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Abstract—Real data used in research projects give rise to 

conflicts of protecting privacy and providing more function: 

functionality requires trying to make use of maximum 

amount of data, while privacy requirements try to protect 

such information from being leaked. In this paper, a new 

model is proposed to capture relationships between 

database attributes and to record users’ knowledge about 

database so as to prevent them from getting sensitive 

information by combining results returned from multiple 

queries, aiming to protect database privacy.  
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I.  INTRODUCTION 

With the rapid development of information technology, 

more and more research projects utilize real data. As the 

combination of private data with research provides more 

opportunities, it also poses a new dilemma: the balance of 

functionality and the concerns of privacy. Functionality 

requires trying to make use of maximum amount of data 

to support projects, while privacy requirements try to 

protect such information from being leaked and therefore 

protect privacy. In the United Kingdom, such kind of 

protection is derived from and emphasized in the Human 

Rights Act of 1998 [1] and the Data Protection Act of 

1998 [2]. 

As an example, in the United Kingdom, the 

responsibility of people‘s health care is mainly 

undertaken by the National Health Service (NHS), which 

is composed of a large number of hospital trusts and other 

related organizations. In the NHS structure, each hospital 

trust is an independent legal entity and is responsible for 

the data it holds with respect to the principals of the 

Caldicott Report [3], which include (but are by no means 

limited to) the following basic rules: 

(1) Justify the purpose(s). Every proposed use or 

transfer of patient-identifiable information within 

or from an organization should be clearly defined 

and scrutinized, with continuing uses regularly 

reviewed, by an appropriate guardian. 

(2) Do not use patient-identifiable information unless 

it is absolutely necessary. Patient-identifiable 

information items should not be included unless it 

is essential for the specific purpose(s) of that flow. 

The need for patients to be identified should be 

considered at each stage of satisfying the 

purpose(s).  

(3) Use the minimum necessary patient-identifiable 

information. Where use of patient-identifiable 

information is considered to be essential, the 

inclusion of each individual item of information 

should be considered and justified so that the 

minimum amount of identifiable information is 

transferred or accessible as is necessary for a 

given function to be carried out. 

(4) Access to patient-identifiable information should 

be on a strict need-to-know basis. Only those 

individuals who need access to patient-identifiable 

information should have access to it, and they 

should only have access to the information items 

that they need to see. This may mean introducing 

access controls or splitting information flows 

where one information flow is used for several 

purposes. 

(5) Everyone with access to patient-identifiable 

information should be aware of their 

responsibilities. Action should be taken to ensure 

that those persons who are handling patient-

identifiable information – both clinical and non-

clinical staff – are made fully aware of their 

responsibilities and obligations to respect patient 

confidentiality. 

From the above constraints the contradiction between 

functionality and privacy can be clearly seen. To provide 

more functions, more data tend to be exposed to users, 

and then the risk of compromising confidential 

information inevitably rises. Meanwhile, to better protect 

patients‘ personal and medical information, some 

functions have to be reduced from systems [4,5,6]. 

A lot of research work has been conducted on this 

issue and some valuable solutions have been proposed. 

One of the earliest solution is Stonebraker‘s query 

modification method [7,8,9]. Stonebraker‘s work used 

old fashioned QUEL query language and only had limited 

support to joined queries. Power et al. improved that by 

allowing joining, grouping and aggregation, and by 

implementing the method in SQL [10]. A formal 

framework for reasoning about inferences of query 

modification was also given by Power et al. in [11]. 
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Another category of solutions involves trackers. The 

concept of tracker was thoroughly described in Denning 

et al.‘s work [12,13,14]. Simpson‘s work combined both 

query modification and tracker [15]. 

Some others‘ work is also closely related to this issue 

although not directly intended to solve the specific 

problem. Dobkin et al. were among the earliest 

researchers working on secure database against malicious 

users‘ inference [16, 17]. A precise model about how 

attackers combined queries to infer sensitive information 

from database was presented in [16], although no 

complete counter measure was proposed. Sicherman et al. 

proposed a model which answered queries without 

revealing secrets by refusing to answer some certain 

questions [18]. Their model was rather theoretical and 

general, and ―lacked of finiteness conditions‖. The model 

was quite secure but sometimes overkilling since it might 

simply refuse the whole query when it detected anything 

insecure, and it was difficult to implement. Toland et al. 

