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Abstract—For a repairable and deteriorating system, the 
theoretical preventive maintenance (PM) models are usually 
complicated and need numerical methods to obtain the 
optimal PM policies since the system’s failure rate function 
is changed after each PM. It makes the application of the 
theoretical model not quite suitable for real cases. 
Moreover, the theoretical optimal PM solution is obtained 
by evaluating the expected cost rate of the system over an 
infinite time span. Yet, in reality, a deteriorating system 
always has a finite life time. Hence, searching for an optimal 
PM solution for a deteriorating system over an infinite time 
span might not be rational. Therefore, we consider using 
Monte Carlo simulation method to mimic the complicated 
failure process of a system with PM activity and then to 
obtain a range of the near-optimal PM policies. In this 
paper, the inverse transformation method and the rejection 
method are applied to generate the time-between-failures 
(TBF) random variates. The algorithms for generating the 
RVs are developed. The procedure of finding the near-
optimal PM policies are also provided. Then, examples of 
using the proposed simulation method to obtain the near-
optimal policies for the age-reduction PM model in a finite 
time span are presented and discussed. 
 
Index Terms—Preventive maintenance, Simulation method, 
Time-between-failure random variates, Age reduction, 
Inverse Transformation Method, Rejection Method. 
 

I.  INTRODUCTION 

For a deteriorating and repairable system, the system’s 
failure rate function is changed after performing a 
preventive maintenance (PM) activity. Thus, the 
theoretical PM models are usually complicated and need 
numerical methods to obtain the optimal PM policies. 
Some theoretical PM models can be found in [1-4]. This 
limits the application of the theoretical model in real 
world. Furthermore, the theoretical optimal PM policies 
are obtained based on the long-term expectation of failure 
occurrences over the infinite time span [4-8]. Yet, in 
reality, the life time of a system is always finite. For 
systems with a finite life time, although there do exist 
some PM models in literature, however, the models are 
complicated and need numerical methods to find the 
optimal solution [9-12]. Hence, the optimal theoretical 
solution may not suitable for the real case of a single 

system with finite life time. In practical, a near-optimal 
PM policy is good enough for applications which can be 
obtained by using Monte Carlo simulation method [13]. 
However, the research of using simulation method in 
solving the PM problems can not be commonly found in 
literature.  

When using Monte Carlo simulation method to obtain 
a near-optimal PM policy, the critical step is to generate 
the time-between-failures (TBF) random variates (RV) to 
mimic the system’s failure process which is affacted by 
the PM activities. Percy and Kobbacy [14] investigate the 
scheduling of PM for repairable systems with renewals 
and minimal repairs models by using the simulation 
method. However, they did not present the RV generation 
method. Leemis and Schmeiser [15] describe algorithms 
based on the probability density function and hazard rate 
for generating a continuous non-negative random variates. 
Cheng and Liaw [16] applies the inverse transformation 
method to generate the RVs of the TBF for a PM model 
with age reduction effect. The algorithm developed by 
Cheng and Liaw [16] requires the derivation of the 
cumulative distribution function (CDF) of the TBF for 
each PM which is usually complicated. Cheng, Guo, and 
Liu [13] presented three RV generation methods for the 
TBF of a PM model and compared the accuracy among 
the three methods. They found that all three RV 
generation methods have high accuracy while the 
rejection method (or called acceptance-rejection method) 
is the simplest and easy-to-use method. Since the inverse 
transformation method and the rejection method are 
commonly applied in generating RVs [17, 18], in this 
paper, we apply these two methods to develop the 
algorithms of RV generation for the PM model with age 
reduction effect. Examples of finding the near-optimal 
PM policies are also provided and discussed. 

II.  THE THEORITICAL FEATURE OF THE PM MODEL WITH 
AGE REDUCTION 

A.  Nomenclature  
L the finite life time span for the system or 

equipment
N the number of PM performed in the finite life 

time span (L)
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Figure 1. The failure rate function of the age-reduction PM Model 
with N=3. 

