

Study and Implementation of Spacecraft
Integration Test Platform Based on Component

Technology

Xianjun Li
State Key Laboratory of Software Development Environment, Beihang University, Beijing, China

Email: lixianjun@nlsde.buaa.edu.cn

Gang Ye, Zhongwen Li, Shilong Ma
State Key Laboratory of Software Development Environment, Beihang University, Beijing, China

Email: {yegang,licw,slma}@nlsde.buaa.edu.cn

Abstract—Along with the information construction deeply
developed in astronautic field, more and more spacecraft
test and experiment systems are constructed. On the one
hand, they show their function very well, on the other hand,
they bring “information island”, which brings more
difficulties for the information application integration in
aerospace field. On the basis of analyzing this situation, with
the component technology, this paper brings out the
Spacecraft Integration Test Platform Based on Component
(SITPOC), whose aim is to satisfy the new requirements of
spacecraft integration test by encapsulating legacy resource
and developing new application system in component
technology, and describes the function of every layer.
Finally, through constructing the integration test database
system, the expansibility and the reliability for the
integration of the information system in space field are
pointed out.

Index Terms—Integration Test Platform (ITP), Component,
Connector, Application Integration

I. INTRODUCTION
In order to improve the work-efficiency and achieve a

better management of the test data, each department in
aerospace field has put forward their information
requirements which adapt to their practical situation, and
has constructed these special application systems[1][2].

Although these systems focus on different areas, they
have some interactions within each other in function
aspect, which causes data inconsistencies,
information-sharing difficulties and more garbage
information. Meanwhile, it makes it very difficult to
implement cross system application. During the process of
developing the spacecraft integration test system, this
problem is fully aware.

These information systems in aerospace field are
basically about testing data management and application,
the systems are implemented in a distributed network
environment, and the system function basically includes
data collecting, data storing, data analyzing and data
reporting. And the most important of all is that the data

acquisition and processing logical are also great
similarities.

Considering these features of information system in
aerospace field，this paper introduces a component model
technology to encapsulate each logical computing unit as
a component, to construct a network system with a set of
components and connectors coordinating their functions
according to the business model, this technology focus on
how to effectively reduce the negative impact of the
"information island" in space field, how to build a flexible
system architecture, and makes a preparation for the
information and digitization in aerospace field.

This paper is organized as follows. Section 2 gives a
detailed domain-analysis on spacecraft integration test
while section 3 introduces some related technologies. And
section 4 brings forward the spacecraft integration test
platform which is based on component technology while
section 5 defines the composition of the platform.
Furthermore, section 6 presents an example of integration
test database system to demonstrate the applicability of
this platform. Finally, section 7 draws a conclusion for
this paper.

II. DOMAIN-ANALYSIS
Spacecraft Integrate test is aimed to test the electrical

equipments on spacecrafts and get their parameters of
functions and behaviors. In the process of spacecraft
integration test, there are some other tests involved.
Testers will check the behavior of spacecrafts in various
environments by analyzing test data, such as the data of
dynamics testing systems and the data of thermodynamics
testing systems. However, the distributed professional
systems have some data in common, such as parameter
definition information and users’ information. All these
common data should be updated manually when it is
needed. Therefore, the inconsistence of crossed systems
would be caused easily. The whole structure of the
integration test is pictured as follows[2].

JOURNAL OF COMPUTERS, VOL. 6, NO. 5, MAY 2011 963

© 2011 ACADEMY PUBLISHER
doi:10.4304/jcp.6.5.963-968

Figure 1. The structure of the integration test

From the figure above, it can be seen that integration

test consists of main test processor (MTP), integrated test
database system, automatic read-check and failure
analysis system and many other existed systems. These
systems, which are deployed in distributional places,
cooperate with each other to accomplish the complete
integration test process, and provide functions including
test data storage, data query and analysis, remote
monitoring, automatic error check and failure diagnosis.

In order to normalize the process of spacecraft test and
accomplish the unified management on the test data, there
should be an application system integrated platform. This
platform not only supports the current distributed
application, but also meets the requirements of extension
and stability.

III. RELATED TECHNOLOGIES
Focus on solving the problems of isomerism between

different application systems, Corba, J2EE and
COM/DCOM provide great middle-ware environment
platform for distributed computing. However, these
technologies and criterions do not give a unified definition
and management on data resources. Therefore, there is no
good to the far-reaching requirements of enterprise
information process. Moreover, these technologies and
criterions are general solutions to various fields so the
huge organization architecture and communication
mechanism can not be used to specific requirements of
spacecraft test system.