Analyzed the problem [19,20,21] and a remarkable model 

called dynamic disclosure monitor was described by them 

in [19,20]. This model maintained a history database and 

formed an index on it to store users‘ knowledge and 

therefore to resist inference attacks. The model was 

―sound and complete‖, but it ―unnecessarily examined the 

entire history database in computing inferences‖ [19]. 

Byun proposed a secure anonymization technique 

dealing with data anonymization for incremental database 

[22], which was based on its ―static‖ version proposed by 

Sweeney [23]. Sweeney‘s solution includes a formal 

protection model named k-anonymity and a set of 

accompanying policies for deployment; a release 

provides k-anonymity protection if the information for 

each person contained in the release cannot be 

distinguished from at least k-1 individuals whose 

information also appears in the release [23].  Both of 

these two techniques involved some kind of information 

loss or data distortion, which is not suitable to some 

applications. 

In this paper, a new semantic model is proposed to 

capture relationships between attributes across multiple 

database tables and to record users‘ knowledge about the 

database. This way, if a malicious user tries to make 

multiple related legal queries and to combine the returned 

information together to figure out secret information, his 

knowledge will be recorded each time he issues such a 

query. Each time a new query is committed, the system 

will try to figure out what information can be deduced 

from this user‘s previous knowledge and the results of 

current query. Whenever the current query‘s results 

together with the user‘s previous knowledge compromise 

privacy, the system will immediately detect that and then 

reject the query. 

II.  BACKGROUND 

A relational database storing sensitive information can 

be attacked in different ways. Most attacks can be 

resisted by using various technologies, as described in 

literature. One special kind of attack involves deduction 

and inference. Attackers do not complete an attack in a 

single query; instead, they make several ―legal‖ queries 

and then combine the results of them to deduce sensitive 

information which should not be allowed to disclose to 

them. 

A.  A Sample Database 

Suppose we have a database storing students and 

exams information. The database basically comprises two 

tables, namely the STUDENT table and the EXAM table. 

The STUDENT table describes students‘ personal 

information. The schema of this table is as follows: 

STUDENT(SID, Name, DoB, Subject, 

                Gender, Country, Club) 

In this schema, SID is the student‘s unique identifier 

and acts as a primary key; Name is the student‘s name; 

DoB is their date of birth; Subject is their subject area; 

Gender has two possible value, M and F; Country is 

where they are from; Club is the club they belong to. 

Here is a sample populated table of STUDENT: 

(S01, Alice, 07/09/1986, Math, 

F, Greece, Bridge) 

(S02, Bob, 23/02/1990, Physics, 

M, Germany, Chess) 

(S03, Cox, 17/10/1991, Psychology, 

M, Spain, Rugby) 

(T20, Diana, 01/07/1992, Chemistry, 

F, Norway, Tennis) 

(T30, Eva, 19/11/1985, Biology, 

F, Spain, Cycling) 

(T40, Fred, 08/09/1993, Chemistry, 

M, Greece, Football) 

The EXAM table describes students‘ exam 

information. The schema of this table is as follows: 

EXAM(SID, Date, Course, Result) 

The names of fields are self-explanatory. Each student 

may have multiple records in this table. The primary key 

of this table is {SID, Date}. In this table we suppose each 

student only take one exam in a single day (this 

restriction can be easily loosened by replacing date with a 

more precise time or using an extra identifier). 

Here is a sample EXAM table: 

(S01, 01/06/2009, Calculus, 78) 

(T30, 02/06/2009, Molecular Biology, 85) 

(S01, 03/06/2009, Statistics, 63) 

(S03, 04/06/2009, Experimental Psychology, 90) 

(T20, 04/06/2009, Organic Chemistry, 48) 

(T30, 07/06/2009, Ecology, 62) 

(S02, 07/06/2009, Mechanics, 75) 

(T40, 07/06/2009, Inorganic Chemistry, 99) 

(T30, 08/06/2009, Cell Biology, 87) 

Suppose students‘ identities and their exam results are 

sensitive and should not be disclosed to any unauthorized 

users. The main concern on this database is that attackers 
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might have some way to deduce the identity of any 

student and to deduce personal and exam information 

about the victim. Such attacks compromise the victim‘s 

privacy. 

Some mechanisms have been employed to prevent 

potential attackers from retrieving sensitive information 

from the database by using plausibly legal queries. 

Typically, the fields involved in a query will be analyzed 

to see whether knowing them will lead to leakage of 

sensitive information. If some secret information can be 

known by the attacker after a query, the query should  

either be rejected or modified in order to protect the 

confidentiality of the data. 

