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Abstract—The Discrete Element Method (DEM) is widely 
used in the simulation of a particle system. The viscoelastic 
contact models are the most common ones in the DEM 
simulation. However, these models stills have a few 
unrealistic behaviors, which will influence the 
reasonableness and accuracy of the simulation results. A 
general form of damping coefficient is proposed through 
dimensional analysis, and the condition is found so that the 
unrealistic behaviors can be solved. Regardless of 
adhesiveness and plasticity, an improved model based on 
Hertzian theory is proposed, in which the approximated 
expression relating the damping constant to the restitution 
coefficient is given. The impact of a single ball to a wall is 
simulated by using three different models, of which the 
results of contact force are presented and discussed.  
 
Index Terms—Contact model, contact parameters, damping 
coefficient, discrete element method. 
 

I.  INTRODUCTION 

The Discrete Element Method (DEM), proven to be a 
reliable and promising approach for investigating 
granular systems, has been widely used in many areas, for 
example originally in geotechnical mechanics by Cundall 
and Strack [1], later in pneumatic transport technology by 
Tsuji et al. [2], in fluidized beds by Kawaguchi et al. [3], 
in tumbling ball mills by Mishra and Rajamani [4], and 

Cleary and Hoyer [5]. 
The basic assumption in DEM is that during a small 

time step, the disturbances cannot propagate from any 
particle to the others except its immediate neighbors. So 
the actions at any particle at any time are limited to the 
several neighboring particles. The process of DEM can be 
divided into two parts: (a) using a contact model to 
calculate the contact forces acting on any contact point; 
(b) applying Newton’s second law of motion to solve the 
behavior of particles by any resultant force. 

The contact model in DEM plays a critical role in 
simulating the behavior of elements in the particle 
assemblies. If it can not well characterize the real contact 
between particles, the results of simulation will not be 
reasonable and satisfying. It is important to study the 
basic contact model and the correlative parameters, such 
as stiffness, damping, etc. Currently, there are some 
contact models that have been introduced in many 
literatures involving in DEM or its applications on 
analyzing granular assemblies. The linear spring-dashpot 
model, first proposed by Cundall and Strack [1] to 
simulate dry granolas, is the most commonly used one in 
the actual applications of DEM because of its simplicity 
and efficiency. In that model, a spring is employed to 
model the elastic part and a dashpot is adopted to 
describe the dissipative mechanism, as the contact is 
considered to be viscoelastic in the both normal and 
tangential directions, regardless of plastic deformation 
and adhesiveness, etc. Once the macro-slip of the contact 
surface occurs, the slider works instead to describe the 
resulting energy dissipation, i.e. Coulomb friction 
replaces the spring-dashpot in tangential direction. 

Some other investigators in the view of contact 
mechanics, introduced a few more accurate and 
sophisticated contact relations [6], [7]. For example, 
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Hertzian contact theory is used to provide the elastic 
force in the normal direction, which is called normal 
force-displacement model based on Hertzian theory. As 
for the tangential direction, the Mindlin solution or its 
simplification is applied to solve the tangential impact 
force, which is the non-linear tangential force-
displacement model considering the case of no-slip or 
micro-slip.  

However, there are still some comprehensive problems 
for those commonly used linear and non-linear models. 
Zhang and Whiten [8] examined the reasonableness and 
accuracy of linear and non-linear DEM models, and 
found that before the particles separate the forces change 
direction. Thus the force is pulling the two particles 
towards each other instead of making them apart before 
they separate, which is inconsistent with the actual 
contact process of dry particles. So it is necessary to find 
a better form of the damping term to make the impacting 
force and the displacement return to zero at the same time 
in a contact period. 

In this paper, a new non-linear damping is proposed to 
keep the impacting force in the contact model from 
changing direction. And the approximated expression, 
relating the damping ratio to restitution coefficient in the 
model applying a new damping, is derived by curve 
fitting method. 