T the time interval of each periodic PM where 
T = L/(N+1) 

xi,j the generated time between the j-1st and the jth

failures in the ith PM cycle, j = 1, 2, …, ki, i = 
1, 2, …, N+1. 

ti,j the generated occurrence time of the jth failure
in the ith PM cycle where ti,j = ti,j-1 + xij 

ui,j  
xm the generated time between the m-1st and the 

mth failures, m = 0, 1, … 
tm the generated occurrence time of the mth

failures 
γ the age reduced (restored) after each PM 
λ(t) The original failure rate function (before the 

1st PM action) 
λi(t) The failure rate function at time t where t is in 

the ith PM cycle and λ0(t)=λ(t) 
F(t) the cumulated distribution function (CDF) of 

the TBF at age t 
R(t) the reliability at age t 
u1 the random number for generating the RV 

with majorizing failure rage function, λ(t), 
where u1~Uniform(0,1)

u2 the random number for making the decision 
of rejecting the generated RV, where u2~ 
Uniform (0,1) 

Cpm Cost of each PM  
Cmr Minimal repair cost of each failure 
TC The total maintenance cost function in the 

finite life time span 

B.  Assumptions 
 The system has a finite useful life time L. 
 The system is deteriorating and repairable over time 

where the failure process follows the non-homogenous 
Poisson Process (NHPP) with increasing failure rate 
(IFR). Weibull distribution with failure rate function: 
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−

⎟
⎠
⎞

⎜
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β
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is used to illustrate the examples in this paper, where β is 
the shape parameter and θ is the scale parameter. 
 The periodic PM actions with constant interval (T) are 

performed over the finite time span L.  
 The system’s age can have a younger age (called the 

effective age) by reducing γ units of time after each 
PM. Hence, the failure rate function at time t in the ith 
PM cycle can be written as 

 ( ) ( )i t t iλ λ γ= − . (2) 

 Minimal repair is performed when failure occurs 
between each PM. 

 The time required for performing PM, minimal repair, 
or replacement is negligible. 

C.  The PM Model and the Theoretical Optimal Policy 
The PM model with age reduction is applied in this 

paper. Figure 1 illustrates the failure rate function of this 
PM model with 3 PM actions. In order to study the 
accuracy of near-optimal policies obtained from the 
proposed simulation method, we have to find the 
theoretical optimal policies for the age-reduction PM 

model over a finite time span. The theoretical optimal 
policies are obtained based on Cheng, Liaw, and Wang 
[19] and Yeh and Chen [11] where the decision variables 
are the number of PM (N) and the restored age (γ) for 
each PM. We summarize the procedure for finding the 
theoretical optimal PM policy over a finite time span as 
follows.  

The first step is to find the expected cost function for 
the PM model as shown below. 

 ( , ) ( 1) ( , ),pm pr mrC N N C C C Nγ γ= − + + Λ  (3) 

where ( , )NΛ γ is the expected number of failures occurred 
in the finite time span L and is defined as 

 
1 1( 1) ( 1)

0 0

( , ) ( ) ( )
N Ni T i T

iiT iT
i i

N t dt t i dtγ λ λ γ
− −+ +

= =

Λ = = −∑ ∑∫ ∫  (4) 

where T = L/(N+1). Second step is to obtain the restored 
age of the PM effect (γ) as a function of N by taking the 
partial derivative of γ of the expected cost function shown 
in (3) and letting it equal to zero, i.e.,  

 ( , ) 0C N γ
γ

∂
=

∂
.  

Third, since the cost function is a convex function, the 
optimal value γ* and N* of the theoretical PM policy can 
be obtained by numerically searching 

 min ( , ),   1,2,...
N

C N Nγ =   

III.  THE NEAR-OPIMAL PM POLICIES BY THE 
SIMULATION MEHTOD 

A.  The Concept of Random Variate Generation 
There exist some useful methods for generating 

random variate with specific distribution, such as the 
inverse transformation method, the composition (linear 
combination) method, and the rejection method. The 
inverse transformation method is generally applicable and 
can be computationally efficient if the CDF can be 
analytically inverted, but may be complicated in 
computation for some probability distributions. The basic 
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Figure 2. The illustration of the rejection method by using the 

majorizing function 

algorithm of the inverse transformation method [15, 17, 
18] is listed as follows. 