For example, the designers of the database may believe 

that it is possible for attackers to deduce the identity of 

some certain patient by knowing his subject and the club 

he belongs to, as a club might have a small number of 

members. 

Therefore when an attacker tries to issue the following 

SQL statement: 

SELECT Subject, Club FROM STUDENT 

WHERE DoB >= ‗01/02/1990‘ 

 AND DoB <= ‗28/02/1990‘; 

This query statement should be intercepted and 

rejected without getting any data returned before passed 

on to be run by the database system so that the 

information of subject and club will not appear in the 

query result at the same time. 

Some variants of such kind of mechanism will take the 

fields involved in WHERE clause into account, giving 

attackers less opportunities to compromise the 

confidentiality of database. 

However, this mechanism (and some other similar 

mechanisms such as limiting the size of returned query 

results) can work well only on individual queries. It is 

difficult to prevent attackers from making several legal 

queries and then joining these query results outside the 

database (possibly with the help of ―trackers‖ [12,13] or 

knowledge from external sources). 

B.  A Possible Attack 

Attackers can bypass these mechanisms by issuing 

multiple related legal queries and combining the returned 

information to figure out the identity of some certain 

student and then further deduce sensitive personal and 

exam information about him. 

For example, the attacker may know that someone 

belongs to a certain club and know his subject. Then the 

attacker could make a pair of separate queries with the 

same condition. 

First of all, he issues the following SQL query 

statement, trying to retrieve the subject and other 

information of the intended person (suppose that the users 

are allowed to query subject, date of birth and gender 

information at the same time; otherwise they can choose 

other fields): 

SELECT Subject, DoB, Gender FROM STUDENT 

WHERE DoB >= ‗01/02/1990‘ 

 AND DoB <= ‗28/02/1990‘; 

And then he tries to fetch the club information using 

the following query statement: 

SELECT Club, DoB, Gender FROM STUDENT 

WHERE DoB >= ‗01/02/1990‘ 

 AND DoB <= ‗28/02/1990‘; 

If the attacker does not know the date of birth of the 

victim, these two queries will not contain the information 

of the intended victim as he expected. The attacker will 

be aware of this situation since the expected information 

does not appear in the query result. The attacker can then 

keep changing the period of date of birth in the query 

until the expected information appears in the results of 

both queries. 

After that, the attacker should be able to join the results  

of the queries and get the identity of the victim, with 

which he can further query sensitive exam data of the 

victim. To resist such kind of attacks, the relationship 

between fields and the knowledge of attackers should be 

studied in depth. 

III.  SEMANTIC METAMODEL 

A.  The Semantic Database Model 

The semantic model of the database describes database 

tables and the relationship of fields in each table. This 

model helps us get better understanding of the semantic 

structure of databases. 

A database can consist of one or more tables. The set 

of all table names in the database is defined as TABLE. 

Note that TABLE only consists of tables containing user 

data. In the later parts of this paper, a number of 

administrative databases will be introduced into our 

framework. These tables should not be included in 

TABLE. 

All the fields of tables in TABLE constitute the set 

FIELD. Usually there are more than one table in a 

database; different tables may have fields with same 

names. As an instance, both STUDENT and EXAM 

tables have a field called SID. To differentiate fields with 

same names in different tables, we identify a field by 

using the name of the table it belongs to as the prefix. For 

example, the notations STUDENT.SID and EXAM.SID 

can be used to differentiate two SID fields in two tables. 

When there is no ambiguity such as all other fields in 

these two tables, the prefix can be omitted for the sake of 

brevity. 

Tables of database can be viewed as sets of fields, each 

of which comprises all fields of a table and is a subset of 

FIELD. We define a function Fields mapping from names 

of tables to their sets of fields: 

Fields: TABLE → P(FIELD) 

where P(FIELD) is the power set of FIELD. 

A critical set of a table includes all fields within this 

table which should not be disclosed under any 

circumstances. If the values of any such a field are 

disclosed, students‘ identifies could be compromised. We 

define a function Critical mapping from names of tables 

to the corresponding critical sets as follows: 
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Critical: TABLE → P(FIELD) 

A conflict set includes the minimal sets of 

anonymously conflicting fields. By ―anonymously 

conflicting‖ we mean if the attacker knows the values of 

such a set of fields, it is possible for him to infer the 

identities of corresponding students. By ―minimal‖ we 

mean any subset of an element of conflict set is not 

anonymously conflicting. In the definition of conflict set, 

we exclude all elements of the critical set from any 

element of conflict set, since disclosure of any single 

element of the critical set implies compromising students‘ 

identities. A function Conflict mapping from names of 

tables to the corresponding conflict sets is defined as 

follows: 

Conflict: TABLE → P(P(FIELD)) 

A conflict set of a table can be empty. 

