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Abstract—Optimal risk and preventive patterns are itemsets 
which can identify characteristics of cohorts of individuals who 
have significantly disproportionate representation in the 
abnormal and normal groups. In this paper, we propose a new 
classifier namely ORPSW (Optimal Risk and Preventive Sets 
with Weights) to classify gene expression data based on optimal 
risk and preventive patterns. The proposed method has been 
tested on four bench-mark gene expression data sets to compare 
with three state-of-the-art classifiers: C4.5, Naive Bayes and 
SVM. The experiments show that ORPSW classifier is more 
accurate than C4.5 and Naive Bayes classifiers in general, and is 
comparable with SVM classifier. Observing that accuracy is 
sensitive to the prior distribution of the class, we also used false 
positive rate (FPR) and false negative rate (FNR), to better 
characterize the performance of classifiers. ORPSW classifier is 
also very good under this measure. It provides differentially 
expressed genes in different classes, which help better understand 
classification process. 
 
Index Terms—Optimal risk and preventive patterns, Weight, 
Gene expression data, Classifier 
 

I. INTRODUCTION 
Microarrays can profile the expression levels of tens of 

thousands of genes in a sample, which makes it possible to 
understand the mechanism of disease and be helpful for the 
diagnosis of disease. However, there are several characteristics 
in gene expression data which is dramatically different from 
other data. The number of genes quantified is much larger than 
the number of samples, which is usually associated with a high 
risk of over-fitting. Publicly available data set is much small, 
almost below 100 while the number of genes is normally 
thousands to tens of thousands. The gene expression data 
contains noise and redundant information. Therefore, 
diagnosis methods that are derived from a deep analysis of 
gene expression profiles are needed. Recently, in the field of 
machine learning, many methods including C4.5 [1], Naive 
Bayes [2], SVM(support vector machine) [3], have been used 
for prediction in gene expression profiles.  

C4.5 is one of most popular algorithm in machine learning 
and often used in gene expression data analysis. It is 
understandable since a decision tree can be converted to a set 
of rules. However, C4.5 does not handle imbalanced data 

properly when the majority cases belong to one class and tree 
is not partitioned further. In general, Naive Bayes method uses 
probabilistic induction to determine class labels of a new or 
unseen sample, assuming independence among the attributes. 
It ignores interactions among the attributes. However, 
interactions between genes are advantageous to improve the 
accuracy of classification in gene expression data. The ability 
of SVM for producing a maximal margin hyper-plane and for 
reducing the amount of training errors has made SVM 
especially suitable for small sample classification problem, 
such as gene expression data classification. SVM has good 
performance, but the biological interpretation of its 
classification results is poor. 

In this paper, we propose a new classifier ORPSW, its 
classification accuracy is higher than that of C4.5 and Naive 
Bayes and is comparable with SVM. The strength of our 
classifier is that it can provide easily understandable weights 
of each related genes with the class rather than a ‘black box’ 
embedded in the SVM model.  

 We have organized this paper in the following order. 
Section II makes a review of optimal risk and preventive 
patterns mining. Section III proposes our method including 
problem definitions, classification by ORPSW, an entropy-
based discretization, gene selection based on CFS 
(Correlation-based feature selection), and ORPSW classifier. 
Section IV describes the results of experiment using four gene 
expression datasets. Section V presents conclusions. 

II. A REVIEW OF OPTIMAL RISK AND PREVENTIVE 
PATTERNS MINING 

A. Risk and Preventive Patterns 
Gene expression data may be divided into two classes by 

cancer and normal. Cancer records are also called positive 
records whereas normal records are negative. In this paper, 
gene corresponds to attribute and gene expression value to 
attribute-value. Patterns are defined as a set of one single 
attribute-value or a set of attribute-values. A risk pattern in 
this paper refers to the antecedent of a rule with the 
consequence of cancer and a preventive pattern with the 
consequence of normal. 

In the following we define cancer class as c, normal class as 
n and pattern as p. 

In public gene expression data, the proportion between 
cancer and normal is larger than its real proportion. However, 
the proportion of cancer should be far less than normal. 
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Therefore, the set of support in gene expression data is 
different from other data. We refer a lsupp (local support) [4] 
to decide whether a pattern is frequent. The lsupp is described 
as follows: 
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pcsupp
cplsupp =→                           (1) 

Where pc is an abbreviation for , others have been 
called this the recall of the rule . If a pattern’s local 
support is higher than a given threshold, this pattern is called a 
frequent pattern.  

cp ∧
c→p

One of the most often used ratios in epidemiological studies 
is relative risk or odds ratio [5], which is a concept for the 
comparison of two groups or populations with respect to a 
certain undesirable event. For many forms of cancer that are 
rare, the terms relative risk and odds ratio are interchangeably 
used because of the approximation. The relative risk measure 
is conservative: if the relative risk measure is extreme or 
significant, then the odds ratio is more extreme or more 
significant [5]. If relative risk is higher than a given threshold, 
the pattern is more likely to be a risk pattern. Otherwise the 
pattern is more likely to be a preventive pattern. An example 
of how to calculate relative risk (RR) and odds ratio (OR) is 
given as follows. 