(1) Invert the CDF F(t). 
(2) Generate u ~ Uniform(0,1). 
(3) Obtain t where t = F-1(1-u). 
The composition method is typically used when the 

probability density function (pdf) can be written as a 
convex combination of n other pdf's. The rejection 
method is usually applied in cases where the form of 
probability density function (pdf), f(x), makes the inverse 
transformation method difficult to use.  

The rejection technique requires finding a majorizing 
function f*(t) which bounds the pdf f(t), i.e., f*(t) > f(t) ∀  
t. The majorizing function must integrate to a finite value 
so that it can be scaled to be a pdf, g(t), i.e., 

 
*

*

0

( )( )
( )

f tg t
f dτ τ

∞=
∫

.  

The rejection method of using the majorizing function is 
illustrated in Figure 2. Values are generated from g(t), 
then accepted or rejected so that the accepted random 
variates will have pdf f(t). 

The basic algorithm of the rejection method is shown 
below. 

1. Generate t from g(t) and u from Uniform(0,1). 
2. IF u < f(t)/f*(t),  

accept t as a realization of f(t); 
  else  

reject the value of t and repeat Step 1. 
Instead of using a majorizing function, Leemis and 

Schmeiser [15] present a thinning algorithm by using a 
majorizing failure rate function for the rejection method 
which is applied in this paper and is shown as follows. 

1. Find a majorizing hazard function λ*(t) such that 
λ*(t) ≥ λ(t) for all t > 0. 

2. Let t = 0. 
3. Generate y from λ*(y); t ← t + y. 
4. Generate u from Uniform(0,1). 
5. IF u < λ(t)/λ*(t),  

accept t as a realization of λ(t); 
  else  

reject the value of t and repeat Step 3. 

B.  The Generation of Time-Between-Failure RVs 

(1) The Inverse Transformation Method 
In this paper, we apply the modified inverse 

transformation method presented by Cheng and Liaw [16] 
to develop an algorithm for generating the TBF random 
variates from a PM model with age reduction effect. 
Since the minimal repair is assumed for each failure in 
this age-reduction PM model, for the ith PM cycle, the 
CDF of the jth TBF (xi,j) given that the j-1st failure 
occurred at ti,j-1 can be obtained as 

 { }, 1 ,

, 1
, , -1 , , -1( | ) 1 ( | ) 1 exp ( ') '  

                            for 0,1,..., ;  1, 2,..., .

i j i j

i j

t x

i j i j i j i j it

i

F x t R x t t dt

i N j k

λ−

−

+
= − = − −

= =

∫  (5) 

Cheng and Liaw [16] originally assume that the last 
failure in the ith PM cycle is irrelative to the first failure in 
the i+1st PM cycle. However, this assumption may not be 
reasonable because the failure occurrence of the system 
follows the non-homogenous Poisson process (NHPP) 
and the PM is imperfect (i.e., the PM will not renew the 
system to zero failure rate). Therefore, The algorithm 
developed for the modified inverse transformation 
method assumes that the first failure in the i+1st PM cycle 
is affected by the last failure in the ith PM cycle. It turns 
out that the CDF of the first TBF in the i+1st PM cycle 
given that the ki

th failure occurred at , ii kt  can be obtained 
as 
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i ki
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+
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= −

⎧ ⎫⎡ ⎤= − − +⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭∫ ∫
 (6) 

For a Weibull failure distribution, providing that ui,j ~ 
Uniform(0,1), based on (5) and (6), the TBF xi,j can be 
generated as follows. 
(1) For i = 0; j = 1, 2, …, k1 and i = 1, 2, …, N; j = 2, 

3, …, ki : 