An inference set indicates that a user can infer some 

information (in one field) from other information (in 

other fields). This is similar to the concept of functional 

dependence. The difference between inference set and 

functional dependence is that the latter is a ―total 

dependence‖, that is to say that all values in one or more 

columns functionally decide the values in other fields, 

while our inference set means that such dependence could 

be either partial or total. In the concept of partial 

inference, some values in one or more fields decide 

values in another field, while other values in the same 

field or fields do not. We define a function Inference as 

follows: 

Inference: TABLE → P(P(FIELD) ⟹ FIELD) 

where ⟹ could be either the symbol of total inference 

(denoted as ⟹T) or partial inference (denoted as ⟹P). 

In the case of partial inference, a separate table is 

needed to describe what values of the field(s) can be used 

to infer information of other fields for each combination 

of table and user whose inference set contains partial 

inferences. 

B.  Knowledge Records of Database 

Although a number of mechanisms have been 

employed to protect privacy of databases, it is still 

possible for attackers to use some techniques such as 

trackers to infer confidential information by issuing a 

series of legal queries and then joining the query results 

together outside the database. To prevent such kind of 

attacks, we can try to record what has been known by the 

user, and when he issues a new query, we can check the 

records of this certain user and the results of the new 

query to figure out whether he can infer confidential 

information from them. If it is possible for the user to 

compromise privacy of the database, we should reject the 

new query. 

The knowledge information of users is called 

knowledge records. The knowledge records of each table 

can be stored in knowledge tables. A knowledge table 

contains all ―visible‖ fields as well as the primary key of 

the table. 

C. Making Decisions Based on Knowledge Records 

The semantic model and knowledge records can be 

combined to resist attacks described above. To achieve 

this, we need to follow the following steps: 

1. Analyze the fields of the query issued by the 

user to see whether the query itself is acceptable 

or not based on the critical set, conflict set and 

inference set. If not, reject the query; otherwise 

go to next step. 

2. Conduct the intended query, based on which 

produce the query result as well as the list of the 

primary key values of the query results. 

3. Based on the knowledge table produce the 

knowledge view VO (old knowledge). 

4. Combine the results produced in step 2 and VO to 

see whether the new query will compromise the 

identities of students. If so, the query should be 

rejected; otherwise, return the query results to 

the user and update the knowledge records 

accordingly. 

In the first step, as well as the fields appearing in the  

SELECT clause of the SQL statement, the fields 

appearing in the WHERE clause should also be counted 

into the set of ―query fields‖. If any subset of the query 

fields set totally decides other fields (using the total 

inferences in the inference set to decide), these decided 

fields should also be included into the query fields set. 

This process should be repeated until the query fields set 

does not expand any more. If any element of the critical 

set is also an element of the expanded query fields set, or 

any element of the conflict set is subset of the expanded 

query fields set, this query should be identified as 

unacceptable. 

In the last step, both total and partial inference should 

be considered. There are five different cases in the 

combination: 

1. A row appears in VO but not correspondingly 

appears in the new query. This means that the 

user will not be able to get extra information on 

this student. The privacy of this row will not be 

compromised, and we do not have to do 

anything on this. 

2. A row is returned within the query result, but 

does not appear in VO. This is also safe, but we 

need to add the knowledge information into the 

knowledge table. 

3. A row appears in both VO and the query result, 

and the combination of them will not 

compromise the privacy of the corresponding 

student. In other words, the user cannot get 

sensitive information on this row after issuing 

this query. In this case, the knowledge table 

should be updated. 
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4. A row appears in both VO and the query result, 

and the combination of them may or may not 

compromise the privacy of the corresponding 

student, depending on the values of the known 

fields. This case concerns partial inferences. The 

table recording partial inferences should be 

looked up to decide whether this query is safe or 

not. 

5. A row appears in both VO and the query result, 

and the combination of them will compromise 

the privacy of the corresponding student. The 

query should be rejected, and the knowledge 

table should be left unchanged. 

