
Database Deductive Access Control

Xiaoqi Ma
School of Science and Technology

Nottingham Trent University

Nottingham, England, United Kingdom

Email: xiaoqi.ma@ntu.ac.uk

Abstract—Real data used in research projects give rise to

conflicts of protecting privacy and providing more function:

functionality requires trying to make use of maximum

amount of data, while privacy requirements try to protect

such information from being leaked. In this paper, a new

model is proposed to capture relationships between

database attributes and to record users’ knowledge about

database so as to prevent them from getting sensitive

information by combining results returned from multiple

queries, aiming to protect database privacy.

Index Terms—database security, access control, deductive

access

I. INTRODUCTION

With the rapid development of information technology,

more and more research projects utilize real data. As the

combination of private data with research provides more

opportunities, it also poses a new dilemma: the balance of

functionality and the concerns of privacy. Functionality

requires trying to make use of maximum amount of data

to support projects, while privacy requirements try to

protect such information from being leaked and therefore

protect privacy. In the United Kingdom, such kind of

protection is derived from and emphasized in the Human

Rights Act of 1998 [1] and the Data Protection Act of

1998 [2].

As an example, in the United Kingdom, the

responsibility of people‘s health care is mainly

undertaken by the National Health Service (NHS), which

is composed of a large number of hospital trusts and other

related organizations. In the NHS structure, each hospital

trust is an independent legal entity and is responsible for

the data it holds with respect to the principals of the

Caldicott Report [3], which include (but are by no means

limited to) the following basic rules:

(1) Justify the purpose(s). Every proposed use or

transfer of patient-identifiable information within

or from an organization should be clearly defined

and scrutinized, with continuing uses regularly

reviewed, by an appropriate guardian.

(2) Do not use patient-identifiable information unless

it is absolutely necessary. Patient-identifiable

information items should not be included unless it

is essential for the specific purpose(s) of that flow.

The need for patients to be identified should be

considered at each stage of satisfying the

purpose(s).

(3) Use the minimum necessary patient-identifiable

information. Where use of patient-identifiable

information is considered to be essential, the

inclusion of each individual item of information

should be considered and justified so that the

minimum amount of identifiable information is

transferred or accessible as is necessary for a

given function to be carried out.

(4) Access to patient-identifiable information should

be on a strict need-to-know basis. Only those

individuals who need access to patient-identifiable

information should have access to it, and they

should only have access to the information items

that they need to see. This may mean introducing

access controls or splitting information flows

where one information flow is used for several

purposes.

(5) Everyone with access to patient-identifiable

information should be aware of their

responsibilities. Action should be taken to ensure

that those persons who are handling patient-

identifiable information – both clinical and non-

clinical staff – are made fully aware of their

responsibilities and obligations to respect patient

confidentiality.

From the above constraints the contradiction between

functionality and privacy can be clearly seen. To provide

more functions, more data tend to be exposed to users,

and then the risk of compromising confidential

information inevitably rises. Meanwhile, to better protect

patients‘ personal and medical information, some

functions have to be reduced from systems [4,5,6].

A lot of research work has been conducted on this

issue and some valuable solutions have been proposed.

One of the earliest solution is Stonebraker‘s query

modification method [7,8,9]. Stonebraker‘s work used

old fashioned QUEL query language and only had limited

support to joined queries. Power et al. improved that by

allowing joining, grouping and aggregation, and by

implementing the method in SQL [10]. A formal

framework for reasoning about inferences of query

modification was also given by Power et al. in [11].

1024 JOURNAL OF COMPUTERS, VOL. 6, NO. 5, MAY 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jcp.6.5.1024-1031

Another category of solutions involves trackers. The

concept of tracker was thoroughly described in Denning

et al.‘s work [12,13,14]. Simpson‘s work combined both

query modification and tracker [15].

