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Abstract—Wind turbine can be divided into two categories: 
fixed speed wind generators (FSWGs) and variable speed 
wind generators (VSWGs) . VSWGs’s bus can be dealt with 
as PV-bus or PQ-bus in power flow calculation because 
reactive power compensation can be performed. Dynamic 
optimal power flow (DOPF) in VSWGs integrated power 
system is a typical complex multi-constrained non-convex 
non-linear programming problem when considering the 
valve-point effect of conventional generators. In this paper, 
an improved evolutionary programming (IEP) is proposed 
to solve DOPF in VSWGs integrated power system. In the 
methodology, the well-known evolutionary programming 
(EP) is used as a basic level search, which can give a good 
direction to the optimal global region. Then, a local search 
(LS) procedure is adopted as a fine tuning to determine the 
optimal solution. The modified IEEE 30-bus system is 
used to illustrate the effectiveness of the proposed method 
compared with those obtained from EP algorithm. In order 
to verify algorithm effectiveness in more complex power 
system, IEEE 39-bus system is used test system.  It is shown 
that the proposed method is capable of yielding higher-
quality solutions.  
 
Index Terms— wind power generation, variable speed wind 
generators, dynamic optimal power flow, improved 
evolutionary programming 

I.   INTRODUCTION  

Wind energy is the world’s fastest growing renewable 
energy source. With the increasing levels of wind 
generator penetration in modern power systems, one of 
major challenges in the present and coming years is the 
optimization control, such as optimal power flow 
including wind farms [1]. 

Wind turbine can be divided into two categories: fixed 
speed wind generators (FSWGs) and variable speed wind 

generators (VSWGs) . FSWGs are still widely use in 
power system. The disadvantages of FSWGs are as 
follows. 

When wind speed jump, huge wind force will pass 
through wind turbine blade, hit wind generator 
components including the main shaft, gearbox, engines, 
and so on. FSWGs mean that wind speed fluctuations are 
directly translated into electromechanical torque 
variations. This will bring in great mechanical stress and 
cause high fatigue damages on the components, and may 
result in swing oscillations between turbine and generator 
shaft. Also the periodical torque dips because of the tower 
shadow and shear effect are not damped by speed 
variations and result in higher flicker. Furthermore, the 
turbine speed cannot be adjusted with the wind speed to 
optimise the aerodynamic efficiency and wind energy 
utilization coefficient. 

Compared with FSWGs, VSWGs turbine speed can be 
adjusted with wind speed. Mechanical stress is reduced, 
and gust energy can be absorbed by the means of inertia; 
wind energy utilization coefficient is improved, and 
reactive power compensation can be performed. So, 
VSWGs’s bus can be dealt with as PV-bus or PQ-bus in 
power flow calculation. 

In this paper, the problems of dynamic optimal power 
flow (DOPF) including VSWGs are researched. The 
expectation model of wind generators' active power 
outputs is adopted. DOPF is a typical complex multi-
constrained non-convex non-linear programming problem 
in wind power integrated system when considering the 
valve-point effect of conventional generators. Both 
lambda-iterative and gradient technique methods in 
conventional approaches to the problems are calculus-
based techniques and require a smooth and convex cost 
function and strict continuity of the search space. 

In the field of global optimization, evolutionary 
programming (EP) was investigated and proved to be 
powerful in solving these problems in the last decades. 
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EP is a stochastic search technique with biological 
foundations. However, One disadvantage of EP in 
solving some of the multimodal optimization problems is 
its slow convergence to a good near-optimum[2, 3, 4]. 

In this paper, a new improved evolutionary 
programming (IEP) methodology is proposed for solving 
DOPF in VSWGs integrated power system; A simple EP 
[5] is applied as a basic level search, which can give a 
good direction to the optimal global region, and a local 
search (LS) procedure [6, 7] is used as a fine tuning to 
determine the optimal solution at the final. IEP 
methodology enhances the computational accuracy and 
accelerates convergence rate at the later period of the 
searching by adopting LS operator which is invoked if 
fitness evaluation improves. 

The modified IEEE 30-bus system and IEEE 39-bus 
system are used to illustrate the effectiveness of the 
proposed method for solving the established DOPF model 
in VSWGs integrated power system compared with those 
obtained from EP algorithm. It is shown that the proposed 
method is capable of yielding higher-quality solutions. 