II. NORMAL CONTACT 

The widely used normal contact model is composed of 
two parts: elastic force and energy dissipation 
mechanism. In the schematic of the normal contact 
model, a linear or non-linear spring is adopted to provide 
the elastic force e

nf


 and a damping term provides the 
dissipative contribution to the normal force. 

A. Linear Spring and Damping Models 
The linear model, given by Cundall and Strack [1], is 

the most widely used one in the DEM. When particle i 
has a central impact with particle j, their normal force 
acting at the contact point consists of the elastic repulsive 
force e

nf


 and the damping force d
nf


. The former can be 
given by a linear spring with a constant stiffness kn, while 
the latter is provided by a damper dependant on the 
velocity with a constant damping coefficient cn. Then the 
normal contact force acting on particle i, is given by the 
sum of the two component forces: 

 e d
n n n n n n nf f f k cδ δ= + = − −
     (1) 

where kn is the spring stiffness or elastic constant, cn is 
the damping coefficient,  δn and nδ  denote the relative 
displacement and velocity of particle i and j, respectively. 

The damping coefficient cn can be defined as follows: 

 2c
n n nc c m kα α ∗= ⋅ = ⋅  (2) 

 where α is the so-called damping ratio without 
dimension, cn

c is the critical damping coefficient, and m∗ 

is the equivalent mass of particle i and j, given by: 

( ) 1 1 1
i jm m m

−∗ − −= + .  
That model has been specially analyzed by Zhang and 

Whiten. Their article provided the corresponding analytic 
solutions for this model when the dimensionless damping 
ratio α is taken different values, i.e. for the cases α < 1, α 
= 1 and α > 1. When α < 1, the explicit expression 
related to the damping ratio α and the restitution 
coefficient en can be derived as follows: 

 ( ) ( )2 2

1ln .   
lnn

n

e
e

α
π

= −
+

 (3) 

As the constant restitution coefficient is defined, the 
damping factor cn can be determined via (2) and (3). 

Di Maio and Di Renzo [9] gave the equivalent stiffness 
kn derived from the actual force-displacement relation, 
and the following expression for kn can be obtained by 
using a common ratio of estimated maximum impact 
force to displacement: 

 
1 5

2 4 2
0

320
81n nk m E Rδ∗ ∗ ∗⎛ ⎞= ⎜ ⎟

⎝ ⎠
  (4) 

where E∗ and R∗ are the equivalent Young’s modulus 
and radius of particle i and j, respectively. 

 

B.  Non-Linear Spring and Damping Models 
The normal elastic constant based on Hertz contact 

theory is 

 4 .
3nk E R∗ ∗=  (5) 

Tsuji et al. introduced a non-linear damping term, 
which is a function of displacement δn and velocity nδ . 
Zhang and Whiten noted that Tsuji’s non-linear contact 
model is more realistic and closer to the experimental 
results than the linear model. The damping coefficient 
was found heuristically and defined as: 

 1 4
1 n nm kη α δ∗=  (6) 

where α1 is a constant depending only on the coefficient 
of restitution en. 

Then the damping force and the normal contact force 
in the non-linear model are given 

by: 1 4
1

d
n n n n nf m kηδ α δ δ∗= − = −
   , and 

3 2 3 2 1 4
1

4 .
3n n n n n n n nf k E R m kδ ηδ δ α δ δ∗ ∗ ∗== − − = − −

    

There are analytic solutions with respect to the 
damping constant α1 and the restitution coefficient en in 
the governing equation of the non-linear model, and the 
explicit expression is: 

 ( ) ( )1 2 2

5ln .
lnn

n

e
e

α
π

= −
+

. (7) 
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III. THE NEW NON-LINEAR DAMPING 
COEFFICIENT 

Hunt and Crossley [10] proposed a damping term 
( ) ( )p qt tλδ δ , where the exponent q equals to 1 

commonly, and the coefficient λ and the exponent p are 
unidentified. Then the damping force is .d p

n n nf λδ δ=
  The 

non-linear elastic force-displacement relationship is 
defined as: w

e w
n n nf k δ=


, where w>0, and the dimension 
of the so-called elastic constant knw is N/mw. 