Some others‘ work is also closely related to this issue

although not directly intended to solve the specific

problem. Dobkin et al. were among the earliest

researchers working on secure database against malicious

users‘ inference [16, 17]. A precise model about how

attackers combined queries to infer sensitive information

from database was presented in [16], although no

complete counter measure was proposed. Sicherman et al.

proposed a model which answered queries without

revealing secrets by refusing to answer some certain

questions [18]. Their model was rather theoretical and

general, and ―lacked of finiteness conditions‖. The model

was quite secure but sometimes overkilling since it might

simply refuse the whole query when it detected anything

insecure, and it was difficult to implement. Toland et al.

Analyzed the problem [19,20,21] and a remarkable model

called dynamic disclosure monitor was described by them

in [19,20]. This model maintained a history database and

formed an index on it to store users‘ knowledge and

therefore to resist inference attacks. The model was

―sound and complete‖, but it ―unnecessarily examined the

entire history database in computing inferences‖ [19].

Byun proposed a secure anonymization technique

dealing with data anonymization for incremental database

[22], which was based on its ―static‖ version proposed by

Sweeney [23]. Sweeney‘s solution includes a formal

protection model named k-anonymity and a set of

accompanying policies for deployment; a release

provides k-anonymity protection if the information for

each person contained in the release cannot be

distinguished from at least k-1 individuals whose

information also appears in the release [23]. Both of

these two techniques involved some kind of information

loss or data distortion, which is not suitable to some

applications.

In this paper, a new semantic model is proposed to

capture relationships between attributes across multiple

database tables and to record users‘ knowledge about the

database. This way, if a malicious user tries to make

multiple related legal queries and to combine the returned

information together to figure out secret information, his

knowledge will be recorded each time he issues such a

query. Each time a new query is committed, the system

will try to figure out what information can be deduced

from this user‘s previous knowledge and the results of

current query. Whenever the current query‘s results

together with the user‘s previous knowledge compromise

privacy, the system will immediately detect that and then

reject the query.

II. BACKGROUND

A relational database storing sensitive information can

be attacked in different ways. Most attacks can be

resisted by using various technologies, as described in

literature. One special kind of attack involves deduction

and inference. Attackers do not complete an attack in a

single query; instead, they make several ―legal‖ queries

and then combine the results of them to deduce sensitive

information which should not be allowed to disclose to

them.

A. A Sample Database

Suppose we have a database storing students and

exams information. The database basically comprises two

tables, namely the STUDENT table and the EXAM table.

The STUDENT table describes students‘ personal

information. The schema of this table is as follows:

STUDENT(SID, Name, DoB, Subject,

 Gender, Country, Club)

In this schema, SID is the student‘s unique identifier

and acts as a primary key; Name is the student‘s name;

DoB is their date of birth; Subject is their subject area;

Gender has two possible value, M and F; Country is

where they are from; Club is the club they belong to.

Here is a sample populated table of STUDENT:

(S01, Alice, 07/09/1986, Math,

F, Greece, Bridge)

(S02, Bob, 23/02/1990, Physics,

M, Germany, Chess)

(S03, Cox, 17/10/1991, Psychology,

M, Spain, Rugby)

(T20, Diana, 01/07/1992, Chemistry,

F, Norway, Tennis)

(T30, Eva, 19/11/1985, Biology,

F, Spain, Cycling)

(T40, Fred, 08/09/1993, Chemistry,

M, Greece, Football)

The EXAM table describes students‘ exam

information. The schema of this table is as follows:

EXAM(SID, Date, Course, Result)

The names of fields are self-explanatory. Each student

may have multiple records in this table. The primary key

of this table is {SID, Date}. In this table we suppose each

student only take one exam in a single day (this

restriction can be easily loosened by replacing date with a

more precise time or using an extra identifier).