II.  DOPF MODEL IN VSWGS INTEGRATED POWER 
SYSTEM 

Due to the random variation of the wind velocities and 
load demands, it is difficult to research the DOPF in the 
power system including wind farms. For simplifying this 
problem, the dividing-stage strategy is adopted in this 
paper. Wind power generated by wind turbines has 
intimate relationship with wind speed. Wind speed is 
converted into power through characteristic curve of a 
wind turbine. According to the wind velocity forecasting 
curves and the load forecasting curves in the planning 
horizon, the expectations of wind generators' power 
outputs and the load demands at dispatch interval can be 
calculated. 

A.  Constraints  
Constraints include equality and inequality constraints. 

The equation constraint is the power flow formulation 
constraint while inequality constraints including generator 
power output, ramp rate and bus voltage are as in(1) -(3) . 
The constraints of real power generation limit and the 
ramp rate are taken into account as in (1) .  

( ) ( )1 1
,min ,maxmax , min ,t t t

i i Ri i i i Ri

gen

P P D T P P P U T

i N

− −⎧ − ∆ ≤ ≤ + ∆⎪
⎨

∈⎪⎩
.  

(1)  

,min ,max ,
Gi
t

Gi Gi genQ Q Q i N≤ ≤ ∈  .                     (2)  

,min ,max ,t
i i iV V V i N≤ ≤ ∈ .                           (3)  

where Pi,min and Pi,max  are the  maximum and minimum 
limits of the power generation of unit i, Pi

t is the real 
power output of unit i at the tth interval, Pi

t-1is the real 
power output of unit i at the t-1th interval; URi is the up-
ramp limit of the ith generator (in units of MW/time-
period) ,and DRi is the down-ramp limit of the ith 

generator (in units of MW/time-period) ;△T is time 
interval, Ngen is the number of conventional generating 
units, and N is the number of system buses (excluding 
slack bus) ; Vi

t is the voltage magnitude output of bus i at 
the tth interval; Qt

Gi is the reactive power output of 
conventional generating unit i at the tth interval; max is 
the maximum value of the variable, min is the minimum 
value of the variable. 

After calculating the power flow, the state variables, 
power loss and real power output of the slack bus 
generator corresponding to the current control variables 
are available. The real power output of the slack bus 
generator will be set to the limit if it violates the limit. 
After handling overlimit of the real power output of the 
slack bus generator, the system power balance constraints 
as in(4) must meet, otherwise adding (4) as penalty terms 
to the objective function to form a generalized objective 
function. Details of the generalized objective function 
used in this paper are given in section C. 

 
1

,
1

0
gen
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N
t t t t t t
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−

=
∆ = + + − − =∑ .         (4)  

where ∆Pt is the unbalance of the real power at the tth 
interval,Ngen-1 represents the number of conventional 
generating units excluding the slack bus, Psl

t is the real 
power output of the slack bus generator after handling its 
overlimit at the tth interval, Pls

t is the total power loss at 
the tth interval, Pld

t is the total load expectation at the tth 
interval, Pt

w,av is the expectation of wind generators’ real 
power outputs at the tth interval. 

B.  Objective Function  
Due to the fact that wind generation does not consume 

the fuel, the utility must purchase all the energy produced 
by wind generating units. Consequently, the objective is 
to minimize the following total incremental fuel cost 
function F associated to Ngen dispatchable units for T 
intervals in the given time horizon, subject to the above-
mentioned equality and inequality constraints. 

( )
1 1

min
genNT

t
i

t i
F F P

= =
= ∑∑  .                 (5)   

The inclusion of valve-point loading effects makes the 
modeling of the fuel cost function of the unit more 
practical. This increases the non-linearity and local optima 
in the solution space. Also the solution procedure can 
easily trap in the local optima in the vicinity of optimal 
value. The fuel cost function of the ith unit F (Pi

t) with 
valve-point loadings are represented as follows 

( ) 2
,minsin( ( )t t t t

i i i i i i i i i iF P a b P c P e f P P= + + + − .                     (6)  

where ai, bi, and ci are cost coefficients and ei, fi are 
constants from the valve-point effect of the ith generating 
unit. 

C.  Evaluation Function  
We must define the evaluation function for evaluating 

the fitness of each individual in the population. In the 
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most of the nonlinear optimization problems, the 
constraints are considered by generalizing the objective 
function using penalty terms. 

