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Abstract—artificial bee colony (ABC) is the one of the 
newest nature inspired heuristics for optimization problem. 
In order to improve the convergence characteristics and to 
prevent the ABC to get stuck on local solutions, a 
differential ABC (DABC) is proposed. The differential 
operator obeys uniform distribution and creates candidate 
food position that can fully represent the solution space. So 
the diversity of populations and capability of global search 
will be enhanced. To show the performance of our proposed 
DABC, a number of experiments are carried out on a set of 
well-known benchmark continuous optimization problems. 
Simulation results and comparisons with the standard ABC 
and several meta-heuristics show that the DABC can 
effectively enhance the searching efficiency and greatly 
improve the searching quality.  
 
Index Terms—Artificial Bee Colony Algorithm, Global 
Numerical Optimization, Differential Evolution 

I.  INTRODUCTION 

The Artificial Bee Colony (ABC) algorithm is a new 
swarm intelligence technique inspired by intelligent 
foraging behavior of honey bees. The first framework of 
ABC algorithm mimicking the foraging behavior of 
honey bee swarm in finding good solutions to optimize 
multi-variable and multi-modal continuous functions was 
presented by D.Karaboga. Numerical comparisons 
demonstrated that the performance of the ABC algorithm 
is competitive to other population-based algorithm with 
an advantage of employing fewer control parameters [1], 
[2], [3]. The basic version of the Artificial Bee Colony 
algorithm has only one control parameter ‘‘limit” apart 
from the common control parameters of the population-
based algorithms such as population size or colony size 
(SN) and maximum generation number or maximum 
cycle number (MCN).Due to its simplicity and ease of 
implementation, the ABC algorithm has captured much 
attention and has been applied to solve many practical 
optimization problems. Singh [4] used the ABC 
algorithm for the leaf-constrained minimum spanning tree 
problem and compared the approach against genetic 
algorithm (GA), ant colony optimization (ACO) and tabu 
search (TS). Pan et.al [5] proposed a discrete ABC 
algorithm in combinational optimization for flow shop 
scheduling problem. Feng et.al [6] proposed a hybrid 
simplex artificial bee colony algorithm which combines 
Nelder-Mead simplex method to solve inverse analysis 
problems. Rao et al. [7] applied the ABC algorithm to 
network reconfiguration problem in a radial distribution 

system in order to minimize the real power loss, improve 
voltage profile and balance feeder load subject to the 
radial network structure in which all loads must be 
energized. The ABC algorithm also was extended for 
constrained optimization problems in [8] and was applied 
to train neural networks [9], to medical pattern 
classification and clustering problems [10,11], and to 
solve TSP problems [12].  

Similar to other swarm based optimization algorithms, 
it is important to establish a proper balance between 
exploration and exploitation in bee swarm optimization 
approaches. A poor balance between exploration and 
exploitation may result a weak optimization method 
which may suffer from premature convergence, trapping 
in a local optima, and stagnation. In order to enhance the 
global convergence and to prevent to stick on a local 
solution of the ABC, some improvement algorithms were 
proposed. Haijun and Qingxian [13] proposed a 
modification in the initialization scheme by making the 
initial group symmetrical, and the Boltzmann selection 
mechanism was employed instead of roulette wheel 
selection for improving the convergence ability of the 
ABC algorithm Quan and Shi [14] integrated a search 
iteration operator based on the fixed point theorem of 
contractive mapping in Banach spaces with the ABC 
algorithm in order to improve convergence rate. In order 
to maximize the exploitation capacity of the onlooker 
stage, Tsai et al.[15]introduced the Newtonian law of 
universal gravitation in the onlooker phase of the basic 
ABC algorithm in which onlookers are selected based on 
a roulette wheel. Baykasoglu et al [16].was incorporated 
the ABC algorithm with shift neighborhood searches and 
greedy randomized adaptive search heuristic and applied 
it to the generalized assignment problem. Bilal Alatas[17] 
used different chaotic maps for parameter adaptation in 
order to improve the convergence characteristics and to 
prevent the ABC to get stuck on local solutions. 

In the paper, differential operator incorporated into the 
ABC algorithm is proposed to efficiently control the 
global search and convergence to the global best solution. 
Simulation results and comparisons demonstrate the 
effectiveness and efficiency of the proposed DABC. The 
remaining of this paper is organized as follows: the basic 
ABC algorithm is introduced in Section 2. Section 3 
describes the proposed methods, Differential Artificial 
Bee Colony Algorithms, shortly DBCAs. In Section 4, 
the benchmark problems used for comparisons are 
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described and the simulation results are compared. 
Finally, the conclusions are presented in Section 5. 

