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Abstract—Solving linear variational inequality by 
traditional numerical iterative algorithm not only can not 
satisfy parallel, but also its precision has much relationship 
with initial values. In this paper, a novel hybrid 
coevolutionary particle swarm optimization is used to solve 
linear variational inequality, which sufficiently exerts the 
advantage of particle swarm optimization such as group 
search, global convergence and it satisfies the question of 
parallel solving linear variational inequality in engineering. 
It also overcomes the influence of initial values. Several 
numerical simulation results show that the coevolutionary 
algorithm offers an effective way to solve linear variational 
inequality, high convergence rate, high accuracy and 
robustness.  
 
Index Terms—linear variational inequality; extragradient 
method; particle swarm optimization; parallel; global 
convergence; coevolution 
 

I.  INTRODUCTION 

Linear variational inequality problem (LVIP) is a 
fundamental field. It plays an important role in 
differential equation, mechanics, cybernetics, game 
theory economy and finance, transport and many other 
fields. Linear variational inequality problem can be 
described as follows:   

Suppose that S  is a nonempty closed convex subset 
of nR , find a vector *x S∈  such that the inequality 

* *, 0,Mx q x x〈 + − 〉 ≥                        (1) 
i.e. 

* *( ) ( ) 0,Tx x Mx q− + ≥                      (2) 
for all x S∈ .  

Where ( )ij n nM m ×=  is an n n×  real matrix, 

1 2( , , , )T n
nq q q q R= ∈ , ,〈⋅ ⋅〉  denotes the inner 

product in nR . 
So far, this problem has been studies extensively and 

many methods developed for solving the problem, such 
as projection methods, extragradient method, and Newton 
methods, etc [1-3]. Some method [4] may be applied to 
the inequality (1) by reformulating the problem as mixed 
complementarity problem through its KKT system. But 
those approaches increase the dimension of the problem 
by introducing Lagrangian multipliers. Although there are 
plenty of methods proposed for solving the inequality (1), 
most of them rely on iterative methods. It usually claims 
parallel solving linear variational inequality problem in 
engineering and technology, but the iterative algorithms 
that based on traditional digital computer are hard to 
satisfy the demands of parallel solving. Furthermore, the 
convergence of iterative methods has much relationship 
with initial values.  

To overcome these drawbacks, it has important actual 
meaningful to parallel solving the inequality (1) by 
studying and using particle swarm optimization.  

Particle swarm optimization (PSO) [5] is a population-
based, self-adaptive search optimization method 
motivated by the observation of simplified animal social 
behaviors such as fish schooling, bird flocking, etc. It is 
becoming very popular due to its simplicity of 
implementation and ability to quickly converge to a 
reasonably good solution [6, 7]. 

This paper presents a solution to solve linear 
variational inequality by hybrid coevolutionary particle 
swarm optimization. The algorithm can actualize parallel 
search in the feasible region and converge to the global 
optimal solution, which efficiently overcome the defects 
that the traditional methods can not parallel solve linear 
variational inequality in engineering technique and its 
precision has much relationship with initial values.  
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The rest of this paper is organized as follows: in 
Section 2, we give the brief theories of linear variational 
inequality. In Section 3, we propose extragradient method 
for linear variational inequality. Section 4, we introduce 
particle swarm optimization. In Section 5, we propose a 
hybrid coevolutionary particle swarm optimization for 
linear variational inequality. In Section 6, we report 
numerical results of the methods for some test problems. 
Finally, Section 7 gives conclusions. 

II. THE THEORIES OF LINEAR VARIATIONAL INEQUALITY 

In this paper, we select the 2-norm as the vector norm. 
For explicitness, we define the subset:  

1 2{ | ( , , , ) , [ , ], 1,2, , },n T
n i i iS x R x x x x x a b i n= ∈ = ∈ =  

where i ia b≤ .  