To sum up, the above problems are generalized as 
follows 

{ ( )

( ) }

lim 2

1 1 1

2lim 2

1 1

( )

( )

gen

PQ

gen

NT T
t t
i V i i
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= = = ∈
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+ − +

+ − + ∆

∑∑ ∑∑

∑∑ ∑
.                 (7)  

where KV, KQ and KD are variable overlimit penalty 
coefficients, Vi

t is the voltage magnitude of bus i at the tth 
interval (excluding the slack bus and PV bus ) ; Qt

Gi   is 
the reactive power output of generator i at the tth interval; 
Vi

lim  and QGi
lim denote the violated upper or lower limits. 

In this paper, KV, KQ are set to 1, 1 respectively. 
Because the unbalance of the real power ∆P is hard to 
meet, an adaptive penalty function to handle penalty 
coefficient KD is adopted, KD=k k γβα, where k is the 
algorithm’s current iteration number; β is a relative 
violated value of the constraints, γ is a multi-stage 
assignment value, a is the power of the penalty value. 

Meanwhile, several experiments have been done in 
order to obtain the penalty parameters. In this study, if 
β≤1 then a=1, otherwise a=2. Furthermore, if β≤0.001, 
then γ=1, else, if β≤0.01 then γ=10, else, if β≤0.1 then 
γ=30, else, if β≤1 then γ=100, otherwise γ=300. 

III.  IEP AND IMPLEMENTS  

A.  Evolutionary Programming 
EP is a powerful global optimization technique, has 

proved itself effective to handle complex optimization 
problems [2,3,4].EP starts with a population of randomly 
generated candidate solutions and evolves towards the 
better solutions over a number of iterations. It uses 
probabilistic rules to explore the complex search space. 
Hence, it is more suitable to effectively handle complex 
optimization problems. The main stages of EP include 
initialization, mutation, and competition and selection. 
The generalized mapping procedure of the EP technique 
is as follows 

1) Representation and initialization 
For DOPF problem including VSWG, there are T 

dispatches by Ngen-1 conventional generating units. An 
individual array of control variable arrays is 

1 2
1 1 1 1
1 2
2 2 2 2

1 2
1 1 1 1

1 2

P

− − − −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

t T

t T

t T
n n n n

t T
n n n n

P P P P

P P P P

P P P P

P P P P

.                      (8)  

1,2,P = g  .                                   (9)  

where P is individual vector, g is the number of 
population individuals, Pn

t is the real power output of nth 

generating unit at the tth interval. 
For the complete g population individuals, the 

candidate solution of each individual is randomly 
initialized within the feasible range in such a way that it 
should satisfy the constraint given by (1) . 

2) Power flow and fitness calculation 
Through the power flow calculation including wind 

farms, the state variables, power loss and real power 
output of the slack bus generator corresponding to the 
current control variables have been able to get. The real 
power output of the slack bus generator will be set to the 
limit if it violates the limit. After handling overlimit of 
the real power output of the slack bus generator, the 
system power balance constraints as in(4) must meet, 
otherwise adding (4) as penalty terms to the objective 
function to form a generalized objective function. In this 
paper, (7) is used as the fitness or evaluation function. 
This is a generalized fitness function used to evaluate the 
fitness of the candidate solution of each individual. Also, 
record the individual’s position with the global best 
fitness as gBest, record the current position of each 
individual as its current pBest. Set the iteration count 
k=0. 

3) Creation of offspring 
The value of each decision variable in the individuals 

of the offspring population is obtained by perturbing the 
corresponding variable pi,j in the individuals of the 
parents population according to 

, , , ,' [ ] [ ] [ ] (0,1)[ ]i j i j i j i jp k p k k N kσ= + ⋅ .                 (10)  

where σi,j[k] denotes the corresponding strategy 
parameter of  pi,j[k] and Ni,j(0,1) [k] is a Gaussian random 
value generated anew at each time of mutation. If the 
p’

i,j[k] is outside the range, it is fixed to the boundaries.  

' '
, ,max ,min

max

[ ][ ] [ ] ( )
[ ]

i
i j j j

F kk k p p
F k

σ β= − .               (11)  

where Fi[k] denotes the fitness value of the ith individual 
in the kth generation; Fmax[k] and Fmin[k] denote the 
maximum and minimum fitness in the kth generation.  
where β is a scaling factor, which can be tuned during the 
process of search for optimum. The value of β used here 
was suggested by [3,4]. 