 { }1/

, , 1 , 1ln(1 )i j ij i j i jx u t i t i
βββθ γ γ− −⎡ ⎤= − − + − − +⎣ ⎦

, (7) 

      where t0,0 = 0, ti,j = ti,j-1 + xi,j; 

(2) for i = 1, 2, …, N; j = 1: 

 [ ]
[ ]

1

1

1/

1,
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( ) ( 1)

( 1) ln(1 )
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i
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i
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γ

γ θ

−
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−

⎧ ⎫⎡ ⎤− + − −⎪ ⎪⎣ ⎦= − +⎨ ⎬
⎪ ⎪− − − − −⎩ ⎭

,(8) 

where 
1,1 1, ,1ii i k it t x
−−= + . The inverse transformation 

method of generating the TBF random variates for the 
age-reduction PM model is illustrated in Figure 3. The 
algorithm for the modified inverse transformation method 
is developed as follows. 

1. Specify the values of the following parameters: β, θ, 
γ, N, L. 

2. Let i = 0, t0,0=0. 
3. Let j = 1. 
4. Generate ui,j from Uniform(0,1). 
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Figure 3. The illustration of the inverse transformation method of 
generating TBF random variates for the age-reduction PM model 

5. Obtain the value of xi,j using (7);  
    let ti,j = ti,j-1+xi,j. 
6. If ti,j < iT, let j = j + 1 and go back to Step 4, 
    else go to Step 7. 
7. If ti,j < L,  
       obtain the value of xi+1,1 using (8); 
       let ti+1,1 = , ii kt + xi+1,1; 
       let i = i + 1 and j = 2; 
       go back to Step 4, 
    else stop. 

(2) The Rejection Method 
In this paper, a thinning algorithm of the rejection 

method provided by Leemis and Schmeiser [18] is 
applied for generating the RVs from the non-
homogeneous Poisson processes. A majorizing function 
λ*(t) must be found which bounds the failure rate 
function λ(t). It can be seen from Figure 1 that the 
original failure rate function λ(t) satisfies the condition 
λ(t) ≥ λi(t) for any t ≥ 0 where λi(t) is the failure rate 
function of the ith PM cycle as defined in (2). Thus, λ(t) 
can be defined as the majorizing function, i.e., λ*(t) =λ(t). 

When using the rejection method, two random 
numbers, u1 and u2, from Uniform(0,1) are required for 
generating each RV from the PM model with age 
reduction effect. We use u1 to generate random variates 
from the majorizing function λ(t) by using the inverse 
transformation method. Basic on the concept of the 
inverse transformation method stated in previous and the 
equation of the CDF for the TBF which is shown in (5), 
we have 

 { }1

1
1 1( | ) 1 exp ( )   for 1, 2,...m m

m

t x

m m t
u F x t d mλ τ τ−

−

+

−= = − − =∫  (9) 

where m is the number of failures generated, 1( | )m mF x t −  
represents the conditional CDF at time 1m mt x− +  given that 
the system is surviving after the minimal repair at time 

1mt − . 
When a system has Weibull failure distribution, based 

on (1) and (9), we can generate RVs from the majorizing 
function λ(t) by the following equation.  

 1/

1 1 1ln(1 )+( ) .m m mx u t t
ββ βθ − −⎡ ⎤= − − −⎣ ⎦

. (10) 

Then, mx  is accepted if u2 < λi(t)/λ (t). The algorithm 
for generating the time-to-failure random variates from 
the age-reduction PM model is shown as follows.  

1. Specify the values of the following parameters: β, θ, 
γ, N, L. 

2. Let t0,0=0, t0=0. 
3. Let m = 0, i = 0, j = 1. 
4. Generate random number u1. 
5. Obtain the value of xm according to (10);  

let tm = tm-1+xm. 
6. If tm < iT, go to Step 7 else go to Step 10. 
7. Generate random number u2. 
8. Calculate λ(tm) and λi(tm)=λ(tm-iγ). 
9. If 

2 ( )/ ( )i m mu t tλ λ≤ ,  
let tij = tm; j = j+1; m = m+1; 
go back to Step 4  

else  
m = m+1; go back to Step 4. 