1 2( , , , )T n
np p p p R∀ = ∈ , we define the 

function:  

1 1 2 2( ) ( ( ), ( ), , ( ))T
S S S Sn nF p F p F p F p= , 

where 
( ),

( ) ( ),
( ),

i i i

Si i i i i i

i i i

a p a
F p p a p b

b p b

<⎧
⎪= ≤ ≤⎨
⎪ >⎩

               (3) 

 
Obviously, ( )Si iF p  is a monotone continuous 

function whose global Lipschitz constant is 1. 
Theorem 1 [8, 9]: *x  is a solution of the linear 

variational inequality (1) if and only if 
* * *( )Sx F x Mx q= − − .                         (4) 

Theorem 2 [10]:  In S , the fixed point equation: 
( )Sx F x Mx q= − −                              (5) 

 must has a solution.  

III.  EXTRAGRADIENT METHOD FOR LINEAR VARIATIONAL 
INEQUALITY 

Extragradient method often been used to solve linear 
variational inequality. 

Suppose that | |max{ 1,2, , ; 1,2, , }|ijm i n j n= = is 

denoted by k . Korpelevich [11] introduced the following 
so-called extragrient method: 

 
(0)

( ) ( ) ( )

( 1) ( ) ( )

,
( ( )),

( ( )) 0,1, ,

n

t t t
S

t t t
S

x x R
y F x Mx q

x F x My q t

λ

λ+

⎧ = ∈
⎪

= − +⎨
⎪ = − + =⎩

  (6) 

where (0,1/ )kλ∈ . ( )tx and ( )ty refer to some vectors 
and t  is iteration index. 

He showed that the sequences ( ){ }tx  and ( ){ }ty  
generated by (6) converge to the same point.  

The advantage of the method is simple, but its 
disadvantage is its precision has much relationship with 
initial values. 

IV.  PARTICLE SWARM OPTIMIZATION 

A.  Particle Swarm Optimization and Its Improvement 
Particle Swarm Optimization (PSO) is a population 

based algorithm that exploits a set of potential solutions 
to the optimization problem. It provides a method for 
finding the global optimum of a function of several real 
variables. As in the case of genetic algorithms it starts 
with a population of potential solutions. The population is 
called a swarm and the members are called particles. The 
particles belong to a group which may be the population 
as a whole or may be a subpopulation. The particles 
change (evolve, learn) over time in response to their own 
experience and the experience of the other particles in 
their group. As this interpretation suggests, the principles 
underlying the algorithm can be applied not only to the 
solution of optimization problems, but also to the 
representation of social behavior, including economic 
behavior. 

A swarm consists of Np  particles moving around in 
an n-dimensional search space. The ith particle at the tth 
iteration has a position ( )

1 2( , , , )t T
i i i inx x x x= , a 

velocity ( )
1 2( , , , )t T

i i i inv v v v= , the best solution 
achieved so far by itself (pbest) 

1 2( , , , )T
i i i inpb pb pb pb= . The best solution 

achieved so far by the whole swarm (gbest) is represented 
by 1 2( , , , )T

npg pg pg pg= . The position of the ith 
particle at the next iteration will be calculated according 
to the following equations: 

( 1) ( ) ( ) ( )
1 1 2 2( ) ( )t t t t

i i i i iv w v c r pb x c r pg x+ = ⋅ + ⋅ ⋅ − + ⋅ ⋅ − ,   (7) 
( 1) ( ) ( 1)t t t
i i ix x v+ += + ,                     (8) 

where 1c and 2c  are two positive constants, called 
cognitive learning rate and social learning rate, 
respectively; 1r  and 2r  are two separately generated 
uniformly distributed random numbers in the range [0,1]; 
w is inertia weight factor. PSO has received much 
attention. Many researchers have devoted to improving 
its performance in various ways and developed many 
interesting variations. Most variations can be roughly 
grouped into the following categories. 

(a) The improvement depends on incorporating the 
new coefficient into the velocity and position equations 
of the PSO algorithm or rationally selecting the values of 
the coefficients. Angeline [12] pointed that the original 
version of PSO had poor local search ability. In order to 
overcome this disadvantage, Shi and Eberhart [13] 
proposed linearly decreasing weight particle swarm 
optimization (LDWPSO) where a linearly decreasing 
inertia factor was introduced into the velocity update 
equation of the original PSO. Because the inertia factor 
effectively balances the global and local search abilities 
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of the swarm, performance of PSO is significantly 
improved. Clerc [14] presented constriction PSO where a 
constriction factor was introduced into PSO to control the 
magnitude of velocities. It was mathematically proved 
that the resulting algorithm could guarantee the 
convergence even without clamping the velocity. 
However, if the strategy of clamping the velocity was 
combined into the algorithm, the performance could be 
improved further. The constriction PSO has faster 
convergence than LDWPSO, but it is prone to be trapped 
in the local optima when multi-modal functions are 
presented. 