Here is a sample EXAM table:

(S01, 01/06/2009, Calculus, 78)

(T30, 02/06/2009, Molecular Biology, 85)

(S01, 03/06/2009, Statistics, 63)

(S03, 04/06/2009, Experimental Psychology, 90)

(T20, 04/06/2009, Organic Chemistry, 48)

(T30, 07/06/2009, Ecology, 62)

(S02, 07/06/2009, Mechanics, 75)

(T40, 07/06/2009, Inorganic Chemistry, 99)

(T30, 08/06/2009, Cell Biology, 87)

Suppose students‘ identities and their exam results are

sensitive and should not be disclosed to any unauthorized

users. The main concern on this database is that attackers

JOURNAL OF COMPUTERS, VOL. 6, NO. 5, MAY 2011 1025

© 2011 ACADEMY PUBLISHER

might have some way to deduce the identity of any

student and to deduce personal and exam information

about the victim. Such attacks compromise the victim‘s

privacy.

Some mechanisms have been employed to prevent

potential attackers from retrieving sensitive information

from the database by using plausibly legal queries.

Typically, the fields involved in a query will be analyzed

to see whether knowing them will lead to leakage of

sensitive information. If some secret information can be

known by the attacker after a query, the query should

either be rejected or modified in order to protect the

confidentiality of the data.

For example, the designers of the database may believe

that it is possible for attackers to deduce the identity of

some certain patient by knowing his subject and the club

he belongs to, as a club might have a small number of

members.

Therefore when an attacker tries to issue the following

SQL statement:

SELECT Subject, Club FROM STUDENT

WHERE DoB >= ‗01/02/1990‘

 AND DoB <= ‗28/02/1990‘;

This query statement should be intercepted and

rejected without getting any data returned before passed

on to be run by the database system so that the

information of subject and club will not appear in the

query result at the same time.

Some variants of such kind of mechanism will take the

fields involved in WHERE clause into account, giving

attackers less opportunities to compromise the

confidentiality of database.

However, this mechanism (and some other similar

mechanisms such as limiting the size of returned query

results) can work well only on individual queries. It is

difficult to prevent attackers from making several legal

queries and then joining these query results outside the

database (possibly with the help of ―trackers‖ [12,13] or

knowledge from external sources).

B. A Possible Attack

Attackers can bypass these mechanisms by issuing

multiple related legal queries and combining the returned

information to figure out the identity of some certain

student and then further deduce sensitive personal and

exam information about him.

For example, the attacker may know that someone

belongs to a certain club and know his subject. Then the

attacker could make a pair of separate queries with the

same condition.

First of all, he issues the following SQL query

statement, trying to retrieve the subject and other

information of the intended person (suppose that the users

are allowed to query subject, date of birth and gender

information at the same time; otherwise they can choose

other fields):

SELECT Subject, DoB, Gender FROM STUDENT

WHERE DoB >= ‗01/02/1990‘

 AND DoB <= ‗28/02/1990‘;

And then he tries to fetch the club information using

the following query statement:

SELECT Club, DoB, Gender FROM STUDENT

WHERE DoB >= ‗01/02/1990‘

 AND DoB <= ‗28/02/1990‘;

If the attacker does not know the date of birth of the

victim, these two queries will not contain the information

of the intended victim as he expected. The attacker will

be aware of this situation since the expected information

does not appear in the query result. The attacker can then

keep changing the period of date of birth in the query

until the expected information appears in the results of

both queries.

After that, the attacker should be able to join the results

of the queries and get the identity of the victim, with

which he can further query sensitive exam data of the

victim. To resist such kind of attacks, the relationship

between fields and the knowledge of attackers should be

studied in depth.

III. SEMANTIC METAMODEL

A. The Semantic Database Model

The semantic model of the database describes database

tables and the relationship of fields in each table. This

model helps us get better understanding of the semantic

structure of databases.

A database can consist of one or more tables. The set

of all table names in the database is defined as TABLE.

Note that TABLE only consists of tables containing user

data. In the later parts of this paper, a number of

administrative databases will be introduced into our

framework. These tables should not be included in

TABLE.

All the fields of tables in TABLE constitute the set

FIELD. Usually there are more than one table in a

database; different tables may have fields with same

names. As an instance, both STUDENT and EXAM

tables have a field called SID. To differentiate fields with

same names in different tables, we identify a field by

using the name of the table it belongs to as the prefix. For

example, the notations STUDENT.SID and EXAM.SID

can be used to differentiate two SID fields in two tables.

