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Abstract—K-nearest neighbor rule (KNN) is the well-
known non-parametric technique in the statistical pattern 
classification, owing to its simplicity, intuitiveness and 
effectiveness. In this paper, we firstly review the related 
works in brief and detailedly analyze the sensitivity issue on 
the choice of the neighborhood size k, existed in the KNN 
rule. Motivated by the problem, a novel dual weighted 
voting scheme for KNN is developed. With the goal of 
overcoming the sensitivity of the choice of the neighborhood 
size k and improving the classification performance, the 
proposed classifier mainly employs the dual weighted voting 
function to reduce the effect of the outliers in the k nearest 
neighbors of each query object.  

To verify the superiority of the proposed classifier, the 
experiments are conducted on one artificial data set and 
twelve real data sets, in comparison with the other classifiers. 
Experimental results suggest that our proposed classifier is 
an effective algorithm for the classification tasks in many 
practical situations, owing to its satisfactory classification 
performance and robustness over a wide range of k. 
 
Index Terms—K-nearest neighbor rule, Weighted voting, 
Distance-weighted k-nearest neighbor rule 
 

I.  INTRODUCTION 

Since the k-nearest neighbor (KNN) rule was firstly 
introduced by Fix and Hodges [1], it has been one of the 
well-known and widely used nonparametric classifiers in 
pattern classification. The basic idea of this rule is that an 
unclassified object is assigned to the class, represented by 
a majority of its k nearest neighbors in the training set. 
The main characteristic of the rule is its good asymptotic 
performance: (a) the error rate of the k-nearest neighbor 
rule asymptotically approximates the optimal Bayesian 
error rate if the number of training objects approaches 
infinity, and (b) if k=1, its asymptotic error rate is 
bounded above by twice the optimal Bayesian error rate 
[2, 3, 4]. The distance-weighted k-nearest neighbor rule 
(WKNN), which weights more heavily close neighbors 
based on their distances to the query object, was proposed 
by Dudani [5]. It is a weighted voting method as an 
improvement for KNN. Nevertheless, the number of the 

training samples is usually too small to obtain a good 
asymptotic performance, which often leads to dramatic 
degradation of classification performance in the KNN and 
WKNN rules. 

Currently, one major outstanding issue in the KNN 
rule, yet to be resolved in the research community, is the 
sensitivity of choice of the neighborhood size k [6]. The 
problem intrinsically results from the estimate of the 
conditional class probabilities from samples in a local 
region of data space, which contains k nearest neighbors 
of each query object. Because of the radius of the region 
determined by the distance of the k-furthest neighbor, the 
results of conditional class probabilities depend on the 
selection of neighborhood size k. If k is very small, the 
local estimate tends to be very poor, due to the influence 
of the data sparseness and the noisy, ambiguous or 
mislabelled points. Obviously, we can increase k and take 
into account a large region around the query object in 
order to smooth the estimate. However, a large value of k 
easily decreases the estimate and results in the dramatic 
degradation of the performance, because more outliers 
from the other classes are introduced. To address the 
issue, the related research works have been done to 
improve the classification performance of the KNN 
classifier [5, 7, 8, 9, 10].  

Motivated by the issue of sensitivity of choice of k, we 
propose a new dual weighted voting method, based on the 
distance-weighted nearest neighbor rule, in order to 
reduce the influences of the sensitivity of k on pattern 
classification and improve the performance of KNN and 
WKNN. In this new rule, we employ the dual weights of 
k nearest neighbors to determine the class of the query 
object by the majority weighted voting. The experimental 
results show the effectiveness of the proposed classifier 
in such practical situations.  

II.  THE RELATED WORKS 

A.  The KNN classifier 
In this section, we review the related works in brief. 

First of all, we discuss the k-nearest neighbor rule. 
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The k-nearest neighbor rule (KNN), also called the 
majority voting k-nearest neighbor, is one of the oldest 
and simplest non-parametric techniques in the pattern 
classification literature. In this rule, a query pattern is 
assigned to the class, represented by a majority of its k 
nearest neighbors in the training set. As a matter of fact, 
the NN rule is the simplest and most special form of the 
KNN rule, when k=1. No matter what the distance 
measures are employed in pattern classification, it has 
been proved that the asymptotic error rate of the KNN 
rule approaches the optimal Bayesian error rate, when 
both the number n of the samples and the number k of 
neighbors tend to infinity, i.e., ∞→nk / . If k=1, the 
error rate of the NN rule is bounded by at most twice the 
optimal Bayesian error rate [2, 3, 4]. 

