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Abstract—A two-phase DLSM model is proposed to model 
transverse isotropic materials, in which the layer structure 
of the anisotropic materials is explicitly represented. 
Equations are derived to obtain elastic parameters of the 
two phase model from the elastic modules in parallel to the 
bedding planes and that in normal direction of the bedding 
planes. Then, the mechanical properties of the two-phase 
DLSM model are studied and compared with experimental 
observations. Results indicate that the mechanical 
properties of transverse isotropic materials can be well 
represented by the proposed model. Following this, the 
model is applied to study the influence of the weakness 
layers (bedding planes) on the anisotropic deformation and 
Damaged Zone (DZ) evolution of underground disposal 
galleries in transverse isotropic medium. Finally, some 
conclusions are presented.  
 
Index Terms—transverse isotropy, DLSM, third term, a 
two-phase model, weakness layers 
 

I.  INTRODUCTION 

In the various sedimentation processes or the 
subsequent burial history of rock formations, well defined 
fabric elements can be found in many kinds of rocks, in 
the form of bedding, stratification, foliation, fissuring or 
jointing. In general, these rocks have anisotropic 
properties in physical, thermal, mechanical, hydraulic 
those varied with direction [1]. For most practices, 
anisotropic rocks can be classified as orthotropic or 
transverse isotropic medium. Orthotropic implies that 
three orthogonal planes of elastic symmetry exist at each 
point in the rock and that these planes have the same 
orientation throughout the rock. Transverse isotropy 
indicates that at each point in the rock there is an axis of 
symmetry of rotation, and the rock has isotropic 

properties in a plane normal to that axis. The plane is 
called the plane of transverse isotropy [2]. This paper 
deals exclusively with the modeling of transverse 
isotropic materials. 

The mechanical behavior of anisotropic rock can be 
modeled through distinct element approach [3], 
discontinuities can be explicit represented. However, 
when the numbers of discontinuities are excessive large, 
the distinct element approach is not accessible due to the 
limitation of computational power. Here, a continuum 
description of the anisotropic material is needed to 
provide an average description of the response of the rock 
under mechanical unloading. This kind of model is called 
as implicit joint model [4], in which joints are implicit in 
the choice of constitutive law for the equivalent 
continuum. For example, the representative one is the 
Ubiquitous Joint model in FLAC [5] which can be used 
to model anisotropic material. However, the implicit joint 
model also suffer some inherit shortcomings, e.g., 
recently it is reported that the Ubiquitous Joint model will 
completely break down when the rock layer undergo 
bending during loading [4]. 

The Distinct Lattice Spring Model (DLSM) [6, 7] is a 
discrete numerical model, in which the material is 
discretized into particles linked by springs. As a discrete 
approach, it is more suitable to simulate the problems of 
failure process than conventional continuum based 
methods, it have already been used in the study of 
dynamic cracking propagation of PMMA [8] and 
dynamic strength of rock materials [9]. Recently, the 
DLSM is extended to study the anisotropic materials [10]. 
In this paper, formulations of the two-phase model in 
DLSM to represent the transverse isotropic materials are 
introduced. Then, the mechanical properties of the two-
phase DLSM model are studied and compared with 
experimental observations. Following this, verifications 
and application of the two-phase model are presented. 
The influence of particle size and orientation of bedding 
planes on the mechanical behavior of the transverse 
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isotropic rock are studied and compared with 
experimental observations. Then, the influence of 
direction of bedding planes on the Damaged Zone (DZ) 
evolution of underground circular galleries is simulated 
by the proposed two-phase DLSM model. Finally, some 
conclusions are concluded and discussed.  

II.  MODEL TRANSVERSE ISOTROPIC MATERIAL BASED ON 
DLSM 

A.  Distinct Lattice Spring Mode (DLSM) 
The Distinct Lattice Spring Model (DLSM) is a 

microstructure based numerical model based on the 
RMIB theory [7, 11] which is an extension of VMIB 
model [12]. In DLSM, material is discretized into mass 
particles linked through distributed bonds (Fig.1 (a)).  
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Figure 1.  The physical model, calculation cycle, particle spring 

deformation and its constitutive law in DLSM . 