Ⅱ.ARTIFICIAL BEE COLONY ALGORITHM 

In ABC algorithm, the colony of artificial bees 
contains three groups of bees: employed bees, onlookers 
and scouts. A bee waiting on the dance area for making a 
decision to choose a food source is called onlooker and 
one going to the food source visited by it before is named 
employed bee. The other kind of bee is scout bee that 
carries out random search for discovering new sources. 
The position of a food source represents a possible 
solution to the optimization problem and the nectar 
amount of a food source corresponds to the quality 
(fitness) of the associated solution. In the algorithm, the 
first half of the colony consists of employed artificial 
bees and the second half constitutes the onlookers. The 
number of the employed bees or the onlooker bees is 
equal to the number of solutions in the population. 

 At the first step, the ABC generates a randomly 
distributed initial population of SN solutions (food source 
positions), where SN denotes the size of population. Each 
solution ix  where 1,2,i SN= L  is a D-dimensional 
vector. Here, D is the number of optimization parameters. 
After initialization, the population of the positions 
(solutions) is subjected to repeated cycles, 

1,2C MCN= L of the search processes of the employed 
bees, the onlooker bees and scout bees. An employed bee 
produces a modification on the position (solution) in her 
memory depending on the local information (visual 
information) and tests the nectar amount (fitness value) of 
the new source (new solution). Provided that the nectar 
amount of the new one is higher than that of the previous 
one, the bee memorizes the new position and forgets the 
old one. Otherwise she keeps the position of the previous 
one in her memory. After all employed bees complete the 
search process; they share the nectar information of the 
food sources and their position information with the 
onlooker bees on the dance area. An onlooker bee 
evaluates the nectar information taken from all employed 
bees and chooses a food source with a probability related 
to its nectar amount. As in the case of the employed bee, 
she produces a modification on the position in her 
memory and checks the nectar amount of the candidate 
source. Providing that its nectar is higher than that of the 
previous one, the bee memorizes the new position and 
forgets the old one. An artificial onlooker bee chooses a 
food source depending on the probability value associated 
with that food source ip , calculated by the following 
expression (1): 

1

i
i SN

n
n

fitp
fit

=

=

∑
                             (1) 

Where ifit  is the fitness value of solution i. In order to 
produce a candidate food position from the old one in 
memory, the ABC uses the following expression (2): 

( )ij ij ij ij kjv x x xφ= + −                      (2) 

Where {1,2, }k SN∈ L and {1,2, }j D∈ L  are 
randomly chosen indexes. Although k is determined 
randomly, it has to be different from i . ijφ  is a random 
number between [−1, 1]. It controls the production of 
neighbor food sources around ijx  and represents the 
comparison of two food positions visible to a bee. As can 
be seen from (2), as the difference between the 
parameters of the ijx  and kjx  decreases, the perturbation 

on the position ijx  decreases, too. Thus, as the search 
approaches to the optimum solution in the search space, 
the step length is adaptively reduced. 

After each candidate source position is produced and 
evaluated by the artificial bee, its performance is 
compared with that of its old one. If the new food source 
has equal or better quality than the old source, the old one 
is replaced by the new one. Otherwise, the old one is 
retained. If a position cannot be improved further through 
a predetermined named “limit”, then that food source is 
assumed to be abandoned. The corresponding employed 
bee becomes a scout. The abandoned position will be 
replaced with a new food source found by the scout. 
Assume that the abandoned source ix , then the scout 
discovers a new food source to be replaced with ix . This 
operation can be defined as in (3): 

min max min()( )j j j j
ix x rand x x= + −                 (3) 

Where min
jx  and max

jx  are lower and upper bounds of 
parameter j, respectively. 