Following the k-nearest neighbor rule, we give a high-
level summary of the nearest neighbor classifier. Let  

},...,{ 1 NxxT =  be the training set, i.e., a corpus of 
training vectors or class-labeled points ),( ji cx . The 

training vectors m
i Rx ∈  are vectors in the m-dimensional 

feature space, Ni ≤≤1 , and jc , cNj ,...,1=  are their 
corresponding class labels (typically 

cNN > ). Given a 

query object ),( cx ′′  randomly, its unknown class c′  is 
determined as follow: 

a) select the set },...,{
1

NN
k

NN xxT =′ , the set of k 

nearest training objects to the selected query object x′ , 
arranged in an ascending order in terms of the distance 
(or dissimilarity) measure between NN

ix  and x′ , 

),( NN
ixxd ′ . And ),( NN

ixxd ′  is popularly computed by  
Euclidean distance metric: 

                       
2

),(
L

NN
i

NN
i xxxxd −′=′  .                    (1)      

b) assign the class label to the query object x′ , based 
on the majority voting class of its nearest neighbors: 

            ∑
′∈

==′
Tx

NN
i

c NN
i

ccIc
,

)(maxarg .                       (2) 

where c is a class label, NN
ic  is the class label for the i-th 

neighbor among k nearest neighbors of the query object. 
)( NN

iccI = , an indicator function, takes a value of one if 

the class NN
ic  of the neighbor NN

ix  is the same as the 
class c and zero otherwise. Note that the Euclidean 
distance metric is often chosen for computing the 
dissimilarities of the nearest neighbors. But the distance 
measures are variant according to the practical problem at 
hand. 

B.  The WKNN classifier 
As mentioned above, the KNN classifier assigns to an 

unclassified object the class label, which has the majority 
voting amount in the set of its k nearest neighbors. 
However, this rule implicitly supposes that k nearest 
neighbors have an identical weight in making decision for 
classification, regardless of their distances to the query 

object, and also neglects that the nearest neighbor close to 
the query pattern should contribute more to the 
classification. It is intuitively appealing to define a 
weighted voting method for giving k nearest neighbors to 
different weights, depending on their corresponding 
distances to the object in question. 

To weigh the closer neighbors more heavily than the 
farther ones, Dudani firstly proposed a weighted voting 
rule, called the distance-weighted KNN rule (WKNN), in 
which the votes of the different members of the k nearest 
neighbor set are weighted by a function of their distances 
to the query object [5]. 

This scheme is defined as follow: 
a) select the set },...,{

1

NN
k

NN xxT =′ , the same as the 
representation of the KNN classifier. 

b) assign a weight iw  to the i-th nearest neighbor NN
ix , 

using the distance-weighted function. 

         
⎪⎩

⎪
⎨
⎧

−
−

=
,1

,
1
NNNN

k

NN
i

NN
k

i dd
dd

w   
.
,

1

1
NNNN

k

NNNN
k

dd
dd

=
≠
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where NN
id  is the distance of the i-th nearest neighbor to 

the query object, NNd1 is the distance of the nearest 

neighbor, and NN
kd is the distance of the k-furthest 

neighbor. 
c) assign the query object a majority weighted voting 

class label 
maxjc  using the following rule: 

      ∑
′∈

=×=
Tx

NN
ii

c
j

NN
ij

ccIwc )(maxarg
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 .            (4) 

With (3), a neighbor with smaller distance is weighted 
more heavily than one with greater distance: the nearest 
neighbor gets weight of 1, the furthest neighbor a weight 
of 0 and the other neighbors’ weights are scaled linearly 
to the interval in between. 

In addition, we here discuss another weighted voting 
function, called uniform function in [10], for KNN 
(UWKNN). The weight iw  lies on the rank of the nearest 

neighbor NN
ix  rather than the corresponding distance 

NN
id  to the query object. 

                        
i

wi
1

=      ki ,...,1=  .                         (5) 

where iw takes only values from 1 to k/1 . It keeps from 
giving too much weight to the proximate nearest neighbor 
and needs less computation time than the others, but can 
not adjust the distribution of weights, depending on 
nearness of the neighbors to the query object. 