Due to the explicit considerations of the microstructure 
of the material, the proposed model can give more 
realistic modeling of material failure behavior than 
continuum based methods. Based on Cauchy-born rules 
and the hyperelastic theory, the relationship between the 
micromechanical parameters and the macro material 
constants, i.e. the Young’s modulus and the Poisson ratio 
is obtained: 
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where   is the normal stiffness of the spring, nk sk  shear 
stiffness,  Young’s modulus,  Poisson ratio and E v 3D  
is a microstructure geometry coefficient which can be 
obtained from: 

2
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where  is the original length of the ith bond, V  is the 
volume of the geometry model. The details of this model 
can be found in [9]. DLSM is a particle based numerical 
method. The particles and springs make a whole system 
which represents the material. For this system, its motion 
equation is expressed as 

il

      ( )t  K u C u M u F 
                    

(3) 

where  represents the vector of displacement, u  M  the 
diagonal mass matrix,  C  the damping matrix and  
the vector of external forces on particles. The calculation 
cycle is illustrated in Fig.1 (b). Given the particle 
displacements (either prescribed initially or obtained 
from the previous time step), new contacts and broken 
bonds are detected. The list of neighboring particles for 
each particle is updated. Then, contact and spring forces 
between particles are calculated according to the 
prescribed force-displacement relations.  

( )tF

The interaction between particles is represented by one 
normal spring and one shear spring. The shear spring is a 
multi body spring which is different from the 
conventional lattice spring methods. The multi-body 
shear spring is introduced to make the model handle 
problems which Poisson’s ratio is beyond 0.25. The 
behavior of normal spring is in a conventional way. For 
example, there existing one bond between particle i and 
particle j. The unit normal n (nx, ny, nz) points form 
particle i to particle j. The relative displacement is 
calculated as  

ij j i u u u
                                

(4) 

Then, the vector of normal displacement and 
interaction force between two particles (Fig 1(c, d)) can 
be given as 

 n
ij ij u u n n

 
and        
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ij n ijkF u

where  is the stiffness of the normal spring and n is 
the normal of the bonds. The multi-body shear spring 
between two particles is introduced through a spring with 
a multi-body shear displacement vector which can be 
obtained from: 
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where  bond
ε  is the strain state of the bond, it is e-

valuated by DLSM method. Then, the shear interaction 
between two particles is given as  

ˆs s
ij s ijkF u                         

       
(7) 

where sk  is the stiffness of the shear spring. Equations (4) 
to (6) provide the formulas for force update in DLSM. 
For the displacement update, the particle velocity is 
advanced individually as 

( )
( 2) ( 2)

t
jt t t t

i i
p

t
m

   F
u u 

                    
(8) 

1140 JOURNAL OF COMPUTERS, VOL. 6, NO. 6, JUNE 2011

© 2011 ACADEMY PUBLISHER



where ( 2t t
i
u )  is the particle velocity at 2t t  , ( 2t t

i
u )  

is the particle velocity at 2t t , pm

t

 is the particle 

mass,  is the sum of forces acting on the particle i 
including applied external forces and  is the time step. 
Finally, the new displacement of particle is obtained as  
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where  is the displacement at t t ,  t t
i
u    t

iu  the 
displacement at t . These two equations are the main 
procedure involved in the implementation of DLSM. 
Details of the implementation of DLSM and verifications 
of DLSM on modeling elastic problems can be found in 
[6, 7]. 