When there is no ambiguity such as all other fields in

these two tables, the prefix can be omitted for the sake of

brevity.

Tables of database can be viewed as sets of fields, each

of which comprises all fields of a table and is a subset of

FIELD. We define a function Fields mapping from names

of tables to their sets of fields:

Fields: TABLE → P(FIELD)

where P(FIELD) is the power set of FIELD.

A critical set of a table includes all fields within this

table which should not be disclosed under any

circumstances. If the values of any such a field are

disclosed, students‘ identifies could be compromised. We

define a function Critical mapping from names of tables

to the corresponding critical sets as follows:

1026 JOURNAL OF COMPUTERS, VOL. 6, NO. 5, MAY 2011

© 2011 ACADEMY PUBLISHER

Critical: TABLE → P(FIELD)

A conflict set includes the minimal sets of

anonymously conflicting fields. By ―anonymously

conflicting‖ we mean if the attacker knows the values of

such a set of fields, it is possible for him to infer the

identities of corresponding students. By ―minimal‖ we

mean any subset of an element of conflict set is not

anonymously conflicting. In the definition of conflict set,

we exclude all elements of the critical set from any

element of conflict set, since disclosure of any single

element of the critical set implies compromising students‘

identities. A function Conflict mapping from names of

tables to the corresponding conflict sets is defined as

follows:

Conflict: TABLE → P(P(FIELD))

A conflict set of a table can be empty.

An inference set indicates that a user can infer some

information (in one field) from other information (in

other fields). This is similar to the concept of functional

dependence. The difference between inference set and

functional dependence is that the latter is a ―total

dependence‖, that is to say that all values in one or more

columns functionally decide the values in other fields,

while our inference set means that such dependence could

be either partial or total. In the concept of partial

inference, some values in one or more fields decide

values in another field, while other values in the same

field or fields do not. We define a function Inference as

follows:

Inference: TABLE → P(P(FIELD) ⟹ FIELD)

where ⟹ could be either the symbol of total inference

(denoted as ⟹T) or partial inference (denoted as ⟹P).

In the case of partial inference, a separate table is

needed to describe what values of the field(s) can be used

to infer information of other fields for each combination

of table and user whose inference set contains partial

inferences.

B. Knowledge Records of Database

Although a number of mechanisms have been

employed to protect privacy of databases, it is still

possible for attackers to use some techniques such as

trackers to infer confidential information by issuing a

series of legal queries and then joining the query results

together outside the database. To prevent such kind of

attacks, we can try to record what has been known by the

user, and when he issues a new query, we can check the

records of this certain user and the results of the new

query to figure out whether he can infer confidential

information from them. If it is possible for the user to

compromise privacy of the database, we should reject the

new query.

The knowledge information of users is called

knowledge records. The knowledge records of each table

can be stored in knowledge tables. A knowledge table

contains all ―visible‖ fields as well as the primary key of

the table.

C. Making Decisions Based on Knowledge Records

The semantic model and knowledge records can be

combined to resist attacks described above. To achieve

this, we need to follow the following steps:

1. Analyze the fields of the query issued by the

user to see whether the query itself is acceptable

or not based on the critical set, conflict set and

inference set. If not, reject the query; otherwise

go to next step.

2. Conduct the intended query, based on which

produce the query result as well as the list of the

primary key values of the query results.

3. Based on the knowledge table produce the

knowledge view VO (old knowledge).

4. Combine the results produced in step 2 and VO to

see whether the new query will compromise the

identities of students. If so, the query should be

rejected; otherwise, return the query results to

the user and update the knowledge records

accordingly.

In the first step, as well as the fields appearing in the

SELECT clause of the SQL statement, the fields

appearing in the WHERE clause should also be counted

into the set of ―query fields‖. If any subset of the query

fields set totally decides other fields (using the total

inferences in the inference set to decide), these decided

fields should also be included into the query fields set.

This process should be repeated until the query fields set

does not expand any more. If any element of the critical

set is also an element of the expanded query fields set, or

any element of the conflict set is subset of the expanded

query fields set, this query should be identified as

unacceptable.