(b) A key feature of PSO algorithms is social sharing 
information among the neighborhood. Therefore, various 
information sharing mechanisms were proposed to 
improve the performance. Kennedy [15] investigated the 
impacts of various neighborhood topologies and pointed 
out that the von Neumann topology results in superior 
performance. Suganthan [16] introduced a variable 
neighborhood operator. During the initial stages of the 
optimization, the neighborhood will be an individual 
particle itself. As the number of generations increases, the 
neighborhood will be gradually extended to include all 
particles. Mohais [17] proposed dynamically adjusted 
neighborhood where randomly generated, directed 
structures were used as the topology of the initial 
population and then edges of the structures were 
randomly migrated from one source node to another 
during the course of run. Liang et al. [18] presented a new 
learning strategy to make particles have different learning 
exemplars for different dimensions. Van den Bergh and 
Engelbrecht [19] proposed to split the solution vector into 
several sub-vectors which were then allocated their own 
swarms. Peram et al. [20] proposed to utilize the 
additional information of the nearby higher fitness 
particle that was selected according to fitness-distance-
ratio (FDR) that denoted the ratio of fitness improvement 
over the respective distance. Baskar and Suganthan [21] 
proposed a novel concurrent PSO algorithm where 
modified PSO and FDR-PSO algorithms were simulated 
concurrently with frequent message passing between 
them. Janson [22] used dynamic hierarchy to define the 
neighborhood structure. He introduced an additional 
component, passive congregation, into the velocity 
update equation. 

(c) The operators of other evolutionary algorithms 
were combined with PSO. Angeline [23] used selection 
operator to improve the performance of the PSO 
algorithm. Lovbjerg et al. [24] combined the PSO 
algorithm with the idea of breeding and subpopulations. 
Poli et al. extended PSO via genetic programming [25]. 
Zhang and Xie [26] introduced differential evolution 
operator into PSO. Lovbjerg et al [24] combined PSO, 
genetic algorithms and hill climbers. Various mutation 
operators were also incorporated into PSO [27]. 

(d) Some mechanisms were designed to increase the 
diversity in order to prevent premature convergence to 
local minimum. Silva et al. [28] presented a predator–
prey model to maintain population diversity. Zhang et al. 
[29] proposed to re-initialize the velocities of all particles 

at a predefined extinction interval, which simulated 
natural process of mass extinction in the fossil record. 
Krink [30] proposed several collision strategies to avoid 
crowding of the swarm. Lovbjerg [31] used self-
organized criticality (SOC) to add diversity. Riget et al. 
[32] introduced attractive and repulsive PSO where the 
two phases, attraction and repulsion, alternated during the 
search according to a diversity measure. Although 
variations of PSO have applied different strategies and 
parameters, all of them follow the same principle of 
swarm intelligence. Therefore, all variations appear 
similar features of social behavior. Within a swarm, 
individuals are relatively simple, but their collective 
behavior becomes quite complex. A group of particles in 
a swarm move around in the defined search space to find 
the optimum. Each particle relies on direct and indirect 
interaction and cooperation with other particles to 
determine the next search direction and step-size, so the 
swarm will move around and gradually converge toward 
the candidates of global optima or local optima. Thus the 
center of the swarm is probably near to the optimum. 
While this position changes during the search process, it 
can supply very useful information for capturing the 
optimum. 

Empirical results showed the linearly decreased setting 
of inertia weight can give a better performance, such as 
linearly decreases from 1.4 to 0, and 0.9 to 0.4 through 
the search process [33]. In addition, the velocities of the 
particles are confined within max max[ , ]v v− . If an element 

of velocities exceeds the threshold maxv−  or maxv , it is 
set equal to the corresponding threshold. 

In this paper, to improve validity of PSO, we add  
extragradient method into LDWPSO. They frequently 
exchange the best particle of the swarm during the search 
and then guides the whole search process.  