After these five steps, the system finishes its job for the 

current query and is ready for the next one. The returned 

query results (if any) will not compromise the 

confidentiality of the database. 

IV.  PROTECTING THE SAMPLE DATABASE: AN EXAMPLE 

A.  The Semantic Model 

As stated above, the semantic model of the database 

describes database tables and the relationship of fields in 

each table. 

The TABLE set of the above sample database is 

TABLE = {STUDENT, EXAM} 

The FIELD set of the database is 

FIELD = {STUDENT.SID, Name, DoB, Subject, 

Gender, Country, Club, EXAM.SID, Date, 

Course, Result} 

Accordingly, the definition of the function Fields can 

be: 

Fields(STUDENT) = {STUDENT.SID, Name, DoB, 

Subject, Gender, Country, Club} 

Fields(EXAM) = {EXAM.SID, Date, Course, Result} 

Suppose in STUDENT table the field Name should 

never be disclosed. So we have 

Critical(STUDENT) = {Name} 

The critical set of EXAM is empty. 

A possible conflict set could be 

Conflict(STUDENT) = {{Subject, Club}} 

A conflict set of a table can be empty set, as the case of 

EXAM table. 

As an instance of partial inference, some certain 

subjects only have students from a certain country, 

probably for a certain gender. For example, suppose all 

male students in politics are from Canada, all female 

students in math are from Greece, and all students in 

economics are from China. For all other subject and 

gender information, we cannot infer any information of 

country. For example it is impossible to infer a student‘s 

country of origin by just knowing that he is male student 

in chemistry. So we have 

Inference(STUDENT)= 

{{Subject,Gender}⟹PCountry} 

In this example, a table is attached to this partial 

inference describing what kind of information of country 

of origin can be derived from subject and gender 

information. 

B.  The Knowledge Records 

A sample knowledge table of STUDENT looks like 

this: 

(S01, NULL, Math, NULL, NULL, NULL) 

(S02, NULL, NULL, M, NULL, Chess) 

(S03, 17/10/1991, NULL, NULL, Spain, NULL) 

(T20, NULL, NULL, F, NULL, Tennis) 

(T30, 19/11/1985, NULL, NULL, NULL, Cycling) 

(T40, 08/09/1993, NULL, M, NULL, NULL) 

Note that the field Name does not appear the table as 

Name is in the critical set and should not be disclosed 

anyway. 

The reason of storing the real values of known 

information in knowledge tables is that partial inferences 

are based on values, unlike functional dependence. 

However, for those fields which are not involved in 

partial inferences, we do not have to store the values for 

them. For example, student T30‘s club information has 

been known, therefore according to the conflict set, the 

information of country should not be disclosed, whatever 

the values these fields have. In such a case, recording the 

real values of Club is unnecessary. Also, since the fields 

DoB and Club are not involved in the value-based 

inference, the real values of them could be left off the 

knowledge table and we only need to record whether or 

not they have been known. Therefore the knowledge table 

can be simplified as follows: 

(S01, No, Math, NULL, NULL, No) 

(S02, No, NULL, M, NULL, Yes) 

(S03, Yes, NULL, NULL, Spain, No) 

(T20, No, NULL, F, NULL, Yes) 

(T30, Yes, NULL, NULL, NULL, yes) 

(T40, Yes, NULL, M, NULL, No) 

C.  Making Decisions 

With the above semantic metamodel and the 

knowledge table, we now can protect our sample database 

from malicious attacks. 

Suppose the user‘s current knowledge table is as 

follows: 

(S01, No, Math, NULL, NULL, No) 

(S02, No, NULL, M, NULL, Yes) 

(S03, Yes, NULL, NULL, Spain, No) 

(T30, Yes, NULL, F, NULL, No) 

This forms the user‘s VO. 

Suppose the user issues the following query on the 

STUDENT table: 
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SELECT Subject, DoB, Gender FROM STUDENT 

WHERE Club = ‗Rugby‘; 

The set of query fields of this query is 

{Subject, DoB, Gender, Club} 

We call this set F. 

Obviously the element of the conflict set of the 

STUDENT table {Subject, Club} is subset of F, therefore 

this query is not acceptable. 