III.  THE PROPOSED WEIGHTED VOTING METHOD 

A.  The motivation 
As discussed in section II, the KNN rule and WKNN 

rule are the most well-known nonparametric classifiers in 
pattern classification. Nevertheless, the issue of the 
sensitivity of the selection of the neighborhood size k 
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largely affects the classification performance of the KNN 
and WKNN rules at present [6], thus, we will address the 
problem in this article. 

For KNN rule, the choice of the optimal or sub-optimal 
k is greatly affected by the finite sample space in the 
practical problem. The issue is mainly generated by two 
reasons: (i) if k is too small, the classification result of the 
query is sensitive to the data sparseness and the noisy, 
ambiguous or mislabelled points; (ii) if k is too large, its 
neighborhood may include many points (outliers) from 
other classes. Clearly, the classification performance of 
the k-nearest neighbor classifier is very sensitive to the 
selected value of k. Moreover, a majority vote is the 
simplest method of combining the class labels for KNN, 
but this can be a problem if the nearest neighbors vary 
widely in their distances and the closer ones more reliably 
indicate the class of the query pattern. In order to deal 
with the sensitivity of the choice of k, a great variety of 
weighted voting methods for KNN have been developed, 
for instance, in [6, 11, 12]. 

Although the weighted voting methods are less 
sensitive to the choice of k than the k-nearest neighbor 
rule, their classification results are still affected by the 
sensitivity of k. Dudani [2] firstly proposed a weighted 
voting method, called the distance-weighted KNN rule 
(WKNN), and then it has been demonstrated that WKNN 
is very much superior to the other weighted voting 
methods through the empirical comparison [13, 14]. 
However, the classification performance of WKNN still 
substantially suffers from the sensitivity of the selection 
of k, owing to the existing outliers in the set of k nearest 
neighbors, particularly in small training sample size 
situations [15]. In addition, the class distribution of a data 
set has a dramatic effect on the performance of WKNN 
and KNN. When the class distribution of a data set is 
irregular and imbalanced, that is, some classes have 
rather more training samples than the others, they are not 
robust to the sensitivity of the selection of k. In such 
cases, the estimate of each conditional class probability of 
the query pattern in a local region of the data space is to 
be very unreliable, because the query may be largely 
subject to the outliers from other classes, and the sum 
weight of each class in the k nearest neighbors is not 
suitable to make the decision for pattern classification. 

Motivated by the problem as mentioned above and 
weighted voting method, we proposed a dual weighted 
voting method for KNN rule (DWKNN). In this new rule, 
the weight for each nearest neighbor in the WKNN rule is 
replaced by the corresponding dual weight. Compared to 
WKNN, the new rule reduces the weight of each nearest 
neighbor except the first closest and k-furthest nearest 
neighbors. It can solve the problem of the sensitivity of 
neighborhood size k without influencing the classification 
performance, especially in the case of the irregular class 
distribution of data sets and small sample size. Therefore, 
it is robust to the sensitivity of choice of k and improves 
the classification performance. The experimental results 
show the effectiveness of the new classifier in such 
practical situations. 

B.  The proposed dual weighted voting  for KNN rule 
In order to address the sensitivity of selection of k, a 

simple and effective classifier, a dual weighted voting k-
nearest neighbor rule (DWKNN), is proposed. The new 
rule can overcome the influence of the sensitivity and 
improve the classification performance of KNN and 
WKNN. Let NN

k
NN xx ,...,
1

 be the k-nearest neighbors to 

the query object x′ , and NN
k

NN dd ,...,
1

be the 
corresponding distances, arranged in an increasing order, 
in terms of the dissimilarity between NN

ix  and x′ . The 
DWKNN rule is based on both the distance-weighted 
voting and uniform weighted voting functions: to give 
different weights to the k-nearest neighbors depending on 
their distances and their ranks of the nearest neighbors, 
with closer neighbors having greater weights. And then, 
the proposed dual weighted voting function  is defined as 
follow: 

⎪⎩

⎪
⎨
⎧

×
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            (6) 

In the following, we predict the class of the query 
object by the majority weighted voting, the same as (4). 