As illustrated in TABLE I, Factors are categorized as 
positive (+) or negative (-) according to some attribute-value 
pairs, Cancer is divided as having (+) or not (-) having a 
certain cancer under investigation. Where n11 and n21 are the 
number of cancer in positive (+) and negative (-), n12 and n22 
are the number of normal in positive (+) and negative (-) 
respectively. 

For instance, if Factor (+) is “Smoking=yes”, Cancer (+) is 
“lung cancer”, and RR(cancer (+)) =3. We suppose the given 
threshold is 2. The pattern is a risk pattern because of 
RR(cancer (+)) =3>2. It means that a smoking patient is 3 
times more risky than non-smoking patient. In contrast, if 
suppose Factor (+) is “Smoking=no”, Cancer (+) is “lung 
cancer”, and RR(cancer (+)) =0.3. Because RR(cancer (+)) 
=0.3<0.5(given threshold of preventive pattern), the pattern 
composed of the factors is a preventive pattern. It means that 
“Smoking=no” is more likely irrelevant to “lung cancer”.  

)(

)(
))((

121121

222111

2221

21

1211

11

n+nn

n+nn
=

n+n

n
÷

n+n

n
=+cancerRR    

1221

2211

22

21

12

11))((
nn

nn

n

n
÷

n

n
cancerOR ==+                (2) 

Risk patterns and preventive patterns are formally defined 
with relative risk as the following. 

TABLE I.  THE PATTERN IS COMPOSED OF SOME FACTORS FOR JUDGING 
CANCER OR NOT. 

 
Factors 

Cancer  
Total + - 

+ n11 n12 n11 + n12 
- n21 n22 n21 + n22 

Total n11 + n21 n12 + n22 n11 + n12 + n21 + n22 

Definition 1. Risk patterns are frequent patterns, whose 
relative risk is greater than a given threshold. Conversely, 
preventive patterns are frequent patterns, whose relative risk is 
less than a given threshold. 

According to the Definition 1, we should firstly find 
frequent patterns before finding all risk and preventive 
patterns. It is noted that the threshold of relative risk in risk 
patterns is different from that in preventive patterns. The 
threshold of relative risk in risk patterns is the reciprocal value 
of that in preventive patterns. Although we can filter out some 
frequent patterns with relative risk to generate risk and 
preventive patterns, the number of risk and preventive patterns 
is still large. Hence it is necessary to further optimize risk and 
preventive patterns. 

B. Optimal Risk and Preventive Patterns 
Mining risk and preventive patterns can bring redundant 

and superfluous patterns. For example, a pattern including two 
attribute-values “A” and “B” is a risk pattern, its relative risk 
is 3.1; another pattern including three attribute-values “A”, 
“B” and “C” is also a risk pattern, its relative risk is 3.0. In 
fact, the latter pattern reduces relative risk when incorporated 
factor “C”. It can be deduced that the former pattern is more 
optimal compared with the latter pattern. As a result, MORE 
(Mining Optimal Risk Pattern Sets) algorithm was designed 
by Li et al [6] for optimal risk and preventive patterns. The 
reason why optimal risk and preventive patterns can be mined 
is that optimal risk and preventive patterns set satisfy anti-
monotone property. They are proved in [6]. 

Definition 2. Optimal risk (or preventive) pattern set 
includes patterns that have higher (or lower in case the relative 
risk is less than a given threshold) than relative risk of their 
simple form patterns. 

Optimal risk and preventive patterns are extracted from risk 
and preventive patterns. When the relative risk of risk patterns 
are less than or equal to that of their sub-patterns and the 
relative risk of preventive patterns are more than or equal to 
that of their sub-patterns, these risk and preventive patterns are 
ignored. 

III. METHODS 

A. Problem Definitons 
Given a data set with n attributes A1, A2, … , An-1, C. 

Attributes A1 to An-1 are categorical. Attribute C is a binary 
class, and one value is covered by our interest, such as disease. 
The objective of this work is to find out all risk and 
preventative patterns and then build up a classifier using the 
summarized patterns to classify future instances. The method 
of summarized patterns can be divided into two sub-methods: 
optimal risk and preventive sets, optimal risk and preventive 
sets with weights. 

