNR. Where 300 experiments were conducted 
at each value of SNR; the soft threshold is adopted for 
both methods; and the solid line and dotted line denote 
the robust threshold and the classical threshold 
respectively. 

According to Fig. 7, from either SNRenh or Errmax the 
robust threshold performs much better than classical 
threshold. When SNR>8dB, SNRenh of robust threshold is 
lower than that of classical threshold, because SNR of 
contaminated signal is too high and the number of 
outliers decreases in heavy-tailed noise. When the 
distribution of noise approaches Gaussian, the advantage 
of robust threshold over classical threshold vanishes. 
According to Errmax in Fig. 7, it is proved that two error 
curves of different thresholds are nearly the same at 
SNR>4dB. In a word, the robust threshold outperforms 
the classical threshold in removing heavy-tailed noise, 
especially for low SNR. 

 
D.  Discussion on Soft and Hard Threshold 

During the above simulations, soft thresholding 
technique is adopted. In order to determine the better one 
for robust wavelet threshold technique between soft 
threshold and hard threshold, SNRenh and Errmax of soft 
threshold and hard threshold are compared.  

For robust threshold technique, the soft and hard 
thresholds are compared. The original signal is still sine 
wave signal, and Monte Carlo simulations with 300 
experiments are conducted. SNRenh and Errmax of soft and 
hard thresholds over a range of SNR are shown in Fig. 8, 
where the solid line and the dotted line denote soft 
threshold and hard threshold respectively. 

In Fig. 8, according to Errmax, the soft threshold and 
hard threshold are nearly the same. However, according 
to SNRenh, the soft threshold outperforms the hard 
threshold at SNR>5dB. When the original signal is square 
wave signal or triangular wave signal, the same results 
are obtained. It is concluded that soft threshold is more 
suitable than hard threshold for robust wavelet threshold 
technique. 
 

 
E.  Application in Gas Sensor Signal Denoising 

Semiconductor gas sensors suffer from serious 
shortcomings such as poor selectivity, low repeatability 
and response drift. In order to overcome these 
disadvantages, the temperature modulation technique is 
proposed [21-22]. By modulating the operating 
temperature of gas sensors, this technique has been 
remarkably successful in many applications. Temperature 
modulation alters the kinetics of the adsorption and 
reaction processes that take place at the sensor surface 
while detecting reducing or oxidizing species in the 
presence of atmospheric oxygen. This leads to the 
development of response patterns, which are 
characteristic of the species being detected. In other 
words, by retrieving information from response 
dynamics, new response features are obtained that confer 
more selectivity to metal oxide sensors.  

The extraction of features from the response of 
chemical sensors consists in the selection of some 
characteristics of their temporal response sequence, 
which results from the interaction between sensors and 
the compounds to be detected. The extracted features are 
then input to pattern recognition systems. From a general 
point of view, a chemical sensor can be considered as a 
dynamic system whose response signal temporally 
evolves following, with its proper dynamics, the analytes 
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and their concentration. Therefore, Wavelet analysis has 
been employed to study the properties of dynamic 
signals.  Features could be extracted from the wavelet 
coefficients [23-24].  

However, the real measured gas sensor signal suffers 
from the noises, especial the outlier noise. The upper 
subplot X in Fig. 9 shows a real test of modulated gas 
sensor signal. It can be seen that, the noise is quite the 
same as heavy-tailed noises discussed above. It also 
obeys the heavy-tailed noise probability distribution. 
Before extract features, the signal should be denoised. 
Generally used classical threshold is adopted and the 
result is shown in the middle subplot of Fig. 9. For the 
distinct outliers, it has small effects. For comparison, the 
robust threshold is adopted and the result is shown in the 
third subplot of Fig. 9. It can be seen that the noises are 
almost eliminated, which shows its good performances.  

 

 

V.  CONCLUSION  

Based on the probability model for heavy-tailed noises 
and the wavelet denoising method, the robust wavelet 
threshold is studied in detail. According to an appropriate 
effectiveness measure for removing heavy-tailed noise, 
the classical Donoho threshold method and the robust 
wavelet threshold method are compared by Monte Carlo 
simulation. Following conclusions are drawn from the 
simulation results as following:  

(1) For the heavy-tailed noise that has more outliers 
than Gaussian noise, the robust threshold can suppress 
outliers more effectively than the classical Donoho 
threshold.  

(2) With unknown ε , the robust threshold can also 
detect signal in heavy-tailed noise, which shows its 
robustness.  

(3) The soft threshold is more suitable than the hard 
threshold for robust wavelet threshold technique.  

(4) The robust wavelet threshold approach is effective 
to decrease the heavy noises from gas sensor dynamic 
signals. It is a quite prospective approach in signal 
denoising area.  

However, there are still some problems need to be 
studied further, such as how to determine the best wavelet 
basis function and the optimum decomposition level. 
They are the further problem to be solved. 
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