10. If tm < L,  
let i = i + 1 and j = 1; go back to Step 7 

else stop. 

C.  The Comparision of theProposed RV Generation 
Methods Using Experiment Examples 

To compare the accuracy of the two RV generation 
methods proposed in this paper, we assume the finite life 
time period (L) be 6 time units, the number of PM (N) be 
5, PM interval (T) be 1. The PM restoration effect is set 
as γ = 0.8. The Weibull failure distribution with scale 
parameter θ = 0.4 is assumed. Then, two experiments 
with β = 2.2 and 3.2 are constructed for each RV 
generating method. There are 30 runs for each 
experiment. 

The accuracy of each proposed RV generation method 

TABLE I.  
THE COMPARISON OF THE PROPOSED RV GENERATION METHODS 

(a) For β = 2.2 

i E(ki) Iik  
Rik  

p-value 

I R( )i ik k=  IiMAD  
RiMAD  

p-value
I(
( ))
i

i

k
E k

=  
p-value

R(
( ))

i

i

k
E k

=

0 7.5070 7.0333 7.0333 1 1.9676 1.9676 0.8457 0.8457 

1 10.9939 11.6333 11.4333 0.8341 2.6350 3.2341 0.8483 0.9115 

2 14.7380 15.000 16.2667 0.2580 3.3159 3.4731 0.9526 0.7235 

3 18.6720 18.333 18.8333 0.6728 4.0656 3.5437 0.9448 0.9683 

4 22.7621 22.8333 22.4667 0.7897 4.4175 4.1016 0.9892 0.9542 

5 26.9862 29.2667 27.2333 0.1163 4.8740 3.7676 0.6931 0.9548 

all 101.659 104.1000 103.2667 0.7490 7.3000 8.7561 0.8005 0.8782 

 
(b) For β  = 3.2 

i E(ki) Iik  
Rik  

p-value 

I R( )i ik k=  IiMAD  
RiMAD  

p-value
I(
( ))

i

i

k
E k

=  
p-value

R(
( ))

i

i

k
E k

=

0 18.7676 18.8333 18.8333 1 3.66432 3.6643 0.9883 0.9883 

1 33.5259 33.7333 34.9333 0.4956 5.2632 5.6948 0.9744 0.8405 

2 54.0830 56.000 54.13333 0.3105 5.4000 5.2111 0.7982 0.9939 

3 80.7884 81.06667 78.43333 0.2623 7.2526 7.7910 0.9747 0.7993 

4 113.917 113.5667 112.2333 0.6351 10.0389 7.4889 0.9767 0.8557 

5 153.699 152.1333 154.3667 0.5484 10.8932 11.8068 0.9058 0.9645 

all 454.7809 455.3333 452.9333 0.6708 17.9041 15.2375 0.9804 0.9277 
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is evaluated. In Tables I, we present the following values 
in the ith PM cycle for β = 2.2 and 3.2: the expected 
number of failures ( ( )iE k ), the average number of 
failures generated by the inverse transformation method 
and the rejection method ( Iik and Rik , respectively), the 
p-value obtained from the hypothesis test of Ho: 

I R( ) ( ),i iE k E k=  the mean absolute deviation of the 
generated number of failures from the expected number 
of failures for the inverse transformation method and the 
rejection method ( IiMAD and RiMAD , respectively), and 
the p-values obtained from the hypothesis tests of Ho: 

I ( )i ik E k= and Ho: R ( )i ik E k= .  
From Table I, we can see that the two RV generation 

methods have the same results in the initial PM cycle (i = 
0) because they produce the same failure observations 
before any PM action is performed. It can be found from 
the p-values of Ho: I R( ) ( )i iE k E k=  for all the PM cycles 
that there are no significances between the results of the 
two RV generation methods for both β = 2.2 and 3.2. It 
can also be noted from the values of MAD and the p-
values of Ho: I ( )i ik E k= and Ho: R ( )i ik E k=  that the 
inverse transformation method and the rejection method 
have similarly high accuracy in generating the TBF 
random variates for the age-reduction PM model. 
Therefore, we apply the rejection method to find the near-
optimal PM policies since the rejection method uses a 
majorizing failure rate function which is easier and 
simpler for generating the TBF random variates from the 
failure distributions with complicated formula. 