B. Comparison to Genetic Algorithms 
The PSO shares many similarities with evolutionary 

computation techniques such as Genetic Algorithms. 
Both techniques begin with a group of a randomly 
generated population; utilize a fitness value to evaluate 
the population and search for the optimum in a partially 
stochastic manner by updating generations. There are 
however important differences. Although PSO algorithm 
retains the conceptual simplicity of the GAs, its’ 
evolutionary process does not create new population 
members from parent ones; all swarm individuals survive. 
The original PSO does not employ genetic operators such 
as crossover and mutation and particles only evolve 
through their social behavior. Particles’ velocities are 
adjusted, while evolutionary individuals’ positions are 
acted upon. In GAs chromosomes share information with 
each other, thus the whole population moves like one 
group towards an optimal area whereas in PSO the 
information exchange information is a one-way process 
since only the (local) global best provides information to 
members of the (sub) swarm. PSO in comparison with 
GAs, has less complicated operations and it is much 
easier to implement and apply to design problems with 
continuous parameters. Moreover in [34] it is shown that 
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binary PSO outperforms GAs in terms of convergence, 
results and scalability of the problems at hand. In the 
same study it is suggested that a hybrid model combining 
characteristics of GA and PSO is preferable. In [35] PSO 
is shown to exhibit faster convergence compared to GAs.  

V.  HYBRID COEVOLUTIONARY PARTICLE SWARM 
OPTIMIZATION FOR LINEAR VARIATIONAL INEQUALITY 

A. The Principle of Solving Linear Variational 
Inequality by Hybrid Coevolutionary Particle Swarm 
Optimization (HCPSO) 

Many methods for solving linear variational inequality 
adopt the idea of reformulating the problem as a system 
of nonlinear equations or an optimization problem with 
zero global minimum value [36]. To reformulate the 
LVIP as an optimization problem, we usually use so-
called merit functions. Any global minimum of a merit 
function, sayθ , with zero function value is a solution of 
LVIP (1) and vice versa. So the LVIP (1) is equivalent to 
the following global optimization problem with zero 
minimum value: 

min ( )xθ                                     (9) 
i.e. 

2min ( )Sx F x Mx q− − −                (10) 

s.t.  .x S∈  
Where 2|| ||⋅  represents the 2-norm. Therefore, we can 
define the fitness function: 

2|| ( ) ||Sfitness x F x Mx q= − − − .         (11) 

Obviously, the solution *x  to the linear variational 
inequality is the best solution to the function 
optimization. Hence our task is to 

minimize 2|| ( ) ||Sx F x Mx q− − −  

. .s t  x S∈ .  
Extragradient method are very simple and efficient, but 

its precision has much relationship with initial values; for 
PSO, it has group search, global convergence, parallel 
and robustness, but its efficiency is low in the latter half 
evolution process.  

We use PSO and  extragradient method not only group 
search, global convergence, parallel and robustness but 
also to improve the validity of PSO algorithm. The 
evolutionary algorithm is a population-based algorithm. It 
makes use of a fitness function to evaluate the goodness 
of a solution, thereby keeping the population set 
consisting of promising solutions. If, during the search, 
the population set gets stuck around a point which is not a 
global minimum, extragradient method direct the 
population set to another possible region which may 
contain a global solution.  

We combine the two algorithms so that they 
complement each other, to design a hybrid 
coevolutionary algorithm to solve linear variational 
inequality. 

B. The Process of Solving Linear Variational Inequality 
by Hybrid Coevolutionary Particle Swarm 
Optimization (HCPSO) 

We give a new concept: memory extragrient method as 
follows: 

Definition 1 In extragrient method, the vector x  
iterate l times,  1l −  times  don’t  output, only after l th 
time, its result output. It is called memory extragrient 
method. 

Memory extragrient method as follows: 
Function  memory_extragrient( l , x  ) 

While (t<l) do 
(0) ;x x=  
( ) ( ) ( )( ( ));t t t

Sy F x Mx qλ= − +  
( 1) ( ) ( )( ( ));t t t

Sx F x My qλ+ = − +  
End While 
Output the result ( 1)tx + . 

Where l  is a positive integer, is called Memory length. 
Then, the coevolutionary algorithm of PSO and 

extragrient method for LVIP flow chart is the following 
Fig.1. 