B.  Represent Transverse Isotropic Material in DLSM 
The transverse isotropic materials are represented by a 

two phase model which made up from the matrix and the 
weakness materials (see Fig.2 (a)). Moreover, two macro 
elastic moduli are considered, i.e., the elastic modulus 
parallel with the bedding plane  and that in normal 

direction of the bedding plane . The moduli are 
obtained as [13]: 
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where  is the elastic modulus of the matrix 
material, 

baseE

weak baseE E  is the ratio of the elastic 
modulus of weak material to that of the matrix material 
and   is the volume contain ratio of the weak material. 
Then, the anisotropic ratio  is obtained as 
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The 3D surface of Equation (12) is given in Fig. 2(b). 
Then, the volume ratio   and anisotropic ratio   are 
given, the   can be determined through the curve of   
versus . The elastic modules of the matrix and weak 
material can be obtained as 
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The Poisson’s ratio of both the matrix material and the 
weak material is taken the value of the macro Poisson’s 
ratio in direction parallel with the bedding plane. 
Relationship between macro and micro failure parameter 
is given as [7] 

*
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where u* is the ultimate deformation for the bond spring 
in DLSM and d* is the mean particle size. For the 

anisotropic DLSM model, there will have two parameters 
related to matrix and weak materials, respectively. They 
are suggested to taken as 

* *
* *,  

p n
t
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base weak

d
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where  and  are the ultimate bond deformation 
of matrix and weak material, respectively, 

*
baseu *

weaku
  is a safety 

factor for the weak material. The reason is that weakness 
layers usually can bear larger deformation than that of the 
matrix material (in this paper 100  ).  

 
(a) Two-phase model                 (b) The anisotropic ratio κ 

Figure 2.  Representation of transverse isotropic material in DLSM and 
relationship between the anisotropic ratio κ and ratio of elastic modulus 
α and ratio of volume β between the matrix and the weak materials. 

III.  VERIFICATIONS  

In this section, the two-phase DLSM model is verified 
through numerical experiments. The computational 
models for uniaxial compressive test are shown Fig.3. 
Two models with different orientation of bedding plane 
are presented. The apparent elastic modulus (the elastic 
modulus in the loading direction) is obtained from the 
strain stress curves of the two-phase models. 

           
Figure 3.  The two phase DLSM model used for the uniaxial 

compression test. 

First, the two-phase models with volume ratio   under 
different particle size are simulated. The orientation of 
bedding plane is 0 degree and the apparent elastic 
modulus can be obtained from Equation (11). The 
percentage errors between the value obtained from the 
two-phase DLSM model and that from Equation (11) are 
shown in Fig.4. It indicates that the numerical error 
decrease with the particle size and increase with the 
weakness ratio. The requirement on particle size for the 
two-phase model is high, e.g., only the 0.25mm particle 
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model can provide an average error less than 5%. It 
means the two-phase DLSM model with coarse particle 
size can only provide a quantitative analysis.  

 
(a) β=0.5 

  
(b) β=0.25 

Figure 4.  The percentage error of the two-phase DLSM models with 
different particle size. 

Then, the numerical experiment on transverse isotropy 
rock is performed by the two-phase DLSM model. For 
these simulations, the particle size is taken as 0.5mm and 
the volume ratio is taken as 0.5. In reference [1], the 
Young’s moduli in the plane of isotropy and in a 
direction normal to it are 741MPa and 196MPa separately. 
The elastic parameters of the two-phase DLSM models 
are obtained from Equation (10) to (13). The modeling 
results are shown in Fig. 5, where the results between the 
two-phase model and experimental data are well fitted.  
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Figure 5.  The apparent Young’s modulus predicted by two-phase 
DLSM and the experimental data.  

Moreover, a beam bending problem as described in [4] 
are solved by the two-phase DLSM model. As shown in 
Fig.6 (a), the beam is made up from layers which 
clamped on the left side and traction is applied on the 
right side. The material properties of the rock layer are 
taken as E=10GPa, v=0.2 and the shear strength of the 
joint plane is assuming zero. The deformation solution of 
y direction is given [4]: 

 
3

2
2

4 1s
y

lu v
Eh


 
                        

(16) 

 
(a) The schematic of the beam bending problem 

 
(b) Results of the two-phase DLSM model 

Figure 6.  The two-phase DLSM model for the beam bending problem 
and modeling results.  