In the last step, both total and partial inference should

be considered. There are five different cases in the

combination:

1. A row appears in VO but not correspondingly

appears in the new query. This means that the

user will not be able to get extra information on

this student. The privacy of this row will not be

compromised, and we do not have to do

anything on this.

2. A row is returned within the query result, but

does not appear in VO. This is also safe, but we

need to add the knowledge information into the

knowledge table.

3. A row appears in both VO and the query result,

and the combination of them will not

compromise the privacy of the corresponding

student. In other words, the user cannot get

sensitive information on this row after issuing

this query. In this case, the knowledge table

should be updated.

JOURNAL OF COMPUTERS, VOL. 6, NO. 5, MAY 2011 1027

© 2011 ACADEMY PUBLISHER

4. A row appears in both VO and the query result,

and the combination of them may or may not

compromise the privacy of the corresponding

student, depending on the values of the known

fields. This case concerns partial inferences. The

table recording partial inferences should be

looked up to decide whether this query is safe or

not.

5. A row appears in both VO and the query result,

and the combination of them will compromise

the privacy of the corresponding student. The

query should be rejected, and the knowledge

table should be left unchanged.

After these five steps, the system finishes its job for the

current query and is ready for the next one. The returned

query results (if any) will not compromise the

confidentiality of the database.

IV. PROTECTING THE SAMPLE DATABASE: AN EXAMPLE

A. The Semantic Model

As stated above, the semantic model of the database

describes database tables and the relationship of fields in

each table.

The TABLE set of the above sample database is

TABLE = {STUDENT, EXAM}

The FIELD set of the database is

FIELD = {STUDENT.SID, Name, DoB, Subject,

Gender, Country, Club, EXAM.SID, Date,

Course, Result}

Accordingly, the definition of the function Fields can

be:

Fields(STUDENT) = {STUDENT.SID, Name, DoB,

Subject, Gender, Country, Club}

Fields(EXAM) = {EXAM.SID, Date, Course, Result}

Suppose in STUDENT table the field Name should

never be disclosed. So we have

Critical(STUDENT) = {Name}

The critical set of EXAM is empty.

A possible conflict set could be

Conflict(STUDENT) = {{Subject, Club}}

A conflict set of a table can be empty set, as the case of

EXAM table.

As an instance of partial inference, some certain

subjects only have students from a certain country,

probably for a certain gender. For example, suppose all

male students in politics are from Canada, all female

students in math are from Greece, and all students in

economics are from China. For all other subject and

gender information, we cannot infer any information of

country. For example it is impossible to infer a student‘s

country of origin by just knowing that he is male student

in chemistry. So we have

Inference(STUDENT)=

{{Subject,Gender}⟹PCountry}

In this example, a table is attached to this partial

inference describing what kind of information of country

of origin can be derived from subject and gender

information.

B. The Knowledge Records

A sample knowledge table of STUDENT looks like

this:

(S01, NULL, Math, NULL, NULL, NULL)

(S02, NULL, NULL, M, NULL, Chess)

(S03, 17/10/1991, NULL, NULL, Spain, NULL)

(T20, NULL, NULL, F, NULL, Tennis)

(T30, 19/11/1985, NULL, NULL, NULL, Cycling)

(T40, 08/09/1993, NULL, M, NULL, NULL)

Note that the field Name does not appear the table as

Name is in the critical set and should not be disclosed

anyway.

The reason of storing the real values of known

information in knowledge tables is that partial inferences

are based on values, unlike functional dependence.

However, for those fields which are not involved in

partial inferences, we do not have to store the values for

them. For example, student T30‘s club information has

been known, therefore according to the conflict set, the

information of country should not be disclosed, whatever

the values these fields have. In such a case, recording the

real values of Club is unnecessary. Also, since the fields

DoB and Club are not involved in the value-based

inference, the real values of them could be left off the

knowledge table and we only need to record whether or

not they have been known. Therefore the knowledge table

can be simplified as follows:

(S01, No, Math, NULL, NULL, No)

(S02, No, NULL, M, NULL, Yes)

(S03, Yes, NULL, NULL, Spain, No)

(T20, No, NULL, F, NULL, Yes)

(T30, Yes, NULL, NULL, NULL, yes)

(T40, Yes, NULL, M, NULL, No)

C. Making Decisions

With the above semantic metamodel and the

knowledge table, we now can protect our sample database

from malicious attacks.