D.  Procedure of Finding the Near-Optimal PM Policies  
Once the algorithm for generating the TBF random 

variates is developed, we can find the near-optimal PM 
policies by the following procedure. 

1. Specify the failure distribution, the PM model, and 
the type of restoration. 

2. Set the values for the required parameters, such as 
the parameters of the failure distribution (f(t)), 
repair cost (Cmr), PM cost (Cpm), life time (L), 
number of simulation runs, maximum number of 
PM to be simulated (N), .and the restoration effect 
(γ) if it has to be predetermined. 

3. Develop the failure rate function, the CDF of the 
TBF, and the cost function (TC). 

4. Apply the inverse transformation method or the 
rejection method to generate the TBF random 
variates for each simulation run. 

5. Calculate the total cost for each simulation run. 
6. Establish the tables of simulation results (similar to 

Tables II, III or IV, V). 
7. Find the near-optimal policies from the tables 

established in Step 6. 

IV.  EXAMPLES AND DISCUSSION 
In the examples, we assume the finite life time period 

(L) be 6 time units. The Weibull failure distribution with 
shape parameter β = 3.2 and scale parameter θ = 0.4. The 

minimal repair cost is set as 3.1036 per failure. The cost 
of each PM is assumed as function of the PM restoration 
effect, which is Cpm = a+bγ= 5+100γ. The near-optimal 
solutions are obtained by Monte Carlo simulation method 
with 30 runs. The theoretical optimal solution is also 
calculated using the algorithm provided by Yeh and Chen 
[11]. 

A.  Example 1 
In Example 1, for simplicity, the restoration effect γ for 

each N is predetermined using the theoretical method as 
shown in Table II. The 30-run simulation results for N = 
1 to 6 using the rejection method are presented in Table 
III. The smallest (best) total maintenance cost (TC) of 
each run is highlighted with shadow background. It can 
be seen from Table III that, for each N, the average value 
of TC from the 30-run simulation is very close to the 
value obtained by using the theoretical method. Both 
methods (simulation and theoretical model) provides the 
same optimal policy of having the optimal number of PM 
N*=3 and the optimal restoration effect γ*=0.4781. It has 

TABLE III. 
THE RESULTS OF THE 30 SIMULATION RUNS FOR EXAMPLE 1 

Run#
N 1 2 3 4 5 6 
γ 1 0.6667 0.4781 0.3655 0.2957 0.2483

1 216.730 189.894 180.155 194.132 194.575 210.016
2 229.144 196.101 192.570 187.925 210.093 194.498
3 250.869 196.101 189.466 197.236 213.197 206.912
4 250.869 186.790 180.155 200.340 188.368 213.120
5 204.315 199.205 204.984 187.925 219.404 197.602
6 263.284 189.894 201.880 194.132 197.679 197.602
7 213.626 165.065 183.259 197.236 185.264 203.809
8 232.248 214.723 192.570 194.132 206.990 194.498
9 241.558 177.480 183.259 200.340 191.472 206.912
10 216.730 189.894 180.155 194.132 188.368 206.912
11 219.833 211.619 204.984 209.650 213.197 216.223
12 222.937 189.894 189.466 181.718 197.679 197.602
13 247.766 177.480 180.155 209.650 197.679 216.223
14 247.766 196.101 180.155 206.547 197.679 203.809
15 198.108 196.101 189.466 181.718 200.782 194.498
16 216.730 192.998 183.259 200.340 185.264 203.809
17 226.040 205.412 189.466 191.029 194.575 206.912
18 195.004 202.308 211.191 191.029 210.093 191.394
19 216.730 183.687 186.362 191.029 200.782 213.120
20 226.040 199.205 183.259 203.443 200.782 206.912
21 232.248 186.790 189.466 184.822 194.575 203.809
22 204.315 196.101 198.777 197.236 197.679 200.705
23 207.419 186.790 180.155 206.547 188.368 206.912
24 210.522 208.516 195.673 187.925 206.990 197.602
25 219.833 205.412 195.673 203.443 197.679 213.120
26 257.076 192.998 173.948 215.858 191.472 219.327
27 216.730 211.619 195.673 172.407 210.093 188.291
28 216.730 189.894 201.880 200.340 197.679 216.223
29 210.522 168.169 180.155 206.547 191.472 216.223
30 247.766 186.790 189.466 187.925 197.679 200.705