A great many of research have focusing on the
definition of component and architecture[4][5], each of them
are too comprehensive and are not exactly compatible to
the requirement in spacecraft test system. Other study and
applications focused on special field such as C2
architecture which reorganized the components in a
layered model to resolve GUI designing issues[6],
definitions of components in astronautic field should also
be refined to fit to be configurable.

The development of component-based software
development technology and enterprise application
integration technology provides solutions to information
construction[7][8][9]. The main difference between
component technology and traditional software
development technology is that component technology
reuses the existed components to set up new application
systems. This process is showed in Figure 2.

Figure 2. The process of software

Enterprise application integration can be divided into

three levels: data integration, enterprise business
integration and application system integration. It can
integrate data sharing and business process without too
much modification on existed application. It makes users
access different application system transparently. The idea
of enterprise application integration can be seen in the
following figure 3.

Based on these technologies, integrated test system
can be divided into different functions each of which can
be encapsulated into different components. Using this
technology, business logic is separated from data as well
as application. All components which obey to some kind
of criterions can be assembled into a new application
system and achieve the goal of reusing the existed
application system when developing new applications.

Figure 3. The idea of enterprise application integration

964 JOURNAL OF COMPUTERS, VOL. 6, NO. 5, MAY 2011

© 2011 ACADEMY PUBLISHER

IV. SPACECRAFT INTEGRATION TEST
PLATFORM BASED ON COMPONENT

According to the technologies of component and
enterprise application integration[10][11][12], on the
functional requirements and extensible requirements of
the spacecraft integration test, a new application
integration platform is advanced to satisfy the
requirements of spacecraft integration test.

The platform is showed in figure 4. This platform
consists of data infrastructure platform, component
support platform and application platform. The functions
of every layer are described as follows.

Data infrastructure platform: this layer provides the
function of unified data inserting management, data
interface management, unified data pick-up, data
resources catalog management. This layer is aimed to
transform data resources in different types, eliminate data
isomerism and unify data management by using a certain
defined data interface criterion. And on the basis of that, it
provides unified data service for the upper layer.

Figure 4. spacecraft integration test platform based on

component
Component support platform: this layer is composed

of component development environment, component
management environment and key operation support. The
operation component, connect component and the system
component, which are the result of operation logic
modeling, are developed in the component development
environment. Component interface management,
component search management and component catalog
management are included in the component management
environment. They provide the function of unified
management of component and search, utilization of the
component. Key operation support, on the principle of
function-independence, assembles the component into
some application systems which have some certain
operation functions.

Application platform: On the support of some visually
integration tools, this layer provides the function of
integrating the key operation support and related
component into an application system.

V. COMPOSITION OF THE PLATFORM
A. Definition of component

Spacecraft components are the most basic element of
composing the test application platform, what the platform
can complete the complex business application function
were all achieved through collaboration of these relatively
simple, basic business functions components. So, in
system integration level, which emphasis on concern is the
component can provide the service as well as its business
functions to be called by other component services, and
shielding the concrete code realization situation. Its
realization may is a process of code, also may be class,
classtree, frame, or by several types of composition of
modules, and they can even be a computing system[13]. In
general, as long as it can be clear identified and be reused
by some software system, can be called component. The
minimum size for a single component is classes and
modules.

Accessing from the outside, a component can be seen
as a set of computing services. It is the basic element and
minimal unit for designing the system architecture. The
set of services can be divided into two categories,
respectively are components themselves can provide the
business functions to external service interface collection
and the need to call a collection of other components of
the service interface.

Since the spacecraft applications run in a distributed
real-time environment, we need complete description of
the component in a distributed real-time environment from
the following several aspects[14], service functions (the
interface name of the components can provide the
business function service for the external system), service
call parameters, the service returns results. As members of
the services provided, taking into account whether the
real-time characteristics of certain services, if any, need to
consider access to these properties of real-time service
period of time. Summing up the above factors, the
component can be defined as follows.

component ::= {name, providedServices, requiredServices};
name ::=componentName;
providedServices ::= service, providedServices;
requriedServices ::= service, requiredServices;
service ::= {servicesName, parameters, result,

realtimePriority, realtimePeriod};
servicesNames := string;
parameters := (parameter, parameters) | null;
parameter := paramtype, paramname;
result := returntype;
realtimePriority := 0|1;
realtimePeriod := int;

Figure 5. the internal framework of a component

JOURNAL OF COMPUTERS, VOL. 6, NO. 5, MAY 2011 965

© 2011 ACADEMY PUBLISHER

As showed above, a component consists of four parts:
Service Unit: the implementation of computing

services which is provided by the component. It is the
really different part from one component to another.

Interface Wrap: wrapping outside service unit to
define the services and providing different methods to
invoke the computing functions of service unit written in
different programming languages.