Suppose the user‘s current knowledge table is as

follows:

(S01, No, Math, NULL, NULL, No)

(S02, No, NULL, M, NULL, Yes)

(S03, Yes, NULL, NULL, Spain, No)

(T30, Yes, NULL, F, NULL, No)

This forms the user‘s VO.

Suppose the user issues the following query on the

STUDENT table:

1028 JOURNAL OF COMPUTERS, VOL. 6, NO. 5, MAY 2011

© 2011 ACADEMY PUBLISHER

SELECT Subject, DoB, Gender FROM STUDENT

WHERE Club = ‗Rugby‘;

The set of query fields of this query is

{Subject, DoB, Gender, Club}

We call this set F.

Obviously the element of the conflict set of the

STUDENT table {Subject, Club} is subset of F, therefore

this query is not acceptable.

Suppose the user then issues another query

SELECT DoB, Gender, Club FROM STUDENT

WHERE DoB >= ‗01/01/1986‘

 AND DoB <= ‗31/12/1992‘;

This query is acceptable according to the above

criteria. Then we conduct the intended query and produce

the query results together with the primary key value of

each row of the query results. In this example, four rows

are returned, whose primary key values are S01, S02, S03

and T20:

(S01, 07/09/1986, F, Bridge)

(S02, 23/02/1990, M, Chess)

(S03, 17/10/1991, M, Rugby)

(T20, 01/07/1992, F, Tennis)

Now we can combine VO with the new knowledge

produced by the query to see whether this query

compromises the security of the database or not. To do

so, we need to compare each row of the query result with

the corresponding row in VO. We can see five different

cases in the comparisons:

1. The row of the student T30 appears in VO but not

in the new query. The privacy of T30 will not be

compromised, and we do not have to do

anything.

2. The record of the T20 is returned within the

query result, but it does not appear in VO. It is

also safe, but we need to add the following row

into the knowledge table:

(T20, Yes, NULL, F, NULL, Yes).

3. The row of S02 appears in both VO and the query

result, and the combination of them will not

compromise the privacy of this student.

Therefore it is also safe, but we need to update

the knowledge status of the field DoB in the

knowledge table.

4. The row of S01 appears in both VO and the query

result, so we need to investigate the values of the

fields known by the user. Before the query the

user knows that student S01 is studying math.

By issuing the query, the user will know S01‘s

club and gender, which is female. So the set of

fields the user will know about S01 after the

query would be

{DoB, Subject, Gender, Club}

According to the inference set on STUDENT

table, the user might be able to infer S01‘s

country by knowing her subject and gender. In

this example, we can conclude that since the user

knows S01 is a female student in math, he would

be able to infer that S01‘s country is Greece.

Therefore the user will know the following set of

fields about S01:

{DoB, Subject, Gender, Country, Club}

Since an element of the conflict set on

STUDENT table is a subset of the table of

known fields, this query will compromise S01‘s

identity and should be rejected, and all previous

changes to the knowledge table should be rolled

back. On the other hand, if S01 is studying

politics and all other information remains same,

the query will be safe, since by knowing S01 is a

female student studying politics, the user cannot

infer S01‘s country of origin. Therefore in this

revised case the query is acceptable, and we

need to update the row of S01 in the knowledge

table as follows:

(S01, Yes, Politics, F, No, Yes).

5. The row of S03 appears in both VO and the query

result, and the combination of them discloses

S03‘s identity. Before the query the user knows

S03‘s DoB and Country, and by the query he

will know S03‘s DoB, Gender and Club

information. In combination, the user will know

the following set of fields about the record of

S03:

{DoB, Subject, Gender, Club}

which contains an element of the conflict set on

STUDENT table and compromises S03‘s

identity. So this query should be rejected, and all

changes to the knowledge table should be rolled

back.