Detailed pseudo-code of the ABC algorithm is given 
below: 

 
Fig.1. The pseudo-code of the ABC algorithm 

Step1: Initialize the population of 
solutions ( 1,2 , 1,2, )ijx i SN j D= =L L . Evaluate 
the population, and cycle=1. 
Step2: Repeat 
Step3: Produce new solutions ijv  for the employed 
bees by using (2) and evaluate them, then apply the 
greedy selection process. 
Step4: Calculate the probability values ip  for the 
solutions ix  by (1) , 
Step5: Produce the new solutions ijv  for the 

onlookers from the solutions ijx selected depending 

on ip  and evaluate them, then apply the greedy 
selection process 
Step6: Determine the abandoned solution for the 
scout, if exists, and replace it with a new randomly 
produced solution ijx by (3).And memorize the best 
solution achieved so far. 
Step7: cycle=cycle+1, until cycle=MCN. 
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Ⅲ. DIFFERENTIAL ARTIFICIAL BEE COLONY ALGORITHM 
(DABC) 

Exploration, which is the ability to search the solution 
space to find promising new solutions, and exploitation, 
which is the ability to find the optimum solution in the 
neighborhood of a good solution, is two important aspects 
in evolutionary computing paradigms. However, different 
algorithms in evolutionary computing employ different 
operators for exploration and exploitation. In a bee swarm, 
different behaviors of the bees provide this possibility to 
establish powerful balancing mechanism between 
exploration and exploitation. This property provides the 
opportunity to design more efficient algorithms in 
comparison with other population based algorithms such 
as PSO and GA. The performance of ABC is very good 
in terms of the local and the global optimization due to 
the selection schemes employed and the neighboring 
production mechanism used. But in ABC, the employed 
bees and onlooker bees carry out exploration and 
exploitation use the same formula (2). Obviously, the 
performance of ABC greatly depends on formula (2). To 
enrich the searching behavior and to avoid being trapped 
into local optimum, differential operator is incorporated 
into the ABC. 

Differential Evolutionary (DE) algorithm is a 
population-based evolutionary computation technique, 
which uses simple differential operator to create new 
candidate solutions and one-to-one competition scheme 
to greedily select new candidate. In DE, it starts with the 
random initialization of a population of individuals in the 
search space and works on the cooperative behaviors of 
the individuals in the population. Therefore, it finds the 
global best solution by utilizing the distance and direction 
information according to the differentiations among 
population. However, the searching behavior of each 
individual in the search space is adjusted by dynamically 
altering the differentiation’s direction and step length in 
which this differentiation performs. 

In DE, the ith individual in the D-dimensional search 
space can be represented as { 1 2, , }i i i iDx x x x= L , the 
differential mutation is described by the following 
equation: 

( )i a b cv x F x x= + −                       (4) 

Where , ,a b c SN∈  are randomly chosen and mutually 
different and also different from the current index i. 

[0,2]F ∈  is constant called scaling factor which 
controls amplification of the differential variation of 

bj cjx x− .  
The differential mutation can produce uniform 

distribution of the solution. This property can be proved 
as follows: 

General, suppose individuals obey uniform distribution 
in (0,1). 1 2, , nx x xL  is independent random variables in 
(0,1), 1 2, , nc c cL  is constant value. 

Lemma.1.[18] 
1

n

i i
i

X c x
=

= ∑ , (0,1)X U∼ if and only if 

(0,1)ix U∼ and 1c is integer. 
Theorem.1. the candidate individuals obey uniform 

distribution after differential mutation. 
Proof: for individual ( 1,2, )ix i SN= L , the candidate 

individual iv is calculated by (4).Then, 

i a b cv x Fx Fx= + −  
Since , ,a b c SN∈  are different from i, and F is 

constant, , , (0,1)a b cx x x U∼ , 1 2 31, ,c c F c F= = = − . 
According to Lemma.1. , (0,1)iv U∼ . 

Theorem.2. the candidate food positions that employed 
bees or onlooker bees find don’t obey uniform 
distribution. 

The proof is similar to the above. Since, 1 1 ijc φ= +  
isn’t an integer, it doesn’t obey Lemma.1.  

The neighboring solution production mechanism used 
in ABC is similar to the self-adapting mutation process of 
DE. From this point of view, in DE and ABC algorithms, 
the solutions in the population directly affect the mutation 
operation since the operation is based on the difference 
between them. However, in DE, the difference is 
weighted by a constant scaling factor while in ABC; it is 
weighted by a random step size. Unlike DE, in ABC, 
there is no explicit crossover and there is only one 
dimensional position adjusted for each individual in every 
cycle. In DE, the D-dimensional positions are adjusted in 
every generation and there is no operation as in the scout 
bee’s phase of ABC to insert a random solution into the 
population during a search. Therefore, although the local 
convergence speed of a standard DE is quite good and the 
ability of keeping uniform distribution of the solution is 
very well, it might result in the premature convergence in 
optimizing multimodal problems. In [19] proposed that 
the uniform distribution can fully express the solution 
space characteristics and enhance the diversity of the 
population. For ABC, the neighboring solution 
production mechanism that doesn’t produce uniform 
distribution of the solution can result premature 
convergence, trapping in a local optima, and stagnation. 
In order to enhance the global convergence and to prevent 
to stick on a local solution of the ABC, the improvement 
differential operator is incorporated into ABC. This 
operation can be defined as in (5): 