Average 225.316 193.101 189.569 195.891 198.92 204.843
Theore-

tical 221.495 191.076 189.728 192.850 197.222 202.051

 

TABLE II.  
THE VALUE OF γ CORRESPONDING TO EACH N FOR EXAMPLE 1 

N 1 2 3 4 5 6 
γ 1 0.6667 0.4781 0.3655 0.2957 0.2483
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demonstrated that the experimental results obtained by 
simulation method are consistent with those obtained by 
the theoretical model when large sample runs are 
generated. 

It should be noted that the best solution of N, γ, and TC 
(marked with shadow) resulted from each simulation run 
are different from those obtained by the theoretical model. 
It is because the optimal solution of the theoretical model 
is obtained by taking the expectation result over the 
infinite time interval or over a large number of identical 
systems in a finite time interval. However, the simulation 
method can provide different policies for a single system 
having a finite life time. This is more close to the real 
situation where an organization will not possess a large 
number of identical systems nor will purchase an 
identical system in every replacement cycle for suiting 
the assumption of infinite time span. 

It can be seen from Table III that the best solutions of 
each simulation run (marked with shadow) can be 
categorized into three near-optimal policies: (N=2, 
γ=0.6667), (N=3, γ=0.4781), and (N=4, γ=0.3655). Table 
IV lists the simulation runs in each category and presents 
the average, the smallest, and the largest values of the 
minimal TC for each category of the near-optimal policy.  

Among these best solutions, the average of the 
minimal TC (184.1143) is smaller than the theoretical 
minimal TC (189.7280). The results demonstrate that the 
theoretical PM model over a finite time span might not be 
suitable for the problem of considering only a single 
system in a finite time span. 

Therefore, in practical, when considering a single 
system to be preventively maintained in a finite time 
period, especially for short time period, more than one 
single near-optimal policy is suggested. In this example, 
either (N=2, γ=0.6667) or (N=3, γ=0.4781) or (N=4, 
γ=0.3655) may be chosen as the best (near-optimal) PM 
policy.  Further examining the simulation results shown 
in Table IV, we can see that the minimal TCs marked 
with shadow are smaller than the theoretical optimal TC 
(189.7280) in which 6 out of 9 (67%) for Policy 1, 10 out 
of 13 (77%) for Policy 2, 7 out of 8 (88%) for Policy 3, 
and 23 out of 30 (77%) for overall policies are better than 
the theoretical optimal policy. Therefore, for a finite-
time-span PM problem, these results show strong 
evidence that the simulation method not only flexibly 
provides near-optimal policies but also gives better-than-
the theoretical optimal policies with high confidence.   

B.  Example 2 
In the second example, we assume that the PM 

restoration value (γ) for each N is a decision variable and 
has to be determined by the simulation method. Therefore, 
different values of γ  over the range of (0, 1) are used for 
each N where N is ranging from 1 to 6 in the simulation 
experiments. Only the experiments of γ = 0.2T, 0.5T, 
0.8T, 0.985T, and γ* (the theoretical optimal value) are 
shown in this example. All other parameters are given 
with the same values as in Example 1. A 30-run 
simulation is performed for each combination of (N, γ) to 
find the smallest TC with the corresponding best value of 

N and γ. The results are presented in Table V. Again, 
among these best solutions, the average of the minimal 
TC (182.5808) is smaller than the theoretical minimal TC 
(189.7280). This result shows that the best solution 
obtained from Monte Carlo simulation is better than the 
optimal theoretical solution.  