4) Selection and Competition 
The q-tournament selection scheme is adopted in this 

paper. Each individual is assigned a score si according to 

,
1

q

i i l
l

s s
=

= ∑ .                                    (12)  

1 ,
0 ,

i l
il

i l

if F F
s

if F F
<⎧

= ⎨ >⎩
.                           (13)  

where Fi is the fitness of individual i, Fl is the fitness of 
an opponent individual randomly selected from the whole 
2N individuals, and q is called the tournament size. The N 
individuals with higher scores are selected to form the 
parent population of the next generation. Tournament 
size q is set to 0.9N in this paper. 
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B.  LS Subroutine 
EP is a powerful global optimization technique, has 

proved itself effective to handle complex optimization 
problems. However, the standard EP convergence rate is 
very slow [2,3,4]. Consequently, the IEP of blending the 
standard EP with the following LS is proposed. 

The LS procedure is outlined below [6,7]. 
The initial search point is taken as PG

0, PG
0 = [xg1

0 xg2
0, 

…,xGd
0]T and  the evaluation function  value at PG

0  is 
F0

gbest . where D is the number of dimension. 
Step 1) The initial LS range is selected around PG

0 as 
follows 

min ' 0 '
min min( )GY P P P β= + − ×  .                   (14)  

max ' ' 0
max max( )GY P P P β= − − × .                   (15)  

0 max min ' '
max min( )(1 )R Y Y P P β= − = − −  .     (16)  

where Ymin and Ymax are the lower and upper boundaries of 
the local search region; β is the local area parameter which 
is set  to 0.4; '

maxP  and '
minP  are the vectors of decision 

variables limits; and R0 is the initial LS range.P0
Gbest (best 

search point at the beginning of LS) and Popt (optimum 
search point) are set to PG

0. 
 Step 2) The NL LS points are randomly generated as 

follows 
1 1 ( ,1), 1,2, ,m m m

n Gbest LP P R D n N− −= + × =r  .             (17)  

where r(D,1) is a random number vector of length D, 
whose elements are randomly generated between -1 and 1 
in this paper. If any LS point violates the limits, it is 
forced within the boundaries. NL is the number of LS 
points which is set to 5. 

Step 3) For each LS point, the evaluation function 
values are calculated. Then the minimum evaluation 
function among all is taken as Fm

gbest, and the 
corresponding PG is taken as Pm

Gbest. The optimum values 
are updated as follows 

IF Fm
gbest < Fm-1

gbest  then Fopt =Fm
gbest and Popt = Pm

Gbest 
Otherwise Fopt=Fm-1

gbest and Popt = Pm-1
Gbest. 

Step 4) The search range is reduced as 
1 (1 )m mR R η−= × −  .                              (18)  

where η is the range reduction parameter which is set to 
0.05. 

Step 5) m=m+1,if maximum iteration for LS is not 
reached, the iteration count is incremented by one and the 
above procedure is repeated from step 2,otherwise, Fopt 
and Popt are taken as the optimum results found by the LS 
algorithm. 

C.  IEP  and Computational Procedure 
The overall procedure of the proposed solution 

methodology can be summarized as follows 
1)  Get the initial data; 
2) Initialize randomly the initial population in the 

feasible range and iteration count k=0; Evaluate the initial 
population and identify the Fmin(0) and the best initial 
individual; 

3) k=k+1,creation of new population by mutation, 
competition and selection; 

4) Evaluate the fitness score for each individual. 
Identify the Fmin(k) and the best individual of the current 
iteration k; 

5)  If Fmin(k) < Fmin(k-1)  
6) Solve the DOPF in VSWGs integrated power 

system using the LS subroutine with the individual of  
Fmin(k) of the EP as starting point; 

7) Replace Fmin(k) of the EP with the final solution 
obtained using the LS; 

8) Repeat for generations until the terminal conditions 
k max=150 being satisfied. 

So, it is beneficial not only for global optimization in 
the early evolution but also for the computational 
accuracy and convergence rate in the later period of the 
searching. 

The above strategies are clearly illustrated in Fig. 1. 

END

Fitness 
Evaluation,Fmin(k)<

Fmin(k-1)?

Apply LS

YES

NO

Get the initial data

Initialization

EP part
Repeat

Fitness Evolution
Creation of the Offspring

Competition and Selection 

Pre-specified 
Maximum Iteration 

Reached?

Best Individual 
Obtained by LS? 