( )i j aj bj cjv x F x x= + −                     (5) 

The employed bees and onlooker bees produce 
candidate food position according (2) and (5). Then, there 
are two version of DABC. The employed bees carry out 
the differential operator, called EDABC or the onlooker 
bees carry out the differential, called LDABC. Which is 
more efficiently, it will be discussed in the next section. 
But, if they all apply the differential operator, the 
algorithm becomes DE. 
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Ⅳ.EXPERIMENTS 

In this section, the experiments that have been done to 
evaluate the performance of the proposed DABC 
algorithm and its variants for a number of analytical 
benchmark functions are described. The DABC is coded 
in Visual C++ 6.0 and experiments are executed on a 
Pentium E2200 CPU PC with 2G RAM. Each benchmark 
is independently run with every algorithm 30 times for 
comparison. The mean value (Mean), minimum value 
(Min), the standard deviation (Dev) and the succeed ratio 
(SR) in 30 runs are calculated as the statistics for the 
performance measures. 

A Benchmark Functions 
Well-defined benchmark functions which are based on 

mathematical functions can be used as objective functions 
to measure and test the performance of optimization 
methods. The nature, complexity and other properties of 
these benchmark functions can be easily obtained from 
their definitions. The difficulty levels of most benchmark 
functions are adjustable by setting their parameters. To 
test the performance of DARC, six well known 
benchmark functions are presented in Table 1. Initial 
range, formulation, properties and global optimum values 
are listed in table. The first two functions are unimodal, 
while others are multimodal. A function is called 
unimodal, if it has only one optimum position. The 
multimodal functions have two or more local optima. 

 The Sphere function is a continuous, convex and 
unimodal function. The Rosenbrock function has smooth 
slope around its’ global optimum position, its global 
optimum lays inside a long, narrow, and parabolic shaped 
flat valley, its variables are strongly dependent, and the 
gradient do not point towards its optimum position. All of 
these cause that the convergence toward the global 

optimum in Rosenbrock be relatively difficult. The 
variables of Griewank function have interdependence 
since the function has a product term. The multimodality 
is removed by the increment in dimensionality (D > 30) 
and the problem seems unimodal. Rastrigin function is 
based on the Sphere function with the addition of cosine 
modulation to produce many local minima. The surface 
of Schwefel function is composed of numerous peaks and 
valleys. The Ackley function has a surface with many 
local optima due to its exponential term.  

B Experiment1: Parameters Discussion 
As we know, the performance of population based 

meta-heurist greatly depends on the control parameters. 
So, we investigate the effect of parameters on the 
performance of DABC by manually trying some different 
values. DABC algorithm has a few control parameters: 
the colony size (SN), the maximum number of cycles 
(MCN), “limit” and scaling factor (F). The dimensionality 
of the search space is an important issue for the 
performance of the algorithm. In order to analyze the 
robustness of DABC, we investigated the performance of 
DABC with respect to growing dimensions. The 
parameters are set in table 2. 

The LDABC was tested in the experiments. Firstly, we 
investigate the performance of LDABC with different 
population size SN for Rastrigin function. The effects 
with different SN on the mean values, the standard 
deviation and succeed ratio are illustrated in Fig.2. As 
shown in Fig. 2, when SN is too small, the average 
searching quality is poor because the solution space may 
not be covered sufficiently during the evolution process. 
As SN increases, the results become better at a cost of 
more fitness evaluations, but there is a threshold beyond 
which the results will not be affected in a significant 
manner. Therefore, considering both the searching quality  