1) Optimal Risk and Preventive Sets 
Firstly, optimal risk and preventative factor sets based on 

optimal risk and preventive patterns are going to be described. 
We also consider attribute-value in optimal risk and 
preventive patterns as risk factors and preventative factors 
respectively. 
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Let RR1 be relative risk threshold in optimal risk patterns, 
and RR2 be relative risk threshold in optimal preventive 
patterns. and  are the numbers of attribute-value existed 

in RS (Risk Set) and PS (Preventive Set), and  are the 
numbers of attribute-value existed in ORS (Optimal Risk Set) 
and OPS (Optimal Preventive Set) respectively. Only optimal 
risk patterns whose relative risk is greater than RR1 and 
optimal preventive patterns whose relative risk is smaller than 
RR2 are selected to generate RS and PS. Common factors 
between RS and PS are removed. RS (PS) are dealt as the 
following and remaining factors can produce ORS (OPS). 

1k 2k

'k1
'k2

The number of these optimal risk and preventive patterns is 
 and  respectively. In addition, we suppose that 

, , 

their corresponding RFS (Risk Frequency Set) and PFS 
(Preventive Frequency Set) are  and 

.  

1n

RS

Pf[

2n

Ri,1

Pf, 3

T
kRi,...,Ri,Ri= ][
132

T
kPf,...,Pf, ]

221

T
kPi,...,Pi,Pi,Pi=PS ][
2321

T
kRf,...,Rf,Rf,Rf ][
1321

Since that , we should deal with their 
common attribute-value between RS and PS. We will use the 
principle of “survival of the fittest” to tackle the common set 
between RS and PS. The principle of “survival of the fittest” is 
related with the concept of the grade of membership, which 
reflects the degree of element in a class, and its value ranges 
between zero and one [7]. If an attribute-value exists in both 
sets and the grade of membership of it in RS is more than that 
in PS, then this attribute-value belongs to RS and should be 
removed in PS, and vice versa; Particularly, if the grade of 
membership [7] of it in RS is equal to that in PS, this attribute-
value should be removed in both sets. The grade of 
membership of an attribute-value is the degree belonged to 
risk factor or preventative factor. If we suppose the frequency 
of a common attribute-value is CI, the grade of membership is 

 in RS and  in PS. Whether the common attribute-

value belongs to RS or not depends on the value of   and 

. 

ΦPSRS ≠∩

2/nCI1/nCI

2/nCI
1/nCI

Therefore we can get ORS, ORFS, OPS and OPFS, all of 
them meet the condition 
that , ,  
and . Suppose that 

and

, their corresponding 

ORFS (Optimal Risk Frequency Set) and OPFS (Optimal 
Preventive Frequency Set) are [  

and . According to Equation (2), 

we can generate the relative risk of each attribute-value in 
ORS and OPS which are 

and 

. 
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Definition 3. In optimal risk and preventive sets, only 
optimal risk patterns whose relative risk is greater than RR1 
and optimal preventive patterns whose relative risk is smaller 
than RR2 are selected to generate optimal risk and preventive 
set, and there is no common set between optimal risk and 
preventive set. 

For example, suppose we have five risk patterns (RR1=1.5):  
{R1, R2}( RR=3), 
{R1, R2, R3}( RR=3.2), 
{R2, R5}( RR=5), 
{R2, R4}( RR=1.4), and 
{R3, R4, R5}( RR=1.3), 
These risk patterns involve five attribute-values: R1, R2, R3, 

R4, and R5. According to Definition3, only {R1, R2} (RR=3), 
{R1, R2, R3} (RR=3.2), and {R2, R5} (RR=5) are selected. 
These selected risk patterns involve four attribute-values: R1, 
R2, R3, and R5. If these attribute-values still exist in preventive 
patterns, we can compare grade of membership of them in RS 
and PS, and then determine the type of them. 

2) Optimal Risk and Preventive Sets with Weights 
In this section, we will generate the weight of each 

attribute-value in ORS and OPS. The weight of each attribute-
value in ORS and OPS is represented by RWM (Risk Weight 
Matrix) and PWM (Preventive Weight Matrix). The weight of 
each risk factor is the product of its frequency and relative risk 
while the weight of each preventative factor is the product of 
its frequency and the reciprocal of relative risk. RSM and PSM 
are described as follows, as in (3) and (4). 