Putting the elastic force and the damping force 
together, we obtain a new non-linear contact model. The 
governing equation of motion using this model is as 
follows: 

 ( ) ( ) ( ) ( ) 0p w
n n n nw nm t t t k tδ λδ δ δ∗ + + =  . (8) 

where λ is the non-linear damping coefficient. 
By a dimensional analysis, a new term of the damping 

coefficient λ is proposed as: 

( )( ) ( )1 12
2 0 0

p w

n nw nm k mλ α δ δ
+ +∗ ∗=   , where α2 is a 

dimensionless damping constant depending only on the 
restitution coefficient en, 0nδ represents the estimated 
initial impact velocity in the normal direction. 

To make each term non-dimensional, we replace 
displacement δn and time t in (8) with: 

( )2 52
0

ˆ
n n nw nm kδ δ δ∗=  and ( )2 52

0 0
ˆ.n nw nt m k tδ δ∗⎡ ⎤= ⎢ ⎥⎣ ⎦

   

Equation (8) can be rewritten as: 

 ( ) ( ) ( ) ( )2
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ 0.

p w

n n n nt t t tδ α δ δ δ+ + =  . (9) 

The initial conditions for the equation is set 

to ( ) ˆ 0
ˆ ˆ 0n ttδ = = , ( ) ( )ˆ 0 00

ˆ ˆ 1.n n t ntt tδ δ δ== = =    
Heuristically, a case is found: p = (w-1) /2, so that there 
are analytic solutions for (9). 

The relational expression between the restitution 
coefficient en and the damping constant α2 can be derived 
by setting the normalized displacement to zero, which is: 

 ( ) ( )
( )2 2 2

2 1
ln .

lnn
n

w
e

e
α

π
+

= −
+

. (10) 

It is observed that (3) and (7) are the specific cases of 
(10), in which w = 1 and w = 3/2, respectively. Though, 
there is a little difference for (3), due to the damping 
constant is double of the damping ratio as w selects the 
value of 1. 

The purpose of our study is to find a realistic model in 
which the contact force does not change its direction until 
the end of collision. The normalized damping 
force ˆ d

nf and elastic force ˆ e
nf  constitute the total contact 

force, and can be respectively written as follows: 

( ) ( )ˆ ˆ ˆˆ ˆpd
n n nf t tαδ δ=   and ( )ˆ ˆ ˆ .

we
n nf tδ=  

In a short time period before the two particles separate, 
the value of the displacement is very small and tends to 
zero, meanwhile the sign of the velocity is opposite to the 
displacement, so that the damping force component is 
mainly depended on the displacement, and acting as 
resisting force for separation. Therefore, only if the 
factors p and w satisfy the case p ≥ w, the absolute value 
of damping force will be smaller than that of the elastic 
force, and thus the total contact force will be still acting 
as repulsive force during collision. 

While p = (w−1)/2, it contradicts the condition p < w, 
which means that the model has no such analytic 
solutions. Instead, we can get their numerical solutions 
via the computing power. 

Hunt and Crossley noted that when the velocity of 
initial collision is small, the exponent p in the damping 
coefficient may be selected to a value identical with the 
non-linear exponent in the elastic force. In the light of 
Hertzian contact theory, the nonlinear elastic factor w 
should be selected as 3/2.The exponent of the damping 
coefficient p is chosen as 3/2, which is equal to the elastic 
factor w. The corresponding damping coefficient λ 
becomes 

 1 0nw nkλ α δ=  . (11) 

Putting the value of p (9), we obtain: 

 ( ) ( ) ( ) ( )3 2 3 2

2
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ 0.n n n nt t t tδ α δ δ δ+ + =  . (12) 

According to the initial conditions, we make numerical 
differentiation calculations with respect to (12), and get 
the relationship between the damping constant α2 and the 
restitution coefficient en, as shown in Fig. 1. 