Replace Fmin(k) with 
the solution obtained 

using the LS

YES

NO

YES

NO

 
 

Fig. 1. Flow chart for the proposed method 
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IV.  NUMERICAL RESULTS 

To verify the effectiveness and efficiency of the 
adopted IEP for DOPF problems including VSWGs, The 
modified IEEE 30-bus system (see Fig.2) and IEEE 39-
bus system (see Fig.3) are used as the test systems. The 
procedure has been implemented in Matlab 7.0 
programming language and numerical tests are carried on 
a Pentium 4 2.4G computer. The wind farm including 60 
wind generators with the same type, the rating power of 
which reaches 36MW, are connected to the system at the 
bus 6 for the modified IEEE 30-bus system and at the bus 
22 for IEEE 39-bus system respectively. For simplifying 
the analysis, the load size is considered invariable in the 
planning horizon. The planning horizon is divided into 9 
intervals for the modified IEEE 30-bus system and 12 
intervals for IEEE 39-bus system respectively, and every 
interval is 1hr. The wind generators' outputs are shown in 
Tab. I for the modified IEEE 30-bus system and Tab. II 
for IEEE 39-bus system respectively. The modified IEEE 
30-bus system data are given in [8]. The modified IEEE 
30-bus system parameters of the conventional generating 
units are shown in Tab. III and Tab. IV [8, 9]. IEEE 39-
bus system data are given in[8]. The IEEE 39-bus system 
parameters of the conventional generating units are 
shown in Tab. V and Tab. VI [8, 10]. 

 
 

TABLE I 
THE WIND FARM DATA IN DIFFERENT PERIODS IN THE MODIFIED IEEE 

30-BUS SYSTEM 
Stage 1 2 3 4 5 6 7 8 9 
Pt

w,a 

v(MW)  0 4.5 9 13.5 18 22.5 27 31.5 36 

 
TABLE II 

THE WIND FARM DATA IN DIFFERENT PERIODS IN THE IEEE 39-BUS 
SYSTEM 

 
Stage 1 2 3 4 5 6 7 8 9 10 11 12 

Pt
w,av(MW)  9 12 15 18 36 36 36 36 0 10 14 19 

 
 

TABLE III  
THE PARAMETERS OF CONVENTIONAL GENERATING UNITS IN THE 

MODIFIED IEEE 30-BUS SYSTEM 

Generator ai 
($/h) 

bi 
($/MWh) 

ci 
($/MW2h) 

DRi 
(MW/h) 

URi 
(MW/h) 

Pi
0 

(MW) 
ei 

($/h) 
fi 

(rad/MW) 
G1 0.0 2.00 0.0200 21.6 21.6 23.54 300 0.2 
G2 0.0 1.75 0.0175 18 18 60.97 200 0.22 
G22 0.0 1.00 0.0625 14.4 14.4 21.59 150 0.42 
G27 0.0 3.25 0.00834 10.8 10.8 26.91 100 0.3 
G23 0.0 3.00 0.0250 14.4 14.4 19.2 200 0.35 
G13 0.0 3.00 0.0250 18 18 37 200 0.35 

 
 

TABLE IV  
THE LIMITS OF CONVENTIONAL GENERATING UNITS IN THE MODIFIED 

IEEE 30-BUS SYSTEM 

Generator Qi,max 
(MVAr)  

Qi,min 
(MVAr)  

Vi,max 
(p.u.)  

Vi,min 
(p.u.)  

Pi,max 
(MW)  

Pi,min 
(MW)  

G1 150 -20 1.05 0.95 80 0 
G2 60 -20 1.05 0.95 80 0 
G22 62.5 -15 1.05 0.95 50 0 
G27 48.7 -15 1.05 0.95 55 0 
G23 40 -10 1.05 0.95 30 0 
G13 44.7 -15 1.05 0.95 40 0 
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Fig.2.The modified IEEE 30-bus system 
 
 

G G

GG

G

GG GG G

30

39

1

2

25
37

29

17

26

9

3
38

16

5

4

18

27

28

3624

35

22

21

20

34

23
19

33
10

11

13

14

15

8 31

126

32

7

 
    

Fig.3. The 39-bus, 10-generator, IEEE system 

TABLE V    
THE PARAMETERS OF CONVENTIONAL GENERATING UNITS IN THE IEEE 

39-BUS SYSTEM 

Generator
ai 

($/h) 
bi 

($/MWh) 
ci 

($/MW2h) 
DRi 

(MW/h) 
URi 

(MW/h) 
Pi

0 
(MW) 

ei 
($/h) 

fi 
(rad/MW) 