Optimal risk and preventive sets with weights are based on 
optimal risk and preventive sets. We only consider attribute-
values in optimal risk and preventive sets. The frequency of 
each attribute-value can be calculated in optimal risk and 
preventive patterns and its relative risk can be also obtained 
according to Equation (2). To make results more intuitive, we 
normalized the weight of each attribute-value. The total 
weights of optimal risk and preventative weight are 100 
respectively. Each attribute-value in optimal risk and 
preventive sets has a weight, which generates optimal risk and 
preventative factor sets with weights respectively. 

Definition 4. In optimal risk and preventive sets with 
weights, the weight of each attribute-value is normalized and 
related with frequency of it as well as its relative risk.

             T
'k

j
ORiRRORf

ORiRRRfO

'k

j
ORiRRORf

ORiRRRfO
'k

j
ORiRRORf

ORiRRRfO
RWM

jj

k

jjjj

'k
]

1=
)(

)(100
,...,

1=
)(

)(100
,

1=
)(

)(100
[

1

'

1

2

1

1 1121

∑∑∑ ×

××

×

××

×

××
=                          (3) 

1200 JOURNAL OF COMPUTERS, VOL. 6, NO. 6, JUNE 2011

© 2011 ACADEMY PUBLISHER



                    T
'k

j OPiRR
OPf

OPiRR
OPf

'k

j OPiRR
OPf

OPiRR
OPf

'k

j OPiRR
OPf

OPiRR
OPf

PWM

j
j

k

j
j

j
j

'k

]

1= )(
1

)(
1

×100

,...,

1= )(
1

)(
1

×100
,

1= )(
1

)(
1

×100
[=

2

'
2

2

2

2

1
221

∑∑∑ ×

×

×

×

×

×
                    (4) 

The Minimal Description Length Principle can be used 
to stop partitioning. Recursive partitioning within a set of 
values S stops on the condition: 

B. Classification by ORPSW 
Our classification first discretizes all individual genes 

using entropy-based method [8]. Then, we use a gene 
selection method based on CFS [9] to select most 
discriminative genes related with class. Finally, we 
develop ORPSW classifier based on optimal risk and 
preventive sets with weights. The steps are as follows: 

N

STA

N

N
STA

);,()1(log
);,(ainG 2 δ

+
−

<              (7) 

Where N is the number of values in the set S, 
 ,);,E(-)Ent(=);,Gain( STASSTA =);,δ( STA

)]Ent( 22 S•)1 kS −Ent()Ent([2)(3log 12 kSkk •−•−− , 
and ki is the number of class labels represented in the set 
Si.  

① An entropy-based discretization method: remove 
those genes that cannot be discretized (Section III-C). 

② Gene selection based on CFS: select most 
discriminative genes (Section III-D). 

③ Optimal risk and preventive patterns: these 
patterns are generated in selected genes using MORE 
algorithm [6]. 

Note that this method can be implemented in Weka 
workbench [10]. 

D. Gene Selection Based on CFS  
Although many noise or irrelevant features are 

removed in gene expression data after discretization, the 
number of features is far more than that of samples. 
Therefore, we incorporate a gene selection method into 
training data to further explore most discriminatory genes 
related with the class. This gene selection method is 
based on CFS  and it was proved that it outperformed the 
wrapper method [11] on small datasets [9].  

The key hypothesis of CFS is that good feature sets 
contain features that are highly correlated with the class, 
yet uncorrelated with each other. Instead of scoring and 
ranking individual features, the CFS method uses subset 
ranking and scoring. Due to best-first-search heuristic, it 
takes into account the importance of individual features 
for predicting the class along with the level of inter-
correlation among them. 

Note that this method can be also implemented in 
Weka workbench [10]. 

④ ORPSW classifier: base on optimal risk and 
preventive sets with weights for classification (Section 
III-E). 

Note that genes with smaller entropy are more 
discriminating. ORPSW can reduce high-dimensionality 
of gene expression data and construct classifier based on 
patterns.  

C. An Entropy-Based Discretization Method 
One challenge of gene expression data to classification 

algorithms is the large number of genes involved. It is 
necessary to remove those irrelevant genes that cannot be 
discretized based on prior knowledge of class. In this 
paper, we introduce a discretization method [8] which 
makes use of the entropy minimization heuristic and 
derives a criterion based on the Minimum Description 
Length Principle for deciding split point. This method 
can remove many noisy or irrelevant genes and explore 
discriminatory genes related with the class. 

We refer the definition described in Fayyad and Irani 
[8]. Let T partition the set S of examples into the subsets 
S1 and S2. Let there be k classes C1,C2,…,Ck and P(Ci,Sj) 
be the proportion of examples in Sj that have class Ci. The 
class entropy of a subset Sj, j=1,2 is defined as: 

))()log(
1

()Ent( jijij S,CPS,
k

i
CPS ∑

=
−=                 (5) 

E. ORPSW Classifier 
ORPSW classifier is implemented based on two main 

new ideas by two steps. The first is to generate optimal 
risk and preventive sets with weights; the other is to 
develop ORPSW classifier. 