  ∑
′∈

=×=
Tx

NN
ii

c
j

NN
ij

ccIwc )(maxarg
max

 .              (7) 

It is clear that the dual weight of each nearest neighbor 
consists of two parts: the first part is same as the weight 
of the WKNN rule, the second is the weight of the 
UWKNN rule. As can be seen from (6), it is obvious that 
the dual weight iw  is less than the weight computed by 
(3) and (5), except the weights of the first and k-further 
nearest neighbors. As a consequence, the corresponding 
neighbor NN

ix  has less influence on the classification  
performance of the query object. We can see that the new 
rule not only adjusts the distribution of the weights 
according to the nearness of neighbors, but also relies on 
the ranks of neighbors. In the new rule, the nearest 
neighbor gets weight of 1, and the DWKNN rule is equal 
to the NN rule when k=1. Moreover, the furthest k-th 
neighbor gets a weight of 0 and the other weights are 
scaled linearly between 0 and 1. 

C.  The DWKNN algorithm  
We summarize the novel dual weighted voting for the 

majority k-nearest neighbor rule in the algorithmic form 
as below. It should be noted that the optimal parameter 
value of neighborhood size k is empirically selected by 
the Leave-One-Out method for each classification task. 

Inputs:   
x′ : a query object. 

             },...,1),,{( Nicx ii = : the training set. 
Step 1: Calculate the distances. 

for i=1 to N 
                 )()( i

T
ii xxxxd −′−′=  

end 
Step 2: Sort the distances in an ascending order. 
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   (a) Influence of the neighborhood size k on accuracies. 

(b) Influence of sample size on accuracies. 
Figure 1.  The  classification results on the artificial date set  

            )',(]_,[ dascendsortdistsortedc i ′=  
Step 3: Find the set of k nearest neighbors of the query 

object x′ , },...,{ 1
NN
k

NN xxT =′ . 
for i= 1 to k 

)(_)(_ , iindexsorted
NN
iiindexsorted

NN
i ccxx ==  

end 
Step 4: Compute the weights of the k nearest neighbors. 

for i=1 to k 
                  case1: NNNN

k dd 1≠  

                       
idd

ddw NNNN
k

NN
i

NN
k

i
1

1

×
−
−

=  

                   case2: NNNN
k dd 1=  

                       1=iw  
end 

Step 5: Compute the sum of weights for each class in 
the k nearest neighbors set. 
for i=1 to k 

                  ∑
′∈

=×=
Tx

NN
iic

NN
i

ccIwwsum )(_  

end 
Step 6: Assign a majority weighted voting class label 

maxc  to the query object. 
                 )_(maxargmax c

c
wsumc =  

IV.  EXPERIMENTAL RESULTS 

In this section, we systematically assess classification 
performance of the proposed classifier. The classification 
accuracy (or error rate) is the most effective measure of 
the performance of a classifier in pattern classification. In 
order to attain the reliable classification performance of 
our proposed classifier, we conduct experiments on 
twelve real data sets and one artificial date set 
respectively. These real data sets are selected from the 
UCI machine learning repository [16], with numeric 
attributes only, for simplicity of the distance metric. The 
Euclidean distance is used as the distance metric. To 
verify the estimated accuracies or error rates to be reliable 
in predicting the performance of the classifiers, we adopt 
the Leave-One-Out (LOO) method. LOO treats each 

TABLE I.   
SOME CHARACTERISTICS OF THE UCI DATA SETS USED: THE NUMBER OF 

INSTANCES, ATTRIBUTES, AND CLASSES. 

Data set Attributes Instances Classes 

Pendigits 16 10992 10 

Optdigits 64 5620 10 

Ionosphere 34 351 2 

Glass 10 214 7 

Landsat Satellite 36 6435 7 

Libras Movement 90 360 15 

Wine Quality-Red 11 1599 11 

Zoo 17 101 7 

Vehicle 18 946 4 

Wine Quality-White 11 4898 11 

Letter 16 20000 26 

Image Segmentation 19 2310 7 

TABLE II.   
THE LOWEST ERROR (%) OF EACH METHOD WITH THE CORRESPONDING K 

IN THE PARENTHESIS FOR ALL DATA SETS 

Data set KNN WKNN UWKNN DWKNN

Ionosphere 13.39(1) 13.39(1) 13.39(1) 12.54(14)

Landsat Satellite 8.44(4) 8.45(7) 8.34(6) 8.34(46)

Libras Movement 12.78(1) 12.78(1) 12.78(1) 12.50(6)

Glass 26.64(1) 26.64(1) 26.64(1) 25.23(8)

Vehicle 33.45(5) 32.74(6) 33.45(7) 33.92(30)