 

 
The steps of solving linear variational inequality by 

hybrid coevolutionary particle swarm optimization are 
illustrated as follows: 

Step1. Setting evolution parameters; 
Step2. Initializing the position vector and velocity 

vector of each component of each particle, determining 
the personal best location and the best location among the 
entire swarm; and initializing (0)x  

Step3. Calculate the weight value in current iteration 
according to (12):  

max min
max

w ww w iter
maxiter

−
= − ⋅ ,                    (12) 

( ) ( )Efitness x fitness pg<Epg x=

(0)x

Ex

(0)x pg=

( )Efitness x ε<
or G maxiter>

 
 

Figure 1.  The flow chart  of the hybrid coevolution 
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where maxw and minw are the maximum value and 
minimum value for weights, respectively, iter  is the 
current iteration, and maxiter is the maximum iteration; 

Step4. Calculate the fitness value of all particles 
according to (11), and derive the best particle of current 
iteration, and the best position that every particle has 
reached so far. 

Step5. If ( ) ( )Efitness x fitness pg< , then 

Epg x= , else (0)x pg= . 
Step6. Update velocity and position of every particle 

according to (7) and (8). 
Step7. If the stop criteria are satisfied, output the 

obtained best solution and the algorithm is ended; 
otherwise, go to Step 3. 

This hybrid algorithm has the following characteristics: 
(a)  Structure supplementary, enhances parallelism. 
The extragrient method’s structure is simple, is the 

serial structure; PSO is the parallel structure. After mix, 
those enhance the entire algorithm parallelism.  

(b) Behavior supplementary, raises the convergence 
speed. 

The extragrient method iterates quickly, but it hasn’t 
the population information, easy to fall into the local 
minimum; The PSO iteration does not be quick, but has 
certain overall situation ability. After the mix, may 
enhance PSO the convergence rate. 

(c)  Weakens the stringency of parameters. 
The two algorithms have some parameters, the latter 

experiments show that the mixed algorithm is dependent 
on the parameters is not strong. 

VI.  SIMULATION EXPERIMENTS 

Several experiments have been conducted to evaluate 
the performance of the proposed CHPSO. In the 
experiments, the number of particles of the 
swarm Np was set at 30 and the maximum number of 
iterations maxiter  was set at 50. Other parameters were 
set at max 1.4w = , min 0w = , 1 2c = , 2 2c = , max 2v = , 

10l = and 0.5λ = .  
The experimental conditions are: Intel(R) Core (TM) 2 

Duo 2.20GHz CPU, 1G Memory and Windows XP 
operation system. The programs are realized in Matlab7.  

To decrease the impact of randomicity, 20 independent 
runs were performed for each test case. The best optimal 
solution, the west optimal solution, the average solution 
and between them to the exact solution were recorded, 
meanwhile the average error curve of each iteration in 
evolution of 20 independent runs for each test case were 
given. 

Example 1:  Let (1, 5)Tq = − , 

1 2 / 2 2 /3

2 /3 1 2 /3
M

⎛ ⎞+
= ⎜ ⎟⎜ ⎟− +⎝ ⎠

 and [1,2] [3,4]S = × . We 

want to find a vector *x S∈  such that (1) for all y S∈ . 
Its exact solution is (1, 3.718491035931836)T. For 

extragrient method, its initial value (0) (2,3)Tx = , 
0.5λ = . For LDWPSO and HCPSO, 20 independent 

runs were performed, respectively. Table1 and Fig.2 
show the results of 20 runs. 

 
 

 Figure 2.  Average error curve for Exmple 1

TABLE I.   
EXPERIMENTAL RESULTS FOR  EXAMPLE 1 

Algorithm Optimal solution x  Error 
*

2|| ||x x−  

HCPSO 

west 

(1.000000000
000000, 

3.7184910359
31838)T 

2.22044604925031
3e-015 

best 

(1.000000000
000000, 

3.7184910359
31836)T 

4.44089209850062
6e-016 

average 

(1.000000000
000000, 

3.7184910359
31835)T 

7.10542735760100
2e-016 

LDWPSO 

west 

(1.000000000
000000, 

3.7184906850
79734)T 

3.50852102037890
8e-007 

best 

(1.000000000
000000, 

3.7184910338
47485)T 

2.08435135817808
3e-009 

average 

(1.000000000
000000, 

3.7184910053
21227)T 

4.59509562400484
1e-008 

Extragrient 
method --- 

(1.000000000
000000, 

3.7184844569
90989)T 

6.57894084676868
8e-006 
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Example 2:  Let  ( 1,1, 0.5)Tq = − − ，