TABLE I.  NUMERICAL BENCHMARK FUNCTIONS 

Name Formulation Property Search range Opt 

Sphere 2

1

1
n

i
i

f x
=

= ∑  Unimodal [-5.12,5.12] 0 

Rosenbrock 
1

2 2
1

1

2 (100( ) ( 1) )
n

i i i
i

f x x x
−

+
=

= − + −∑  Unimodal [-30,30] 0 

Griewank 2

1 1

13 cos( ) 1
4000

nn
i

i
i i

x
f x

i= =

= − +∑ ∏  Multimodal [-600,600] 0 

Rastrigin 2

1

4 ( 10cos(2 ) 10)
n

i i
i

f x xπ
=

= − +∑  Multimodal [-5.12,5.12] 0 

Schwefel 
1

5 418.9829 sin( | |)
n

i i
i

f n x x
=

= + −∑  Multimodal [-500,500] 0 

Ackley 

2

1

1

16 20 20exp( 0.2 )

1exp( cos(2 ))

n

i
i

n

i
i

f e x
n

x
n

π

=

=

= + − −

−

∑

∑
 Multimodal [-32,32] 0 
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TABLE II.   THE PARAMETERS VALUE 

 
Name   Value   

SN 10 20 30 40 50 
 60 70 80 90 100 
 500 1000 2000 3000 4000 

MCN 5000 6000 7000 8000 9000 
 10000     

limit 20 50 80 100 150 
 200 300    
 0.01 0.05 0.1 0.2 0.3 

F 0.4 0.5 0.6 0.7 0.8 
 0.9 1 1.5 2  

D 10 20 30 40 50 
 60 70 80 90 100 

 

 
Fig.2. Result of LDABC with different SN for Rastrigin 

 
Fig.3 Result of LDABC with different MCN for Rastrigin 
 

 
Fig.4. Result of LDABC with different limit for Rastrigin  

 
Fig.5. Result of LDABC with different F for Sphere  

 
Fig.6. Result of LDABC with different D for  Griewank  

 

and computational efforts, it is recommended to choose 
SN between 70 and 100. Similar to SN, the effects with 
different MCN are illustrated in Fig.3. However, the 
effects of MCN are weaker than the effects of SN. The 
suitable scope of MCN is 5000 to 10000.The scout bee 
production is controlled by the control parameter “limit”; 
there is an inverse proportionality between the value of 
“limit” and the scout production frequency .As the value 
of “limit” approaches to infinity, the total number of the 

scouts produced goes to zero. So, the “limit” isn’t very 
big. But, if the “limit” is too small, the scout production 
frequency is very high; the employed and onlooker bees 
haven’t enough time carry out exploration and 
exploitation. The effects with different “limit” are 
illustrated in Fig.4. It is recommended to choose “limit” 
between 150 and 200. 

Fig.5 shows the effect with different F for Sphere 
function. The mean and min values become worse with F 
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increasing, but the standard deviation keeps stably. The 
reason is that F controls amplification of the differential 
variation, if it too big, it will affect the exploitation of the 
employed or onlooker bee. So, the proper range of F is 
0.01 to 0.2.  

The performance of LDABC with different dimensions 
for Griewank is illustrated in Fig.6.As can be seen from 
the graph, when the problem dimension was increased 
from 10 to 100, the performances of the DABC algorithm 
were influenced from this change as expected. However, 
an increase in problem dimension did not lead to 
exponential increment in mean value and minimum value. 
Therefore, it can be stated that the DABC algorithm is not 
very sensitive to increments in problem dimensions and 
has a good robustness. 

So, in the follow experiments, all the benchmark 
functions were used in 100 dimensions, and the 
parameters were set as follow: SN=70, MCN=5000, 
“limit”=200, F=0.01. 

C Experiment 2: EDABC vs LDABC 
In this experiment, we compare ABC with EDABC 

and LDABC. The statistical performances are listed in 

Table 3. The results show that EDABC and LDABC can 
obtain competitive or better results than ABC for all 
benchmarks. Especially, it is clear from the result that for 
Rastrigin function, DABCs search the global best value 
and achieves 100% success rate. DABCs aren’t only 
higher quality solution, but also more stable. This is 
occurred, due to using differential operator which 
maintain the diversity of the algorithm and express the 
solution space characteristics fully regardless of the type 
of the considered function. Furthermore, the Mean, the 
Min values obtained by EDABC are better than those 
obtained by LDABC for almost all benchmarks, which 
demonstrates the employed bees’ behaviors have an 
impact on the ability of global search for ABC. Fig.7 and 
Fig.8 show that EDABC converge faster then LDABC 
algorithm for Rosenbrock and Ackley functions. Fig. 9 
and Fig.10 show that EDABC has the ability of escaping 
the local optima after a long stagnation process for 
Sphere and Griewank functions. As a consequence, the 
EDABC algorithm produces better results than LDABC 
and ABC. 