The simulation results are shown in Fig.6 (b), the two-
phase DLSM model agrees well with the analytical 
solution, whereas the Ubiquitous Joint model produces 
rubber like material without bending stiffness. It can be 
concluded that the proposed two-phase DLSM model can 
reflect the mechanical properties of transverse isotropy 
rock and provides a solution for the DLSM to solve 
anisotropic problems. However, the requirement on 
particle size is very strict for precision analysis. For this 
reason, a more quantitative application is performed in 
following. 

IV.  APPLICATIONS   

A.  Computational Model 
The computational model used to simulate a kind of 

indurated clay (Opalinus Clay), which is the potential 
host rock for nuclear waste disposal galleries in 
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Switzerland (Fig. 7(a)). Recently, many researches have 
awareness that the importance of bedding plane to sound 
estimate the construction of the galleries of Opalinus 
Clay [14]. The two-phase model as described in previous 
section is used to simulate this transverse isotropic rock. 
The dimension of the model is the same as the testing 
sample in the laboratory, the diameters of inner and outer 
hole are 14mm and 86mm, respectively. The mechanical 
parameters are taken from Mont Terri rock laboratory in 
Switzerland [15]. Here, the volume ratio β used in DLSM 
model is given as 0.5. From Equations (10) to (15), the 
mechanical parameters needed for the two phase model 
are calculated and listed in TABLE I 

TABLE I.  . THE MECHANICAL PARAMETERS USED IN THE TWO PHASE 
MODEL OF DLSM. 

 E (MPa)    3/kg m   *u mm  
Matrix 

material 12850 0.24 2400 7.80e-5 

Weak 
material 1500 0.25 2400 3.20e-1 
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(a) DLSM model                         (b) The unloading process 

Figure 7.  Two-phase computational model for transverse isotropic 
rock (green layers are matrix, grey layers are weakness materials).  

B.  Modeling Failure Process of Indurated Clay 
The numerical simulation is aim to describe the failure 

process and evolution of Damaged Zone (DZ) under 
mechanical unloading, those are similar to that will be 
experienced by host rocks around disposal galleries. The 
mechanical unloading process is simulated by reducing 
the borehole stress from 4.5 to 0.2MPa step by step, 
however, the stress around outer boundary keeps constant 
at 4.5MPa (Fig.7 (b)). The initial strain and stress state is 
obtained by a static analysis. Then, the explicit dynamic 
calculation is performed. The DLSM modeling results of 
mapping displacement contour and fractures extension 
around the disposal galleries in transverse isotropic 
medium are shown in Fig. 8. In the process of decrease of 
borehole pressure, the main cracks develop along the 
matrix layer by layer and then extend normal to bedding 
planes. The movement of particles in bedding planes 
direction is smaller than in the vertical ones, an oval-
shape damage zone induced. It indicates bedding planes 
seriously effect on the mechanical anisotropy of this 
indurated clay.  

 
 

V.  CONCLUSIONS    

A two phase model is proposed to enhance the 
usability of DLSM model on transverse isotropic 
materials. Verifications and applications of the proposed 
model are presented to show the correctness and 
applicability of the two-phase DLSM model. The results 
the two-phase model are well represented the failure 
process of the transverse isotropic rock mass, the 
anisotropy deformation can be observed around the 
galleries. It can be concluded that the proposed model can 
provide a quantitative analysis tool for transverse 
isotropic materials although using a coarse particle model. 
Moreover, as the explicit consideration of the layer 
structure, the introduced model can overcome some 
shortcomings of the implicit joint model. Further 
improvement on the computational power of the DLSM 
and study on the failure mechanism on the two-phase 
model are needed. 

 

(c) Inner pressure is 0.2MPa 

(b) Inner pressure is 1.5MPa 

(a) Inner pressure is 4.5MPa 

 
Figure 8.  Evolution of DZ around the nuclear waste disposal galleries 

decreasing the central pressure.  
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