0.1 0.1 0.5
0.1 0.1 0.5
0.5 0.5 1

M
−⎛ ⎞

⎜ ⎟= ⎜ ⎟
⎜ ⎟−⎝ ⎠

   and  

[ 5,5] [ 3,1] [ 4,3].S= − × − × −  

We want to find a vector *x S∈ such that (1) for 
all y S∈ . Its exact solution is (2.5, -2.5, -2)T . For 

extragrient method, its initial value (0) (0, 1, 2)Tx = − . 
For LDWPSO and HCPSO, 20 independent runs were 
performed, respectively. Table2 and Fig.3 show the 
results of 20 runs. 

 
 

 
Example 3: 

Let ( 1, 1, 1, 1, 1, 1, 1, 1)Tq = − − − − − − − − ,  
 

1 2 2 2 2 2 2 2
0 1 2 2 2 2 2 2
0 0 1 2 2 2 2 2
0 0 0 1 2 2 2 2
0 0 0 0 1 2 2 2
0 0 0 0 0 1 2 2
0 0 0 0 0 0 1 2
0 0 0 0 0 0 0 1

M

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

    and  

 
[0,2] [0,2] [0,2] [0,2] [0,2] [0,2] [0,2] [0,2].S = × × × × × × ×

We want to find a vector *x S∈ such that (1) for 
all y S∈ . Its exact solution is (0, 0, 0, 0, 0, 0, 0, 1)T . For 
extragrient method, its initial value 

(0) (1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5)Tx = . For 
LDWPSO and HCPSO, 20 independent runs were 
performed, respectively. Table3 and Fig.4 show the 
results of 20 runs. 
 

Figure3.  Average error curve for Exmple 2 

TABLE II.  
EXPERIMENTAL RESULTS FOR  EXAMPLE 2 

Algorithm Optimal solution x  Error 
*

2|| ||x x−  

HCPSO 

west 

(2.499999999
999998,  

-2.500000000 
000003, 

-2.000000000 
000000) T 

3.20237283398937
7e-015 

best 

(2.499999999
999998,  

-2.500000000 
000003, 

-2.000000000 
000000) T 

3.20237283398937
7e-015 

average 

(2.499999999
999998,  

-2.500000000 
000003, 

-2.000000000 
000000) T 

3.20237283398937
7e-015 

LDWPSO 

west 

(2.193347775
682247,  

-3.000000000 
000000, 

-2.064455381 
986260) T 

0.59007633654131
6 

best 

(2.499550187
663737,  

-2.499651619 
860490, 

-1.999819645 
112649) T 

5.96848175712219
3e-004 

average 

(2.470433713
720782,  

-2.549864350 
200948, 

-2.007069394 
971227) T 

0.06261088852596
1 

Extragrient 
method --- 

(2.495522823
984001,  

-2.504477906 
996408, 

-1.999998078 
513037) T 

0.00633220023679
2 
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From Table1, Table 2, Table 3, Fig.2, Fig.3 and Fig.4, 
we find that the proposed algorithm enable global 
convergence to the best solution, has high accuracy, high 
convergence rate and parallelism. It is much better than 
LDWPSO and the extragrient method.  

VII.  CONCLUSIONS 

In this paper, we present a novel hybrid coevolutionary 
algorithm for solving linear variational inequality by PSO 
such as group search, parallel and global convergence. 
This algorithm avoids the trivial deviate operation in 
solving linear variational inequality by traditional 
methods and overcome the defect that the convergence of 
traditional methods has much relationship with initial 
values, whose parallelism satisfies the question of parallel 
solving linear variational inequality in engineering 
technique. Experimental results show that the algorithm 
can converge to the best solution, and it has high 
accuracy, high convergence rate and parallelism make it 
easily use in engineering. 
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