G30 0.2 0.3 0.01 80 80 250 450 0.041 
G31 0.2 0.3 0.01 80 80 572.9 600 0.036 
G32 0.2 0.3 0.01 80 80 650 320 0.028 
G33 0.2 0.3 0.01 50 50 632 260 0.025 
G34 0.2 0.3 0.01 50 50 508 280 0.063 
G35 0.2 0.3 0.01 50 50 650 310 0.048 
G36 0.2 0.3 0.01 30 30 560 300 0.086 
G37 0.2 0.3 0.01 30 30 540 340 0.082 
G38 0.2 0.3 0.006 30 30 830 270 0.098 
G39 0.2 0.3 0.006 30 30 1000 380 0.094 
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TABLE VI 
THE PARAMETERS AND LIMITS OF CONVENTIONAL GENERATING UNITS 

IN THE IEEE 39-BUS SYSTEM 

Generator 
Qi,max  

(MVAr)  
Qi,min  

(MVAr)  
Vi,max 

(p.u.)  
Vi,min 
(p.u.)  

Pi,max 
(MW)  

Pi,min 
 

(MW) 
G30 9999 -9999 1.06 0.94 350 0 
G31 9999 -9999 1.06 0.94 1145.55 0 
G32 9999 -9999 1.06 0.94 750 0 
G33 9999 -9999 1.06 0.94 732 0 
G34 9999 -9999 1.06 0.94 608 0 
G35 9999 -9999 1.06 0.94 750 0 
G36 9999 -9999 1.06 0.94 660 0 
G37 9999 -9999 1.06 0.94 640 0 
G38 9999 -9999 1.06 0.94 930 0 
G39 9999 -9999 1.06 0.94 1100 0 

 
To demonstrate the superiority of the proposed 

approach for DOPF problems, simulation results have 
been compared with the EP method. Owing to the 
randomness in intelligent algorithms, two algorithms are 
executed 20 times when applied to the test system.  

For DOPF problem including VSWGs, Tab. VII and 
Tab. VIII list the best control variables found by IEP and 
EP algorithm for the modified IEEE 30-bus system 
respectively. In Tab. VII, it is clearly shown that, by 
using IEP, the total production cost savings of 
28.3677$/h is obtained compared with EP algorithm. 
Hence, it is justified that IEP approach gives the exact 

minimum dispatch solution. From Tab. XI, the best, 
worst and average cost values are 9080.5735$/h, 
9200.4325$/h, 9132.5035$/h and 9108.9412$/h, 
9250.1672$/h, 9188.56373$/h respectively with IEP and 
EP after 20 independent trials. From the results, the 
superiority of IEP strategies over EP can be noticed. The 
difference between the best and worst solutions are 
119.859$/h with IEP. At the same time, the difference 
between the best and worst solutions is 141.226 $/h with 
EP. Moreover, the best and worst solutions obtained by 
IEP are very close to the average value, which proves that 
IEP is more robust and consistent. In conclusion, it is 
clearly shown that IEP is the most accurate and gives the 
exact minimum dispatch solution. 

In order to verify algorithm effectiveness in more 
complex power system, IEEE 39-bus system is used test 
system. Tab. IX and Tab. X list the best control variables 
found by IEP and EP algorithm respectively. In Tab. IX, 
it is clearly shown that, by using IEP, the total production 
cost savings of 815.457$/h is obtained compared with EP 
algorithm. Hence, The same results are obtained. From 
Tab. XIII, the best, worst and average cost values are 
460571.8601$/h, 461226.8524$/h, 460886.3652$/h and 
461387.3171$/h, 462537.4354$/h, 461952.4763$/h 
respectively with IEP and EP after 20 independent trials. 
The difference between the best and worst solutions are 
654.9923$/h with IEP. At the same time, the difference 
between the best and worst solutions is 1150.1183 $/h 
with EP.  

 
 

TABLE VII 
BEST  SOLUTION  OBTAINED  USING  IEP  METHOD IN THE MODIFIED IEEE 30-BUS SYSTEM 

Stage 1 2 3 4 5 6 7 8 9 
PG1(MW)  32.1628 26.881 30.61201 34.51722 29.78709 31.29296 31.07789 32.61336 16.72349 

PG2(MW)  57.00394 61.08434 55.17584 45.11469 52.62017 45.44802 44.2772 43.06717 57.77425 

PG22(MW)  23.05492 28.29231 24.03166 30.68287 29.96296 37.48977 29.89494 32.55328 22.52746 

PG27(MW)  25.79418 26.01045 30.52419 29.68614 28.98494 30.16027 26.72748 25.80592 20.62617 

PG23(MW)  21.3959 18.5878 15.68668 16.15716 9.585935 6.024802 13.87003 15.62889 18.70101 

PG13(MW)  32.11083 25.97463 26.30325 21.53214 22.25072 18.29059 18.17907 9.930773 18.55814 
 
Total production cost: 9080.5735 $/h 

 