Adapter: the low-level communication medium
through which the component exchanges data with the
outside. Adapters send and receive messages from the
connector connected to the component in different ways
according to the type of connection between the
components.

Attribute Information: It is the description of the
component, which gives some aids to assemble a system
or to select a component.

B. Definition of connector

Connector is the bridge joining components together
by enabling them call the services from each other. Each
connector server is used for one single component to
provide services and is connected by other requesting
component which would call for these services. Moreover,
since the type of service calling between components
could be classified as calling in the LAN environment and
invocation within a single thread, the connector has two
corresponding types, remote connector or local connector.
Remote connector is the connection between component
service call in the local area network environment. Each
remote connector corresponds to a service component,
receives the service requests, manages all requests and
returns the results to the service caller. The remote
connector played a role in routing, which will link the
distributed components in the network transparently
together, collaborate to complete a business function.
Because the multiple instances of a same service
component might be deployed in a remote host, remote
connector searches position of a component instance only
through the IP address and port number of the remote
component. It uses Socket technology to achieve
messages communication between remote connector and
service request component and service response
component

Local connector is the connection between
components in the local same process. This kind of
mutual service call of components is in the single process
in a same host, thereby can eliminate the need for
component route in network distributed environment.

Therefore, the formal definition of the connector is as
follows:

connector ::= remoteConnector|localConnector
remoteConnector ::= {name, rmSvcComponent,

rmReqComponents, constraints }
name ::= connectName
rmSvcComponent::= {componentName, address,

port}
rmReqComponets::= {componentName, address,

port}, rmReqComponets
address ::= ipAddress

port ::=portNumber
constrains ::= {ipConstrains, ipServiceConstrains}
ipConstrains ::= allowedIPSet
allowedIPSet ::= ipAddress，allowedIPSet
ipServiceConstrains ::= {ipAddress,

allowedService},ipServiceConstrains
AllowedService ::= serviceName, allowedService
localConnector ::= {connectName, lcSvcComponent,

lcReqComponents}
lcSvcComponent ::= componentName
lcReqComponents ::= componentName,

rmReqComponets
The connector also has interface, its interface is

composed by a group of roles. Each role of the connector
defines the connector participants. Dual connectors have
two roles, such as message transfer connector is the role of
the news sender and the news receiver. Some connectors
have more than two roles, such as event broadcast in one
event publishers and any more events recipients’ character
role.

RemoteConnector

ReqSender

Socket

Exce
ption

ReqReceiver

Socket

LocalConnector

ReqSender

ReqReceiver

Figure 6. the internal architecture of the connector

The internal architecture of the connector is showed in

fig6. The RemoteConnector is composed of three
component, ReqSender class, ReqReceiver class and
Exception class. Whereas LocalConnector is composed
only by two component, ReqSender class and
ReqReceiver class, which does not exist exception
information processing of network communication.

C. Connect mechanism

Application system is composed of components,
connectors and the corresponding constraints. Connectors
need to complete the function of receiving service call
request message, sending service request message,
receiving the results of service calls and returning the
result of service call, and so on.

966 JOURNAL OF COMPUTERS, VOL. 6, NO. 5, MAY 2011

© 2011 ACADEMY PUBLISHER

RemoteConnector is responsible for connecting
message services between the components in a distributed
network environment. It use the Socket technology to
communicate with the components RemoteAdaptor and
achieves the message communication between the service
request component and the service response component.

LocalConnectors implement the message service of
the components through a function call parameter passing
and returns the results. The service call components
connected by LocalConnectors are all in the same process
and in the same host, hence the implementation of the
service call message and result transferring between the
local components through the function call and results
return of the components, and the function call and results
return of the connectors.

D. Application system assemble

Application system could be defined as a collection of
three elements including the collection of components, the
collection of connectors and the links among all
components and connectors.

The formal definition is given below.
Architecture = {components, connectors, linkages};
components = {component, components};
connectors = {connector, connectors};
linkages = {linkage, linkages};
linkage = {reqComponent, connector, svcComponent,

services};
services = svcComponent.service, services;

VI. TRAIL APPLICATION
We now take the implementation of Integration Test

Database System(ITDS) as a concrete example to
demonstrate how to assemble application system on this
platform. The ITDS, which is an important part of the
platform, accomplishes the function of data receiving, data
storing, data querying and real-time data monitoring.

Figure 7. The structure of integration test database system

Therefore, in terms of the framework of the platform,
according to the principle of function-relatively-absolute,
we divide ITDS into three sub-system, including
data-insert sub-system, data-query sub-system and
real-time monitoring sub-system. They are deployed in a
distributed network environment. On the basis of the
platform, components are connected by connectors; they
are assembled to be a application system which have some
special functions.

