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Abstract—Applying relational tri-training (R-tri-training for 
short) to web page classification is investigated in this paper. 
R-tri-training, as a new relational semi-supervised learning 
algorithm, is well suitable for learning in web page 
classification. The semi-supervised component of R-tri-
training allows it to exploit unlabeled web pages to enhance 
the learning performance effectively. In addition, the 
relational component of R-tri-training is able to describe 
how the neighboring web pages are related to each other by 
hyperlinks. Experiments on Web-Kb dataset show that: 1) a 
large amount of unlabeled web pages (the unlabeled data) 
can be used by R-tri-training to enhance the performance of 
the learned hypothesis; 2) the performance of R-tri-training 
is better than the other algorithms compared with it.  
 
Index Terms—web page classification, relational tri-training, 
relational learning, tri-training, co-training 
 

I.  INTRODUCTION 

In recent years there has been a great deal of interest in 
applying machine-learning methods to a variety of 
problems in classifying and extracting information from 
text [1]. In large part, this trend is sparked by the 
explosive growth of the World Wide Web. An interesting 
aspect of the Web is that it can be thought of as a graph in 
which pages are the nodes of the graph and hyperlinks are 
the edges. The graph structure of the Web makes it an 
interesting domain for relational learning [2]. Moreover, 
Craven, Slattery, and Nigam demonstrated that for 
several Web-based learning tasks, a relational learning 
algorithm can learn more accurate classifiers than a 
common statistical approach [3]. Therefore, many 
researchers have been done to apply relational learning 
algorithms to web page classification. 

Relaxation labeling [4] is one of the algorithms that 
work well in web page classification. Relaxation labeling 
was originally proposed as a procedure in image analysis 
by Rosenfeld, Hummel, and Zucker. Later, it became 
widely used in image and vision analysis, artificial 
intelligence, pattern recognition, and web mining [5]. In 
the context of hypertext classification, the relaxation 
labeling algorithm employs a text classifier to assign 
class probabilities to each node (page) firstly. Then each 

page is considered in turn and its class probabilities are 
reevaluated in light of the latest estimates of the class 
probabilities of its neighbors. 

Based on a new framework for modeling link 
distribution through link statistics, Lu and Getoor [6] 
proposed a variation of relaxation labeling, in which a 
combined logistic classifier is used based on content and 
link information. This approach not only showed 
improvement over a textual classifier, but also 
outperformed a single flat classifier based on both content 
and link features. Angelova and Weikum [7] proposed 
another variation of relaxation labeling, not all neighbors 
are used, that is, only neighbors that are similar enough in 
content are considered. 

Besides relaxation labeling, other relational learning 
algorithms can also be applied to web classification. 
Loopy belief propagation and iterative classification are 
compared and analyzed with relaxation labeling by Sen 
and Getoor [8]. Their performance on a web collection is 
better than textual classifiers. A toolkit for classifying 
networked data is implemented by Macskassy and 
Provost [9], it utilized a relational classifier and a 
collective inference procedure [10], and its powerful 
performance is demonstrated on several datasets 
including web collections. 

Although these relational learning algorithms have 
been successfully applied to web page classification, they 
need large number of labeled web pages acting as training 
set in order to guarantee generalization ability. However, 
labeled web pages are fairly expensive to obtain because 
they require artificial marking. In contrast, unlabeled web 
pages are readily available. Therefore, in relational 
learning domain, how to exploit unlabeled web pages to 
enhance the performance of the learned hypothesis is an 
urgent challenge.  

In this paper, we apply R-tri-training algorithm, which 
is proposed in our previous work [11], to web page 
classification. R-tri-training, as a relational semi-
supervised learning algorithm, combines semi-supervised 
learning and relational learning. Three different relational 
learning systems are initialized according to the labeled 
data and the background knowledge, and then the three 
classifiers are refined by iterating using the unlabeled 
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data under certain condition. Experiments on Web-Kb 
using R-tri-training show its outstanding performance. 