TABLE VIII 

BEST  SOLUTION  OBTAINED  USING  EP METHOD IN THE MODIFIED IEEE 30-BUS SYSTEM 

Stage 1 2 3 4 5 6 7 8 9 
PG1(MW)  36.65525 43.1043 30.6769 17.91149 32.04969 15.60642 16.76836 13.58982 7.69469
PG2(MW)  59.36403 58.5255 54.9398 51.61109 56.61143 47.39638 53.91842 60.12006 55.17884
PG22(MW)  21.47479 18.14985 27.65491 30.40768 23.19058 29.44758 29.83708 36.22827 30.44646
PG27(MW)  24.23683 19.73205 20.8879 31.6879 28.29225 31.76615 23.96418 21.04326 26.11672
PG23(MW)  23.43493 17.99541 19.81188 18.72996 15.15849 17.75405 21.13465 10.16315 18.56167
PG13(MW)  26.531 29.76962 28.29633 27.1601 18.00986 26.39931 18.31043 18.31929 16.81538

Total production cost: 9108.9412 $/h 
 
 

JOURNAL OF COMPUTERS, VOL. 6, NO. 3, MARCH 2011 561

© 2011 ACADEMY PUBLISHER



 

TABLE IX 
BEST  SOLUTION  OBTAINED  USING  IEP  METHOD IN THE IEEE 39-BUS SYSTEM 

Stage 1 2 3 4 5 6 7 8 9 10 11 12 
PG30(MW)  297.845 306.2852 302.6746 299.8669 274.7264 335.2846 301.1622 294.8944 308.8122 316.6097 302.4517 276.8535 
PG31(MW)  550.5877 600.1873 671.5014 605.8921 606.2954 538.8119 564.3921 584.1886 608.1819 607.222 600.5313 586.509 
PG32(MW)  626.5221 640.2318 569.7617 622.8446 616.9007 560.5899 594.6618 569.9685 600.4495 646.3009 639.911 624.6706 
PG33(MW)  634.3726 610.493 620.8039 614.5901 634.593 653.5109 654.2763 639.7166 623.09 573.336 598.1811 590.8908 
PG34(MW)  511.1227 476.2915 443.175 493.175 477.3373 510.5703 460.5703 472.3293 483.933 465.6822 487.3279 491.51 
PG35(MW)  610.7836 594.3052 627.8122 590.7639 587.3861 623.3719 618.3914 591.8316 585.7375 566.0117 556.7142 590.8262 
PG36MW)  568.042 555.3821 549.7241 570.1911 550.7421 579.9209 586.7932 616.7932 586.7932 587.416 567.623 579.9771 
PG37(MW)  527.2084 544.5856 545.6563 542.6359 555.7967 540.9971 550.4644 548.0077 553.644 562.9881 562.9605 539.0908 
PG38(MW)  849.1404 850.5165 832.8275 820.6171 850.6171 826.3819 827.0456 840.5518 829.1908 843.1028 819.0072 849.0072 
PG39(MW)  1008.702 1001.955 1011.994 1012.711 1002.851 988.7539 999.6285 999.6381 1012.127 1013.031 1042.002 1043.645 

 
Total production cost : 460571.8601 $/h 

TABLE X 

BEST  SOLUTION  OBTAINED  USING  EP METHOD IN THE IEEE 39-BUS SYSTEM 

Stage 1 2 3 4 5 6 7 8 9 10 11 12 
PG30(MW)  282.7469 238.4208 282.6066 338.1247 341.7531 333.3748 327.2719 306.0325 319.6207 322.2673 342.0072 305.8343 
PG31(MW)  594.6711 538.4092 504.6806 435.1558 475.9911 527.6847 564.3274 544.4797 607.5929 661.6504 646.2157 598.6778 