① We use a new type of knowledge, the so-called 
optimal risk and preventive patterns, recently proposed in 
[6], to build up ORPSW classifier. Generally, risk 
patterns are frequent patterns, whose relative risk [5] is 
greater than a given threshold. Relative risk is a metric 
often used in epidemiological studies. It compares the 
risk of developing a disease of treatment group to control 
group. Conversely, preventive patterns are frequent 
patterns, whose relative risk is less than a given threshold. 
For example, let us consider two patterns. {Gene1 ≥ 
value1, Gene2 ≥ value2}(lsupp=0.09, RR=3.1), and 
{Gene1 < value1, Gene2 < value2}(lsupp=0.1, RR=0.1). 
Where lsupp is local support and RR is relative risk in 
epidemiology study. The two patterns are risk and 

Suppose the subsets S1 and S2 are generated by 
partitioning a feature A at point T. For example, the test 
A>T stands for: “the value of A is greater than T which is 
a split point”. Then, the class information entropy of the 
partition, denoted E(A,T;S), is given by: 

)(ntE
||

||
)(ntE

||

||
);,E( 2

2
1

1 S
S

S
S

S

S
STA +=               (6) 

A binary discretization for A is determined by selecting 
the cut point T for which E(A,T;S) is minimal amongst all 
the candidate cut point.  
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preventative patterns respectively. Optimal risk (or 
preventive) pattern set includes patterns that are higher 
(or lower in case the relative risk is less than a given 
threshold) than relative risk of their simple form patterns. 
Therefore, optimal risk and preventive patterns can 
exclude both redundant and superfluous patterns. In 
general, the differentiating power of ORPSW classifier 
roughly depends on the difference of relative risk in 
target class. 

② We use risk weight and preventative weight to 
classify a new instance. For two classes’ problem, risk 
weight is risk degree of class C whereas preventative 
weight is preventative degree of class C. However, it is 
not reasonable to compare risk weight and preventative 
weight directly since the number of optimal risk and 
preventive patterns is different in class. To build up an 
accurate classifier, we normalize risk weight and 
preventative weight of each instance with base weight 
(e.g. median) of the training instance of class C or non-C 
and make comparison, then determine the class of each 
instance. We let the larger between normalized risk 
weight and normalized preventative weight win the class. 

1) Function of Generating Optimal Risk and 
Preventive Sets with Weights 

Optimal risk and preventive sets with weights are 
based on optimal risk and preventive patterns. Only 
optimal risk patterns whose relative risk is greater than 
RR1 and optimal preventive patterns whose relative risk is 
smaller than RR2 are selected, and the grade of 
membership is used to remove common set between risk 
and preventive set. Pseudo-code for generating optimal 
risk and preventive sets with weight is presented as 
follows. 

Function 1 (generating optimal risk and preventive sets 
with weights). 

Input: Optimal risk and preventive patterns (ORPP) 
generated by MORE algorithm, optimal risk pattern set R, 
optimal preventive pattern set P, relative risk threshold in 
optimal risk patterns RR1, and relative risk threshold in 
optimal preventive patterns RR2. 

Output: ORS, RWM (Risk Weight Matrix), OPS and 
PWM (Preventive Weight Matrix). 

① Set RS,PS,ORS,OPS,RWM,PWM=Φ 
② If RR>RR1 (RR<RR2) then add the pattern to R (P) 
③ Tabulate optimal risk pattern set (optimal 

preventive pattern set)  and add the attribute-
value in R (P) to RS (PS) 

④ If ΦPS  then ORS= RS, OPS= PS RS =∩
⑤ Else if ΦPSRS ≠  then remove the common 

attribute-value by the grade of membership 
∩

⑥ Return RS and PS then ORS= RS, OPS= PS 
⑦ Count the frequency of each attribute-value in 

ORS and OPS then sort all attribute-values in 
order of decreasing frequency 

⑧ Calculate the weight of  each attribute-value in 
ORS and OPS, then add them to RWM and PWM 
respectively 

⑨ Return RWM and PWM 
In step ⑦, we normalize the weight of each attribute-

value as described in (3) and (4).  

RWM corresponds to ORS, and PWM corresponds to 
OPS, which generate optimal risk and preventive sets 
with weights together. 