 
Fig.7. Evolution of min values for Rosenbrock 

 
Fig.9. Evolution of min values for Sphere 

 
Fig.8. Evolution of min values for Ackley 

 

 
Fig.10. Evolution of min values for Griewank 
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TABLE III.  THE RESULTS OBTAINED BY ABC ,LDABC AND EDABC ALGORITHMS 

  Sphere Rosenbrock Griewank Rastrigin Schwefel Ackley 
 Min 2.538E-15 1.138E-02 2.553E-15 1.776E-15 1.272E-03 2.956E-10 

ABC Mean 3.018E-15 2.048E-01 3.271E-15 3.912E-13 3.339E+02 8.706E-10 
 Dev 2.194E-16 2.914E-01 3.979E-16 7.876E-13 1.808E+02 6.524E-10 
 Min 1.646E-15 0.236E-02 1.887E-15 0 1.27E-03 1.237E-13 

LDABC Mean 2.371E-15 6.248E-02 2.560E-15 0 1.27E-03 1.509E-13 
 Dev 2.496E-16 2.517E-02 2.292E-16 0 0 9.722E-15 
 Min 1.414E-15 6.822E-03 1.443E-15 0 1.27E-03 1.273E-13 

EDABC Mean 1.873E-15 4.421E-02 1.891E-15 0 1.27E-03 1.461E-13 
 Dev 1.815E-16 1.532E-02 2.275E-16 0 0 8.865E-15 

TABLE IV.   THE RESULTS OBTAINED BY DABC AND ABC ALGORITHMS 

  EDABC GA[3] PSO[3] DE[3] EDA[20] 
Sphere mean 0 1.11E+03 0 0 0 

 dev 0 76.561450 0 0 0 
Rosenbrock mean 4.421E-02 1.96E+05 15.088617 18.203938 ------- 

 dev 1.532E-02 3.85E+04 24.170196 5.036187 ------- 
Griewank mean 0 10.63346 0.01739118 0.0014792 0 

 dev 0 1.161455 0.020808 0.002958 0 
Rastrigin mean 0 52.92259 43.9771369 11.716728 19.7405 

 dev 0 4.564860 11.728676 2.538172 2.4246 
Schwefel mean 1.272E-03 976.1 5560.3641 2303.5 1964.9 

 dev 0 93.254240 457.957783 521.849292 120.2 
Ackley mean 0 14.67178 0.16462236 0 6.089E-12 

 dev 0 0.178141 0.493867 0 0 

 

D. Experiment 3: Comparison with Other Algorithms 
Results of EDABC algorithm have been compared 

with the results presented by D. Karaboga et al. [3] of 
Differential Evolution (DE), Particle Swarm 
Optimization (PSO), Genetic Algorithm (GA) and Cheng 
Yu-hu et.al [20] of Estimation of Distribution Algorithm 
(EDA). In [3], the dimensions were set 30 and values 
less than E-12 were reported as 0. The mean and the 
standard deviations of the function values found are 
given in Table4. The results show that all the algorithms 
provide good performance for Sphere function except 
GA; On Griewank, while EDABC and EDA showed 
equal performance and found the optimum, PSO, DE, 
GA demonstrated worse performance than them. On 
Ackley function, EDABC and DE have better 
performance than other algorithm. However EDABC 
strongly produce better results than other algorithm on 
Rosenbrock, Rastrigin and Schwefel. It is clear from the 
result that for Rastrigin function, the global optimum 
value was found by EDABC. For all the benchmark 
functions, the EDABC algorithm outperforms other 
methods. To sum up, EDABC is a very efficient and 
effective algorithm with excellent quality and robustness 
for unimodal, multimodal functions. 

Ⅴ.CONCLUSION 

In this work, a modified version of the Artificial Bee 
Colony algorithm was proposed, which has been 

embedded to enhance the global searching capability by 
differential operator. In order to verify the feasibility and 
the performance of the proposed algorithm, six high 
dimensional numerical benchmark functions were tested. 
Comparing the performances with other meta-heurists 
presented in the literature. From the simulation results it 
was concluded that the proposed algorithm is superior to 
ABC in term of searching quality and efficiency. Besides, 
the searching quality of DABC is better than other meta-
heuristics, such as GA, PSO, DE, and EDA. The future 
work is to theoretically investigate the effect of DE 
incorporating into ABC and apply the DABC for some 
real engineering optimization problems. 
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