 
The approximate relation expression between the 

parameter α2 and the restitution coefficient en by 
numerical fitting is expressed by: 

 ( ) ( )2 ln
lnn

n

be
c e

α = −
+

. (13) 

where b and c are constants, and b = 6.66264, c = 
3.85238, respectively; and the domain of variables in the 
above equation are α2 ∈ [0,20], or en ∈ [0.05,1.0]. 
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Figure 1.  The relationship between the damping constant α2 and the 
restitution coefficient en 
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In Fig. 1, the fitting dash curve corresponding to (13) 
is close to the solid curve corresponding to the numerical 
solution. However, to make sure the value calculated by 
(13) is sufficiently precise, the constant α2 should be 
selected as small as possible. 

When the coefficient of restitution en is given, the 
value of α2 can be determined from Fig. 1, and then the 
damping coefficient λ is obtained by (11). 

IV. NUMERICAL SIMULATION 

The normal impact between a single ball and a plane 
wall with an initial velocity of 6.331m/s is considered, 
which will be simulated by using the linear model, the 
nonlinear model given by Tsuji and our nonlinear model 
based on Hertzian theory, respectively. According to the 
above discussion, the basic parameters in the contact 
models are determined and displayed in Table I, with a 
uniform estimated overlap 1/f = 0.5%. 

 

 
The governing equations of the ball’s motion can be 

numerically solved by directly using the parameters in 
Table I. The results of the numerical simulation are 
presented in Fig. 2, which shows the variations of the 
normal impact force with displacement. The area of the 
closed curves in Fig. 2, corresponding to the three contact 
models respectively, is the dissipative energy in the 
impact. Unlike the other two cases, for our non-linear 
models using the new damping, the area consisted of the 
loading and unloading curves decreases sharply as the 
displacement δn approaches to zero. It means that the 
energy dissipation is mainly confined in the area with 
medium and large displacements. The damping term in 
this model is a function of displacement δn and velocity. 

 

 

The exponent 3/2 of δn makes the dissipation 
contributed by the damping emphasis on the displacement 
δn, instead of the velocity as in the linear case. 

It is observed that the maximum displacements δn, max 
in the three curves are equal, because of the uniform 
preestimated overlap used in the derivation of the 
equivalent parameters. In the non-linear force-
displacement laws based on Hertzian theory, the elastic 
force is proportion to the 3/2 power of the displacement, 
instead of the linear proportional relation in the linear 
case. As a result, the maximum contact force (about 1600 
N) of the linear model is smaller than the two maximum 
forces (both about 2000 N) corresponding to the non-
linear ones. 

It is noted that in the area near to the displacement δn = 
0, the direction of the contact force in the linear as well as 
the non-linear (Tsuji) cases both changes, which is 
unrealistic. Moreover, for the linear case, the force is not 
zero at both the start and end points of the collision. 
Nevertheless, the non-linear model using the damping 
term introduced in our study has no those problems and 
looks more realistic, in which the contact force is zero 
only as the displacement equals zero, without any 
unexpected negative force occurring closed to the end of 
the collision. 

V. CONCLUSION 

In a discrete element simulation, the reasonableness 
and accuracy of contact models used to solve impact 
forces affect the computed results. In this paper, a general 
damping is proposed by means of the dimensional 
analysis, in order to constitute a new viscoelastic DEM 
contact model without the unrealistic behavior that an 
unexpected attractive force, instead of the repulsive force, 
exists towards the end of collision. A general expression 
for the damping constant α2 and the restitution coefficient 
en is derived, which makes the results of the new 
viscoelastic model are more reasonable. 

For the case of p = w = 3/2, the relationship between 
the damping constant α2 and the restitution coefficient en 
is given by numerical calculations. An impact simulation 
of a single ball is conducted by using three approaches. 
The simulation results of three approaches show that our 
non-linear approach corresponding to p = w = 3/2 is more 
realistic than the other two cases, while the non-linear 
approach by Tsuji looks better than the linear approach. 

We have to note that all the analysis above is based on 
theoretic study. For further research in the accuracy of the 
damping term in the contact mode in the DEM, more 
experimental analysis is needed. 
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TABLE I 
KEY PARAMETERS IN THE CONTACT MODELS 

Parameters Linear model Tsuji 
model  

Our 
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