2) ORPSW Classifier 
Given the training samples representing different 

classes, firstly the classifier is trained and then used to 
predict new or unseen samples (test samples). ORS, OPS, 
RWM and PWM are generated based on training samples. 
We can use them to predict risk weight and preventative 
weight of test samples. How do we judge the class of a 
new sample? A common way is to sum the risk weight 
and preventative weight, and to compare them. If risk 
weight is larger than preventative weight, the class of the 
new sample belongs to cancer, or normal. However, the 
number of attribute-values in ORS and OPS may not be 
balanced. If a class has many attribute-values than 
another class, then the weight of each attribute-value 
usually gets lower weight. 

Our solution to this problem is to “normalize” the 
weight by base weight. We can judge the class of a new 
sample though comparing normalized weight. How do we 
determine the base weight? Suppose two classes C1 and 
C2, we can let base_weight (C1) and base_weight (C2) be 
the median weight of training samples class C1 and C2 
respectively. The normalized weight of a new sample s 
for C1, norm_weight(s,C1), is defined as the ratio 
weight(s,C1)/base_weight (C1). Instead of letting the class 
with the largest raw weight win, we let the class with the 
highest normalized weight win. An example is illustrated 
as follows. 

In TABLE II, the (median) base weight for the cancer 
and normal classes are 97.32 and 85.15 in bold 
respectively. Given a new sample s with weight 95.20 
and 86.65 for the cancer and normal classes respectively, 
we have norm_weight(s,C1)=95.20/97.32=0.9782 and 
norm_weight(s,C2)=86.65/85.15=1.0176. s is labeled as 
normal. 

In summary, ORPSW classifier firstly uses ORS, OPS, 
RWM and PWM to generate risk weight and preventative 
weight of test samples. Then risk weight and preventive 
weight are normalized based on base weight, a decision 
made by comparing the value of normalized weight in 
cancer and normal. 

TABLE II.  A SIMPLE ILLUSTRATION OF COMPARING PROCESS, 
SUPPOSE THERE ARE SEVEN SAMPLES FROM EACH OF THE CANCER (C1) 

AND NORMAL (C2) CLASSES AND THEIR WEIGHTS ARE: 

C1 training samples C2 training samples 
weight(s,C1)        weight(s,C2) weight(s,C1)        weight(s,C2) 

99.20                      40.32 
98.52                      41.33 
97.66                      36.64 
97.32                      44.38 
96.55                      42.26 
96.25                      55.63 
95.68                      33.66 

   55.62                      88.66 
   50.64                      87.98 
   51.23                      87.24 
   55.33                      85.15 
   32.69                      84.58 
   35.64                      83.45 
   36.87                      82.86 
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IV. EXPERIMENT RESULTS  

A. Comparison with Three State-of-the-Art of Classifier 
We used four bench-mark gene expression data sets 

from Kent Ridge Bio-medical Dataset [12] to compare 
ORPSW with three state-of-the-art of classifiers: C4.5 [1], 
NB (Naive Bayes) [2] and SVM (Support Vector 
machine) [3], which are described in TABLE III.  

We used two classification performance metrics. The 
first metric is classification accuracy (ACC) since we 
wanted to compare our results with three state-of-the art 
classifiers that also used this performance metric. ACC is 
easy to reflect the performance of a classifier. On the 
other hand, ACC is sensitive to the prior distribution of 
the class and can predict the overall accuracy including 
true positive rate and true negative rate. In other 
classification problems, false positives and false 
negatives makes not much difference, but in cancer 
diagnosis applications is not the case. False positives are 
tolerable since further clinical experiments will be done 
to confirm, but false negatives are unacceptable since a 
cancer patient might be misclassified as normal. 
Therefore, the second metric is false positive rate (FPR) 
and false negative rate (FNR). These two metrics can 
interpret specificity of a classifier. In cancer classification, 
FNR is more useful to evaluate the performance of a 
classifier. 

For ORPSW classifier, we set the minimum local 
support as lsupp=0.33 in Central Nervous System, 
lsupp=0.47 in Breast Cancer, lsupp=0.57 in Prostate 
Cancer, and lsupp=0.64 in Ovarian Cancer (NCI PBSII 
Data); the maximum length of the attribute-value item as 
L=4, the minimum relative risk as 1.5 for optimal risk 
patterns and as 0.67 for optimal preventive patterns. We 
firstly discretize four bench-mark gene expression data 
and then use MORE algorithm [6] to the selected genes to 
generate optimal risk and preventive patterns. ORPSW 
classifier can be developed based on optimal risk and 
preventive patterns. Finally, we make 10-fold stratified 
cross-validation. 

For three state-of-the-arts of classifiers, we also firstly 
discretize four bench-mark gene expression data, and 
then make 10-fold stratified cross-validation. Specially, 
we use two different kinds of SVM which are C-SVC and 
nu-SVC [13]. The kernel type of them is linear. All our 
results are obtained by 10-fold stratified cross-validation. 