The ITDS has been successfully used in a certain type
of spacecraft test, practical applications show that the
system has better performance, universal and
expansibility.

VII. CONCLUSION
This paper analyzes in detail the state of the

information construction in aerospace domain, points out
the main problems, and then according to the function
requirements of the spacecraft integration test, brings
forward the spacecraft integration test platform based on
component, which is aimed to satisfy the application
requirements of the spacecraft integration test.
Furthermore, the key elements of the platform are defined
and the assembling mechanism is advanced. Finally, the
applicability of the platform is demonstrated by
constructing the integration test database system.

During the process of implementation, it is proved
enough that using component technology can efficiently
reduce the system development cycle, efficiently integrate
current legacy system resources and date resources,
efficiently figure out the problems that the information
island brings.

In the future, the run-mechanism of the platform
should be studied more, and more tools should be
provided to support assemble and integrate application
system.

REFERENCE

[1] Requirement definition of satellite’s dynamics experiment
system

[2] Requirement definition of satellite’s heat experiment
system

[3] Requirement definition of satellite’s integrate test system
[4] Li Qingsheng,Wang Jipeng,Wang Aimin. Application of

Component Technology in Multimedia Integration
System. 2009 First International Workshop on Education
Technology and Computer Science P1100-1103

[5] Shifeng Zhang, Steve Goddard, An Architecture
Description Language to Specify Component-based
system, Proceedings of the international Conference on
Information Technology: Coding and computing
(ITCC’05)

[6] R. Taylor. A component- and message-based architectural
style for GUI software. IEEE Transactions on Software
Engineering, 22(6):390--406, June 1996.

[7] Xia Cai, Michael R.Lyu, Kam-Fai Wong,
Component-Based Software Engineering: Technologies,
Development Frameworks, and Quality Assurance
Schemes, 2000 IEEE.

[8] D.S Rosenblum and R. Natarajan, Supporting
architectural concerns in component interoperability

JOURNAL OF COMPUTERS, VOL. 6, NO. 5, MAY 2011 967

© 2011 ACADEMY PUBLISHER

standards, IEE Proceedings online no.20000913, IEE,
2000

[9] DASHOFY.E.M,MEDVIDOVIC.N, and TAYLOR.R.N,
Using off-the shelf middleware to implement connectors
in distributed software architectures, 21st international
conference on software engineering, May 1999,Los
Angeles, pp3-12

[10] M. Radestock and S. Eisenbach, Component Coordination
in Middleware Systems, IFIP International Conference on
Distributed Systems Platforms and Open Distributed
Processing Lancaster. U.K., 1998,P225-240

[11] Kotonya, G.; Sommerville, I.; Hall, S.; Towards a
classification model for component-based software
engineering research. Euromicro Conference, 2003.
Proceedings. 29t , 1-6 Sept. 2003 Pages:43 - 52

[12] D.Batory and S.O’Malley. The Design and
Implementation of Hierarchical Software System with
Reusable Component. ACM Transactions on Software
Engineering and Methodology.1(4):355-398,October 1992

[13] Peter Hans Frohlich.Component-Oriented Programming
Languages:Why,What,and How[D].University of
California.2003

[14] Sun Guotan. Research and Implementation of Component
Based Development for Spacecraft Experiment
Systems[D]. Beijing, Beihang university.2005

Xianjun Li (1977 -) is currently PhD candidate in State Key
Laboratory of Software Development Environment, Beihang
University, Beijing, China. His research interests include
spacecraft automatic testing, spacecraft integrate test
information Processing, component technology.

Gang Ye (1982 -) is currently PhD candidate in State Key

Laboratory of Software Development Environment, Beihang
University, Beijing, China. His research interests include
spacecraft automatic testing, spacecraft integrate test, software
testing，fault localization.

Zhongwen Li (1981 -) is currently PhD candidate in State

Key Laboratory of Software Development Environment,
Beihang University, Beijing, China. His research interests
include workflow, spacecraft automatic testing, realtime system.

Shilong Ma (1953 -) is Ph.D. professor, doctoral supervisor,

standing deputy director of the National Key Lab for Software
Development Environment of the School of Computer Science
and Engineering in BUAA, member of the 10th expert appraisal
panel under Department of Information Science of the National
Natural Science Foundation Committee, member of Executive
Committee of Asian Software Fundamental Federation,
standing director of China Artificial Intelligence Society. His
research interests include Grid, Computational Logic,
Magnanimity Information Processing, spacecraft automatic
testing.

968 JOURNAL OF COMPUTERS, VOL. 6, NO. 5, MAY 2011

© 2011 ACADEMY PUBLISHER