This example clearly shows that the new metamodel

successfully resists attacks combining multiple legal

query results.

V. CONCLUSION AND FUTURE WORK

In this paper, a new semantic metamodel has been

proposed, enabling databases to capture relationships

between database attributes and to record user‘s

knowledge about databases. As a result, it could help

databases resist attacks aiming to get sensitive

information by combining results returned from multiple

queries.

In the metamodel, several sets have been defined to

capture the semantics of database attributes. The sets

include tables set, fields set, critical set, conflict set and

inference set. Some functions have also been defined

upon these sets. To record user‘s previous knowledge

JOURNAL OF COMPUTERS, VOL. 6, NO. 5, MAY 2011 1029

© 2011 ACADEMY PUBLISHER

about the database, it has been suggested to maintain

user‘s knowledge records. A standard method has also

been described in this paper to help to decide whether to

accept or decline queries and to update user‘s knowledge

records. In this way, when an attacker tries to issue a

query whose results could compromise the privacy of the

database possibly by combining the results with his

previous knowledge, it will be detected immediately, and

the database will reject the latest query to protect

students‘ privacy.

The metalmodel considers the previous knowledge of

the user, while most methods described in Section I do

not, and that is the reason why attacks concerning

multiple queries can be effectively resisted by using this

new model. Unlike the D
2
Mon model, this new model

store the knowledge history in a very compact way,

therefore previous knowledge searching will be much

more efficient.

The new metamodel only considers a single database

on a single server. The situation of federated databases

will be the topic of next step of research.

ACKNOWLEDGMENT

The author thanks Andrew Simpson of Oxford

University Computing Laboratory (OUCL) for his

valuable advice and feedback.

REFERENCES

[1] Human Rights Act 1998. The Stationery Office Limited,
London, 1998.

[2] Data Protection Act 1998. The Stationery Office Limited,
London, 1998.

[3] The Caldicott Report.

http://www.publications.doh.gov.uk/ipu/confiden,

December, 1997.

[4] A. Simpson, D. Power, M. Slaymaker, E. Politou, ―GIMI:

Generic infrastructure for medical informatics‖,

Proceedings of the 18th IEEE Symposium on Computer-

Based Medical Systems, Dublin, Ireland, pp. 564-566,
2005.

[5] C. Tromans, M. Brady, D. Pawer, M. Slaymaker, D.

Russell and A. Simpson, ―The application of a service-

oriented infrastructure to support medical research in

mammography‖, MICCAI-Grid Workshop – Olabarriaga,

Lingrand and Montagnat (Eds.), pp. 43-51, 6 September
2008, New York.

[6] A. Simpson, D. Power, D. Russell, M. Slaymaker, V.

Bailey, C. Tromans, M. Brady and L. Tarassenko, ―GIMI:

The past, the present and the future‖, Philosophy

Transactions of The Royal Society (A), (2010)368, pp.
3891-3905, 2010.

[7] M. Stonebraker and E. Wong, ―Access control in a

relational data base management system by query

modification‖, ACM/CSC-ER Proceedings of the 1974
annual Conference, pp. 180-186, 1974.

[8] M. Stonebraker, ―A functional view of data independence‖,

International Conference on Management of Data,

Proceedings of the 1974 ACM SIGFIDET workshop on

Data description, access and control, pp. 63-81, Ann
Arbor, Michigan, US, 1974.

[9] M. Stonebraker, ―Implementation of integrity constraints

and views by query modification‖, Proceedings of the

1975 ACM SIGMOD International Conference on

Management of Data, San Jose, California, USA, pp. 65-
78, 1975.

[10] D. Power, M. Slaymaker, E. Politou, and A. Simpson,

―Protecting sensitive patient data via query modification‖,

Proceedings of the 2005 ACM Symposium on Applied

Computing, Santa Fe, New Mexico, USA, pp. 224-230,
2005.