In TABLE IV, the first column is the type of classifier 
and classification accuracy. Columns from 2 to 5 give the 
classification accuracy of different classifiers. It can be 
seen that ORPSW has better predictive accuracy. For 
Breast Cancer, Ovarian Cancer and Nervous System data 
sets, ORPSW and SVM (C-SVC+linear) can all achieve 
100% testing accuracy. However, Naive Bayes and SVM 
(nu-SVC+linear) show common performance in four data 
sets and C4.5 only has 100% testing accuracy in Ovarian 
Cancer data set. We may conclude that ORPSW classifier 
can make more accurate classification than C4.5 and 
Naive Bayes, and is comparable with SVM. 

TABLE V gives ORPSW classifier a new metric to 
compare with other three classifiers on the datasets. The 

first column is the type of classifier and FPR/FNR. From 
the second column to the fifth column, there is FPR/FNR 
of different classifiers. It can be shown that ORPSW and 
SVM (C-SVC+linear) can achieve 0% false negative rate. 
False negative rate (FNR) is a good metric in cancer 
classification, which indicates that ORPSW and SVM (C-
SVC+linear) are more useful than other types of 
classifiers in the diagnosis of cancer. On the other hand, 
C4.5, Naive Bayes and SVM (nu-SVC+linear) have a 
high false negative rate (FNR) in this case. Thus another 
conclusion we can infer is that ORPSW classifier is more 
efficient than C4.5, Naive Bayes and SVM (nu-
SVC+linear) in four bench-mark data sets with the lowest 
average FNR. In Prostate Cancer, ORPSW classifier has 
the lowest average FNR but the highest average FPR. 
ORPSW classifier may be over-trained when the fold is 
10 in Prostate Cancer. 

The primary metric for evaluating classifier 
performance is classification accuracy (ACC). Since that 
accuracy (ACC) is sensitive to the prior distribution of the 
class, we also used false positive rate (FPR) and false 
negative rate (FNR), to perform a fair and thorough 
comparison among classifiers. Our experimental results 
show that ORPSW is an accurate and being better 
classifier.  

A possible reason for ORPSW better than C4.5 
decision tree is that it makes use of more attribute 
information than a decision tree does. C4.5 decision tree 
only considers optimal rules but ignores sub-optimal rules. 
A reason for ORPSW better than Naive Bayes may be 
that Naive Bayes assumes independent among attributes, 
and ORPSW is not. The assumption ignores interactions 
between genes which are advantageous to improve the 
accuracy of classification in gene expression data. 
Although SVM is mathematically sound, it may be not 
comprehensive to biologists. The reason is that SVM uses 
linear or non-linear kernel function to construct a 
complicated mapping between samples and their class 
labels and it functions as a black box. However, ORPSW 
provides relevant genes with the class besides 
classification performance. 

B. Differential Expression Genes Related with the Class 
In this paper, differential expression genes are 

regarded as those which have different expression value 
in cancer and normal condition. We firstly discretized 
four bench-mark gene expression data sets including 
training data and testing data. Then Function 1 was used 
to generate optimal risk and preventive sets with weights. 
Optimal risk set is the subset of attribute-values related 
with cancer condition while optimal preventive set is the 
subset of attribute-values with normal condition. We only 
care about those attribute-values which have the same 
attribute (gene) but different expression value. Due to 
limit space, we only show differential expression genes in 
Prostate Cancer and Ovarian Cancer data sets. 
Differential genes in Prostate Cancer and Ovarian Cancer 
are summarized in TABLE VI. The first and forth column 
is the probe of genes and the remaining columns presents 
the intervals of gene expression levels. Note that all genes 
are discretized into two intervals. Genes with different 
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expression value can play different roles in human health. 
Due to the difference of value in normal and cancer 
conditions, these genes may have significant impact on 
classifying patients’ records. Furthermore, these genes 
may give indications of the biology relevance of disease 
and provide a treatment plan of the relevant disease. 

TABLE III.  A SIMPLE DESCRIPTION OF KENT RIDGE BIO-MEDICAL 
DATASET. 

Name # Samples(training 
and testing data) 

#Attributes 

Central Nervous System 60 7130 
Breast Cancer 97 24481 

Prostate Cancer 136 12600 
Ovarian Cancer(NCI 

PBSII Data) 
253 15154 

TABLE IV.  CLASSIFICATION COMPARISONS AMONG ORPSW, C4.5, 
NAIVE BAYES, AND SVM WITH TWO DIFFERENT TYPES. THE KERNEL 

TYPE OF SVM IS LINEAR. THE FOLD PARAMETER IS 10. 