Wine Quality-White 38.38(1) 38.36(4) 38.38(1) 38.10(17)

Zoo 1.98(1) 1.98(1) 1.98(1) 1.98(1) 

Wine Quality-Red 38.46(1) 38.15(6) 38.46(1) 36.52(44)

Pendigits 0.58(3) 0.53(6) 0.55(4) 0.55(22)

Optdigits 1.00(4) 0.96(7) 1.01(8) 1.03(32)

Image Segmentation 3.33(1) 3.12(6) 3.33(1) 3.29(9) 

Letter 3.64(4) 3.29(8) 3.39(7) 3.32(50)

Average Error 15.17 15.03 15.14 14.78 
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Figure 2.  The  classification accuracies via the neighborhood size k on each real data set. 

object in a data set as a query object once, and the others 
as training objects. LOO can maintain the statistical 
independence between the training set and test samples. 
In our experiments, we select the optimal value of the 
neighborhood size k, which minimizes the error rate 
estimated by LOO method. 

A.  Experimental data sets 
We briefly describe the overall properties of the 

selected data sets. The artificial data set, with two classes 
and 12 dimensionalities, is generated by using a singular 
normal density function. Each class has the equal 

probability. In the data set, iu  is the mean vector, 

021 == uu , ∑ i
 is the covariance matrix from class 

ic , 
121 2I=∑ , 

122 6I=∑ . The real data sets are depicted 
in Table 1. The number of instances varies from 101 (Zoo) 
to 20000 (Letter) while the number of attributes varies 
from 10 (Glass) to 90 (Libras Movement). Amongst the 
twelve real data sets, eleven data sets are multi-class 
classification tasks, one data set (Ionosphere) is two-class 
classification task. There are two data sets (Libras 
Movement and Image Segmentation) with the same 
number of samples of each class, and four data sets 
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Figure 3.  The  classification accuracies via the neighborhood size k on each real data set. 

(Vehicle, Pendigits, Letter and Optdigits) with the 
approximately same number of samples of each class. 
However, the rest data sets (Zoo, Ionosphere, Landsat 
Satellite, Glass, Wine Quality-Red and Wine Quality-
White) have the imbalanced or irregular class distribution 
respectively. For instance, the smallest class of Wine 
Quality-White has 5 samples, and the largest class has 
2198 samples. 

B.  Experiment 1 
In order to test the classification performance of our 

proposed classifier, experiments are firstly conducted on 
the artificial data set varying with the neighborhood size k 
and the number of the training samples. Fig. 1 shows the 

classification results. Fig. 1 (a) shows the influences of 
the neighborhood size k on the classification accuracies 
with total 600 samples in artificial data set. The interval 
of neighborhood size k ranges from 1 to 50. Fig. 1 (b) 
shows the influences of sample size on the classification 
accuracies. We randomly generate training samples with 
number of 100, 200, 300, 400, 500, 600, 700, 800, 900, 
1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 
1900 and 2000 respectively, and set the value of k to be 
15. The experimental results in Fig. 1 suggest that the 
classification performance of the proposed classifier is 
better than other methods with increasing neighborhood 
size k and sample size in the data set. 
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C.  Experiment 2 
We further conduct the experiments to investigate the 

classification performance of the proposed classifier on 
the real data sets. The proposed classifier is compared 
with the KNN, WKNN and UWKNN classifiers, in terms 
of the classification accuracy or error rate on the query 
object.  

The best resulting error rates (%) of each classifier on 
the benchmark data sets are shown in Table 2. The 
numbers in the parenthesis represent the corresponding 
optimal neighborhood size k of each method on each data 
set. It should be noted that the neighborhood size k ranges 
from 1 to 50. The error rates in bold-faces are the 
smallest error rates between the four classifiers on each 
data set, and the bold numbers in the parenthesis are the 
corresponding optimal value of k. As shown in Table 2 at 
the best cases, the DWKNN classifier is found to be 
superior or comparable to the KNN, WKNN and 
UWKNN classifiers, and the average error rates of 
DWKNN on all the real data sets is lower than the other 
methods. We can see that the classification performance 
of DWKNN is better than that of KNN on whole data sets 
except Zoo, Vehicle and Optdigits, WKNN  in 6 out 12 
data sets, and  UWKNN in 7 out of 12 data sets. 