Table VI lists the simulation runs in each category of 
the near-optimal policy and presents the average, the 
smallest, and the largest minimal TC of each near-optimal 
policy for Example 2. Likewise, the simulation method 
provides three near-optimal policies (with N = 2, 3, and 
4). Since γ is a decision variable, each near-optimal 
policy has more than one value for γ. The values of γ are 
in the range of (0.6375, 0.6667) in Policy 1 (N = 2); it 
falls in the range of (0.400, 0.4925) in Policy 2 (N = 3); in 
Policy 3 (N =), γ has values in the range of (0.3655, 
0.3940). From Table VI, Similarly, we can see that the 
minimal TCs marked with shadow are smaller than the 
theoretical optimal TC (189.7280) where 6 out of 8 (75%) 
for Policy 1, 10 out of 11 (91%) for Policy 2, 9 out of 11 
(82%) for Policy 3, and 25 out of 30 (83%) for overall 
policies are better than the theoretical optimal policy.  

Note that the value of γ specified for each policy of 
Example 1 (as shown in Table III) is covered in the range 
of the corresponding policy of Example 2. Moreover, it 
can also be found that although Examples 1 and 2 have 
similar results, the near-optimal policy of Example 2 has 
better solution (smaller average TC, narrower range of TC, 
and higher rate of better-than-theoretical solutions) than 
the corresponding policy in Example 1. it implies that the 
simulation method can obtain better solutions if γ is a 
decision variable than it is predetermined a value.  

TABLE IV.  
THE NEAR-OPTIMAL POLICIES FOR EXAMPLE 1 

Policy 1 
(N*=2, γ*=0.6667) 

Policy 2 
(N*=3, γ*=0.4781) 

Policy 3 
(N*=4, γ*=0.3655)

Run# Min. TC Run# Min. TC Run# Min. TC
6 189.894 1 180.155 2 187.925 
7 165.065 3 189.466 5 187.925 
9 177.480 4 180.155 12 181.718 
13 177.480 8 192.570 15 181.718 
19 183.687 10 180.155 18 191.029 
22 196.101 11 204.984 21 184.822 
28 189.894 14 180.155 24 187.925 
29 168.169 16 183.259 27 172.407 
30 186.790 17 189.466   

  20 183.259   
  23 180.155   
  25 195.673   
  26 173.948   

No of Runs 9  13  8 
Runs 

Better than 
Theoretical

6 
(67%)  10 

(77%)  7 
(88%) 

Avg. 181.6177  185.6462  184.4337
Min. 165.0652  173.9480  172.4072
Max. 196.1012  204.9840  191.0288

Overall average of min. TC: 184.1143 
The Rate of better-than-theoretical solutions: 77% 
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V.  CONCLUSIONS 
In this paper, we apply the inverse transformation 

method and the rejection method to develop the 
algorithms of generating the time-between-failure random 
variates for the age-reduction PM model to find the near-
optimal PM policies. 

We conclude from the results of this paper that, for the 
age-reduction PM model in a finite time span, more than 
one near-optimal policy can be obtained by using Monte 
Carlo simulation method. Each of the near-optimal 
solution can be the best PM policy for any single system 
having a finite life time. The simulation results have 
demonstrated that the theoretical PM model might not be 
suitable for a single system in a finite time span. It can be 

further concluded from this research that (1) the PM 
policies obtained from the proposed simulation methods 
can provide even better solution for an organization such 
as a car rental company who possesses many identical 
vehicles; (2) When considering the PM problem of a 
single system, the decision is more flexible because any 
of the near-optimal policies can work well.  

The proposed simulation methods can be extended to 
solve more complicated real world situation, such as 
considering the random shocks in a PM model which is 
very difficult to be solved by the theoretical model. 
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