ACC Breast 
Cancer 

Prostate 
Cancer 

Ovarian 
Cancer 

Nervous 
System

ORPSW 1.00 0.93 1.00 1.00 
C4.5 0.70 0.93 1.00 0.67 

Naive Bayes 0.90 0.86 0.96 0.83 
SVM(C-

SVC+linear) 
1.00 1.00 1.00 1.00 

SVM(nu-
SVC+linear) 

0.90 0.93 0.96 0.83 

TABLE V.  FPR AND FNR COMPARISONS AMONG ORPSW, C4.5, 
NAIVE BAYES, AND SVM WITH TWO DIFFERENT TYPES. THE KERNEL 

TYPE OF SVM IS LINEAR. THE FOLD PARAMETER IS 10.  

FPR/FNR Breast 
Cancer 

Prostate 
Cancer 

Ovarian 
Cancer

Nervous 
System 

ORPSW 0/0 0.14/0 0/0 0/0 
C4.5 0.20/0.40 0/0.13 0/0 0.33/0.33

Naive Bayes 0/0.20 0/0.25 0.10/0 0/0.33 
SVM(C-

SVC+linear) 
0/0 0/0 0/0 0/0 

SVM(nu-
SVC+linear) 

0/0.20 0/0.13 0.10/0 0/0.33 

V. CONCLUSION 
In this paper, we proposed a new classier based on 

optimal risk and preventative patterns. Optimal risk 
(preventive) patterns are characteristics of groups’ people 
who are risky (preventative) to a disease. ORPSW 
classifier uses optimal risk and preventive sets with 
weights to summarize patterns and determine the class 
label of a new instance by comparing values of 
normalized weights in cancer and normal groups. 
Experimental results show that the proposed classifier is 
useful for cancer classification and helps understand 
differential expression genes with cancer. The 
classification results are more accurate than C4.5 and 
Naive Bayes classifier, and comparable with SVM 
classifier. Differential expression genes related with the 
class may provide an indication of the cause of a cancer. 

TABLE VI.  DIFFERENTIAL EXPRESSION GENES IN TWO BENCH-MARK GENE EXPRESSION DATA SETS: PROSTATE CANCER AND OVARIAN CANCER 
(NCI PBSII DATA). THESE GENES HAVE DIFFERENT EXPRESSION LEVEL IN CANCER AND NORMAL CONDITION. 

Prostate Cancer Ovarian Cancer 
Genes Cancer Normal Genes Cancer Normal 

34730_g_at 

37720_at 

37068_at 

37639_at 

32598_at 

1121_g_at 

36491_at 

41468_at 

1664_at 

39054_at 

914_g_at 

39608_at 

39755_at 
 

 (-inf-25.5] 

 (210.5-inf) 

 (5.5-inf) 

 (74.5-inf) 

 (-inf-29.5] 

 (-inf-4.5] 

 (29.5-inf) 

 (110.5-inf) 

 (-inf-112] 

 (-inf-43.5] 

 (8.5-inf) 

 (13.5-inf) 

 (481-inf) 
 

 (25.5-inf) 

 (-inf-210.5] 

 (-inf-5.5] 

 (-inf-74.5] 

 (29.5-inf) 

 (4.5-inf) 

 (-inf-29.5] 

 (-inf-110.5] 

 (112-inf) 

 (43.5-inf) 

 (-inf-8.5] 

 (-inf-13.5] 

 (-inf-481] 
 

MZ417.73207 

MZ435.07512 

MZ435.46452 

MZ244.95245 

MZ245.53704 

MZ246.70832 

MZ261.88643 

MZ245.24466  

MZ246.12233 

MZ433.90794 

MZ262.18857 

MZ17012.128 

MZ251.71735 

MZ244.66041 

(-inf-0.377567] 

(0.364727-inf) 

(0.339245-inf) 

(-inf-0.434996] 

(-inf-0.411223] 

(-inf-0.23928] 

(-inf-0.366697] 

(-inf-0.512219] 

(-inf-0.341771] 

(0.453201-inf) 

(-inf-0.408728] 

(-inf-0.357613] 

(0.269674-inf) 

(-inf-0.213234] 

(0.480161-inf) 

(-inf-0.364727] 

(-inf-0.297334] 

(0.434996-inf) 

(0.411223-inf) 

(0.28402-inf) 

(0.444799-inf) 

(0.512219-inf) 

(0.341771-inf) 

(-inf-0.453201] 

(0.510673-inf) 

(0.357613-inf) 

(-inf-0.269674] 

(0.371575-inf) 
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