PG32(MW)  660.1812 689.5568 631.677 657.2323 622.9245 609.8651 565.3495 554.2467 531.8468 509.444 493.9961 502.6156 
PG33(MW)  633.0862 647.1537 657.152 695.4439 656.121 613.5017 634.5771 624.303 650.9625 654.4778 639.7837 643.3003 
PG34(MW)  497.4557 495.9905 523.4377 506.0668 491.8216 456.7792 470.8762 449.5858 423.7924 451.8563 445.8726 460.6822 
PG35(MW)  605.0152 616.4778 602.7038 583.1142 612.878 641.2923 592.1213 642.1213 650.9918 608.5196 650.9933 665.4863 
PG36MW)  544.6999 547.3016 570.5253 579.3933 565.1149 593.0327 567.4237 569.0068 574.9087 564.7232 548.5948 554.9131 
PG37(MW)  546.2254 571.3317 582.452 561.9026 563.9268 545.5942 575.5942 574.6134 573.9448 547.9221 550.402 529.3439 
PG38(MW)  817.0216 835.4741 852.515 841.1737 846.6516 871.43 864.4906 894.4906 880.61 898.6867 872.7176 902.7176 
PG39(MW)  1001.559 1002.257 974.3036 980.9517 982.4731 966.97 996.97 1002.012 981.4998 965.9979 989.3619 1013.062 

Total production cost: 461387.3171 $/h 
 

The average execution time taken to complete the 
fixed number of iterations (Tfix) and the average execution 
time taken to converge into the lower solution range 
( Tlow)  for 20 trials are shown in Tab. XII for the 
modified IEEE 30-bus system and Tab. XIV for IEEE 39-
bus system respectively. 

For the modified IEEE 30-bus system, EP takes an 
average execution time of 1800.23 sec. to complete 150 
iterations. EP converges faster than IEP by reason of the 
small sub-memeplex generation number of IEP. In 
comparison to EP, IEP has additional components, i.e., 
the LS procedure. This extra burdens increase the 
execution time of IEP. IEP takes 1898.34 sec.  more than 
EP to complete 150 iterations. Nevertheless, IEP takes 
only 1020.33 sec. to converge into the lower solution range 
(9080–9098$/h) , EP are not able to converge into the 
lower solution range. 

For IEEE 39-bus system, EP takes an average 
execution time of 4247.25 sec. to complete 150 iterations. 
EP converges faster than IEP by reason of the small sub-
memeplex generation number of IEP. In comparison to 
EP, IEP has additional components, i.e., the LS 
procedure. This extra burdens increase the execution time 
of IEP. IEP takes 4347.92 sec.  more than EP to complete 
150 iterations. Nevertheless, IEP takes only 2243.82 sec. 
to converge into the lower solution range (460571–

460671$/h) , EP are not able to converge into the lower 
solution range.  

TABLE XI    
COMPARISON OF BEST, WORST AND AVERAGE COST VALUES IN THE 

MODIFIED IEEE 30-BUS SYSTEM 

Algorithms Best ($/h)  Worst ($/h)  Average ($/h) 
IEP 9080.5735 9200.4325 9132.5035 
EP 9108.9412 9250.1672 9188.5637 

 

TABLE XII 
AVERAGE EXECUTION TIME COMPARISON IN THE  MODIFIED 

IEEE 30-BUS SYSTEM 

Methods Average execution time (sec.)  
Tfix Tlow 

EP 1800.23 —— 
IEP 1898.34 1020.33 

 

TABLE XIII    
COMPARISON OF BEST, WORST AND AVERAGE COST VALUES IN THE IEEE 

39-BUS SYSTEM 

Algorithms Best ($/h)  Worst ($/h)  Average ($/h) 
IEP 460571.860 461226.8524 460886.365 
EP 461387.317 462537.4354 461952.4763 
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TABLE XIV 
AVERAGE EXECUTION TIME COMPARISON IN THE IEEE 39-BUS 

SYSTEM 

Methods Average execution time (sec.)  
Tfix Tlow 

EP 4247.25 —— 
IEP 4347.92 2243.82 

 
 

V.  CONCLUSION  

Considering the valve-point effect and ramp rate limits 
of conventional generators including VSWGs, DOPF 
model, which takes the all conventional units cost 
minimum as the objective function and takes the whole 
time and the inherent relations of different stages into 
account in wind power integrated system, is established. 
The PV-bus model of VSWGs bus is adopted in power 
flow calculation in this paper. A novel IEP is proposed 
for solving the established DOPF model and the detailed 
methods of the algorithm are given. The modified IEEE 
30-bus system is used to illustrate the effectiveness of the 
proposed method compared with those obtained from EP 
algorithm. In order to verify algorithm effectiveness in 
more complex power system, IEEE 39-bus system is used 
test system. It is shown that the proposed method is 
capable of yielding higher-quality solutions. 
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