[11] D. Power, M. Slaymaker, and A. Simpson, ―On

deducibility and anonymization in medical databases‖,

Secure Data Management – SDM2005, volume 3647 of

Lecture Notes in Computer Science, pp. 170-184,

September 2005.

[12] D. E. Denning, P. J. Denning, and M. D. Schwartz, ―The

tracker: a threat to statistical database security‖, ACM

Transactions on Database Systems, volume 4, issue 1, pp.
76-96, 1979.

[13] D. E. Denning and J. Schlörer, ―A fast procedure for

finding a tracker in a statistical database‖, ACM

Transaction on Database Systems, Vol. 5, No. 1, pp. 88-
102, March 1980.

[14] D. E. Denning, ―Secure statistical databases with random

sample queries‖, ACM Transactions on Database Systems,
Vol. 5, No. 3, pp. 291-315, September 1980.

[15] A. Simpson, D. Power, and M. Slaymaker, ―On tracker

attacks in health grids‖, Proceedings of the 2006 ACM

Symposium on Applied Computing, Dijon, France, pp. 209-
216, 2006.

[16] D. Dobkin, A. K. Jones, and R. J. Lipton, ―Secure

databases: protection against user influence‖, ACM

Transactions on Database Systems, volume 4, issue 1, pp.
97-106, 1979.

[17] R. Demillo, D. Dobkin, R. Lipton, "Even data bases that lie

can be compromised", IEEE Transactions Software
Engineering. SE-4, 1, pp. 73-75, 1978.

[18] G. L. Sicherman, W. de Jonge, and R. P. van de Riet,

―Answering queries without revealing secrets‖, ACM

Transactions on Database Systems, volume 4, issue 1, pp.
41-59, 1983.

[19] T. S. Toland, C. Farkas, and C. M. Eastman, ―Dynamic

disclosure monitor (D2Mon): an improved query

processing solution‖, Secure Data Management –

SDM2005, volume 3647 of Lecture Notes in Computer
Science, pp. 124-142, September 2005.

[20] C. Farkas, T. S. Toland, and C. M. Eastman, ―The

inference problem and updates in relational databases‖,

Proceedings of the Fifteenth Annul Working Conference on

Database and Application Security, Niagara, Ontario,

Canada, pp. 181-194, 2001.

[21] A. Brodsky, C. Farkas and S. Jajodia, ―Secure Databases:

Constraints, Inference Channels and Monitoring

Disclosures,‖ IEEE Transactions on Knowledge and Data
Engineering, 12(6): 900-919, 2000.

[22] J.-W. Byun, Y. Sohn, E. Bertino, and N. Li, ―Secure

anonymization for incremental datasets‖, Secure Data

Management – SDM2006, volume 4165 of Lecture Notes

in Computer Science, pp48-63, 2006.

[23] L. Sweeney, ―k-anonymity: a model for protecting

privacy‖, International Journal of Uncertainty, Fuzziness

and Knowledge-Based Systems, volume 10, issue 5, pp.
557-570, 2002.

1030 JOURNAL OF COMPUTERS, VOL. 6, NO. 5, MAY 2011

© 2011 ACADEMY PUBLISHER

Xiaoqi Ma graduated from Nanjing University of Science and

Technology, China, with a first class BSc degree in Computer

Science in 1997. He received his MSc degree in Computer

Science from the Institute of Software, Chinese Academy of

Sciences in 2003. His PhD degree, also in Computer Science,

was obtained from the University of Reading, UK, in 2007.

He used to work in Beijing Red Flag Software Co., Ltd., as a

research associate when he did his Msc research. He served as

senior software engineer in Dwight Cavendish System (UK) for

a short period in 2003. He worked in Oxford University

Computing Laboratory as a Research Officer from October

2007 to February 2009. He has been a Lecturer/Senior Lecturer

in Computer Science in School of Science and Technology,

Nottingham Trent University, Nottingham, UK, since March

2009.

JOURNAL OF COMPUTERS, VOL. 6, NO. 5, MAY 2011 1031

© 2011 ACADEMY PUBLISHER