Suppose the user then issues another query 

SELECT DoB, Gender, Club FROM STUDENT 

WHERE DoB >= ‗01/01/1986‘ 

 AND DoB <= ‗31/12/1992‘; 

This query is acceptable according to the above 

criteria. Then we conduct the intended query and produce 

the query results together with the primary key value of 

each row of the query results. In this example, four rows 

are returned, whose primary key values are S01, S02, S03 

and T20: 

(S01, 07/09/1986, F, Bridge) 

(S02, 23/02/1990, M, Chess) 

(S03, 17/10/1991, M, Rugby) 

(T20, 01/07/1992, F, Tennis) 

Now we can combine VO with the new knowledge 

produced by the query to see whether this query 

compromises the security of the database or not. To do 

so, we need to compare each row of the query result with 

the corresponding row in VO. We can see five different 

cases in the comparisons: 

1. The row of the student T30 appears in VO but not 

in the new query. The privacy of T30 will not be 

compromised, and we do not have to do 

anything. 

2. The record of the T20 is returned within the 

query result, but it does not appear in VO. It is 

also safe, but we need to add the following row 

into the knowledge table: 

(T20, Yes, NULL, F, NULL, Yes). 

3. The row of S02 appears in both VO and the query 

result, and the combination of them will not 

compromise the privacy of this student. 

Therefore it is also safe, but we need to update 

the knowledge status of the field DoB in the 

knowledge table. 

4. The row of S01 appears in both VO and the query 

result, so we need to investigate the values of the  

fields known by the user. Before the query the 

user knows that student S01 is studying math. 

By issuing the query, the user will know S01‘s 

club and gender, which is female. So the set of 

fields the user will know about S01 after the 

query would be 

{DoB, Subject, Gender, Club} 

According to the inference set on STUDENT 

table, the user might be able to infer S01‘s 

country by knowing her subject and gender. In 

this example, we can conclude that since the user 

knows S01 is a female student in math, he would 

be able to infer that S01‘s country is Greece. 

Therefore the user will know the following set of 

fields about S01: 

{DoB, Subject, Gender, Country, Club} 

Since an element of the conflict set on 

STUDENT table is a subset of the table of 

known fields, this query will compromise S01‘s 

identity and should be rejected, and all previous 

changes to the knowledge table should be rolled 

back. On the other hand, if S01 is studying 

politics and all other information remains same, 

the query will be safe, since by knowing S01 is a 

female student studying politics, the user cannot 

infer S01‘s country of origin. Therefore in this 

revised case the query is acceptable, and we 

need to update the row of S01 in the knowledge 

table as follows: 

(S01, Yes, Politics, F, No, Yes). 

5. The row of S03 appears in both VO and the query 

result, and the combination of them discloses 

S03‘s identity. Before the query the user knows 

S03‘s DoB and Country, and by the query he 

will know S03‘s DoB, Gender and Club 

information. In combination, the user will know 

the following set of fields about the record of 

S03: 

{DoB, Subject, Gender, Club} 

which contains an element of the conflict set on 

STUDENT table and compromises S03‘s 

identity. So this query should be rejected, and all 

changes to the knowledge table should be rolled 

back. 

This example clearly shows that the new metamodel 

successfully resists attacks combining multiple legal 

query results. 

V.  CONCLUSION AND FUTURE WORK 

In this paper, a new semantic metamodel has been 

proposed, enabling databases to capture relationships 

between database attributes and to record user‘s 

knowledge about databases. As a result, it could help 

databases resist attacks aiming to get sensitive 

information by combining results returned from multiple 

queries. 

In the metamodel, several sets have been defined to 

capture the semantics of database attributes. The sets 

include tables set, fields set, critical set, conflict set and 

inference set. Some functions have also been defined 

upon these sets. To record user‘s previous knowledge 
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about the database, it has been suggested to maintain 

user‘s knowledge records. A standard method has also 

been described in this paper to help to decide whether to 

accept or decline queries and to update user‘s knowledge 

records. In this way, when an attacker tries to issue a 

query whose results could compromise the privacy of the 

database possibly by combining the results with his 

previous knowledge, it will be detected immediately, and 

the database will reject the latest query to protect 

students‘ privacy. 

The metalmodel considers the previous knowledge of 

the user, while most methods described in Section I do 

not, and that is the reason why attacks concerning 

multiple queries can be effectively resisted by using this 

new model. Unlike the D
2
Mon model, this new model 

store the knowledge history in a very compact way, 

therefore previous knowledge searching will be much 

more efficient. 

The new metamodel only considers a single database 

on a single server. The situation of federated databases 

will be the topic of next step of research. 
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