Furthermore, the most important observation is that the 
best neighborhood size k of many data sets is determined 
as one as shown in Table 2. It has been well known that 
the error rate of NN rule is bounded above by twice the 
optimal Bayesian error [4]. On the one hand, a larger 
value of the neighborhood size k guarantees a lower error 
rate only if the distribution around a query object is dense 
enough, that is, there are a great many training samples 
[17]. However, in the case of the data sets with finite 
number of training samples, as in our experiments, a large 
value of k may not guarantee a better classification result 
owing to the outliers from other classes. Consequently, 
the NN rule results in the best performance for many data 
sets in Table 2. On the other hand, with a small value of k, 
the classification result can be unreliable due to data 
sparseness or noise objects [6, 14]. It is more interesting 
that, unlike the other methods, DWKNN has the large 
optimal values of neighborhood size k at almost cases. 
For our proposed classifier, the best classification 
performance is always obtained by equal or greater than 6 
nearest neighbors, that is, the values of k is usually larger 
than 6, except that the same performance is attained on 
Zoo data set. And the optimal value of neighborhood size 
k of  the DWKNN rule is larger than the KNN, WKNN 
and UWKNN rules besides Zoo. So we can see that the 
achieved optimal classification performance of DWKNN 
is attained by utilizing more nearest neighbors and it 
overcomes the negative effects of oversmoothing with 
increasing the value of the neighborhood size k. Hence, 
the proposed dual weighted voting scheme, which further 
reduces the each weight of the k nearest neighbors, is 
definitely verified on the real data sets. 

In order to investigate the classification performance of 
the new dual  weighted voting method for KNN via the 
neighborhood size k in terms of the classification 
accuracies, Fig. 2 and Fig. 3 show the classification 

results of all methods for each real date set. We can see 
that all data sets result in a similar pattern. As depicted in 
Fig. 2 and Fig. 3, it can be found that the classification 
performance of DWKNN is superior to which of the other 
methods at almost cases, especially in the case of a large 
value of the neighborhood size k on each data set. As for 
the proposed DWKNN classifier, in contrast to the other 
three methods on each real data set, the larger the value 
of k is, the better the performance is. Moreover, the 
classification accuracies of KNN, WKNN and UWKNN 
descend rapidly as k increases, however, DWKNN 
remains stable or even increased for some data sets 
(Optdigits, Wine Quality-Red and Letter). In addition, the  
proposed classifier is robust to the data sets with the 
imbalanced class distribution and remarkably improves 
the classification performance (Zoo, Ionosphere, Landsat 
Satellite, Wine Quality-White, Wine Quality-Red and 
Glass). As a consequent, DWKNN is less sensitive to the 
choice of k than the others and is robust over a wide 
range of k, and obtains the satisfactory classification 
performance. 

Therefore, we can draw a conclusion that the proposed 
classifier has five benefits: (a) it can employ more nearest 
neighbors to keep the estimate of the majority voting 
smooth, in other words, it takes into account a large 
region of data space with a large value of neighborhood 
size k to improve the classification performance [14]. (b) 
it can reduce the influence of the outliers from other 
classes when k is too large, and overcome the sensitivity 
of noise points when k is too small [6]. (c) it is robust to 
the data sets with the imbalanced class distribution. (d) 
the classification performance is less sensitive to the 
choice of k and robust over a wide range of k. (e) the 
satisfactory classification performance results from a 
larger value of k than that of the other methods. So the 
proposed classifier is a robust and effective algorithm for 
the classification task in many practical situations. 

V.  CONCLUSIONS 

In this paper, a dual weighted voting method, based on 
the distance-weighted voting and uniform weighted 
voting functions for KNN, has been proposed. The new 
classifier aims at overcoming the influence of the 
sensitivity of the selection of the neighborhood size k, 
and improving the classification performance. Compared 
to KNN, WKNN and UWKNN, the experiments of the 
proposed classifier is conducted on each data set, in terms 
of the classification accuracies or error rates. The 
experimental results suggest that this new classifier 
always outperforms the other classifiers, especially in the 
case of a large value of neighborhood size k. Therefore, it 
can be concluded that the proposed classifier is a 
promising algorithm owing to its robustness and 
effectiveness. However, it should be noted that our study 
has been explored only on the classification tasks with 
numerical data, and the dual weighted voting reduces 
impact of the nearest neighbors in the same class as the 
query object and may have a negative effect on the 
classification performance, these problem should be 
further studied in the future. 
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