 The remainder of the paper is organized as follows. 
Section 2 gives the brief description of relational tri-
training. In section 2, the selection of base classifier and 
the sufficient condition for re-training is introduced. 
Sections 3 discuss the experiment. In section3, the dataset 
used in this paper is given firstly, and then the effect of 
unlabeled web pages is discussed, finally the comparison 
with other systems is proposed. Conclusion is given in 
section 4. 

II.  RELATIONAL TRI-TRAINING 

Relational learning is a research area which 
investigates the inductive construction of first-order 
clausal theories from examples and background 
knowledge. By using first-order logic as the 
representational mechanism for hypotheses and examples, 
relational learning can overcome the two main limitations 
of classical machine learning techniques, 1) the use of a 
limited knowledge representation formalism(essentially a 
propositional logic), and 2) difficulties in using 
substantial background knowledge in the learning process 
[12]. However, current relational learning algorithm such 
as Nfoil [13], Kfoil [14] and Aleph [15] are all supervised 
learning algorithms. Therefore, they need a large number 
of labeled examples acting as training set in order to 
guarantee generalization ability. 

Existing semi-supervised learning algorithms attempt 
to exploit the additional information provided by the 
large amount of unlabeled data to guide the learning 
process, and enhance the final performance. A prominent 
method known as tri-training was proposed by Zhou and 
LI [16]. However, current semi-supervised learning 
algorithm belongs to classical machine learning, use 
propositional logic to represent training examples, 
therefore, it cannot overcome the two main limitations of 
classical machine learning techniques mentioned above. 

Since relational learning and semi-supervised learning 
have their own pros and cons, it motivates the integration 
of the two approaches. Relational tri-training [11] is a 
framework for combining the power of enhancing the 
learning performance by exploiting the unlabeled 
examples of tri-training and the power of knowledge 
representation of relational learning. This algorithm 
combined the tri-training based on propositional logic 
representation and relational learning algorithm based on 
first-order logic representation. Three different relational 
learning systems (base classifiers) are initialized 
according to the labeled data and the background 
knowledge, and then the three classifiers are refined by 
iterating using the unlabeled data. That is, under special 
condition, for one unlabeled data, it is going to be labeled 
to one classifier as the new training data when the same 
labeled result are given by the other two classifiers. The 
final hypothesis (the learned model) is produced via 
majority voting of the three base classifiers.  

A.  The selection of base classifier 
Relational tri-training algorithm employs Nfoil, Kfoil 

and Aleph as three different base classifiers. Nfoil was 
the first system in literature to tightly integrate feature 
construction and Naive Bayes. Such a dynamic 
propositionalization was shown to be superior compared 
to static propositionalization approaches that employ 
Naive Bayes only for post-processing the rule sets. Kfoil 
system integrates FOIL with kernel methods. The feature 
space is constructed by leveraging FOIL search for a set 
of relevant clauses. The search is driven by the 
performance obtained by a support vector machine based 
on the resulting kernel. KFOIL can naturally handle 
classification and regression tasks. ALEPH is a publicly 
available relational learning system implemented in a 
Prolog compiler called Yap (version 4.3.22) that is a 
generalization of PROGOL [17]. 

The reason for selecting Nfoil, Kfoil and Aleph as the 
base classifiers is that the three relational learning 
algorithms have different search bias. Nfoil and Kfoil 
belong to top-down relational learning algorithm that 
learns program clauses by searching a space of possible 
clauses from general to specific. The learned final 
classifier is the most general hypothesis and is prone to 
classify the unlabeled data into positive. Aleph belongs to 
bottom-up relational learning algorithm that searches for 
program clauses by starting with very specific clauses 
and attempting to generalize them. The learned final 
classifier is the most specific hypothesis and is prone to 
classify the unlabeled data into negative. 

B.  The sufficient condition for re-training 
Let L denote the initial labeled example set, and U 

denote the unlabeled example set. Background 
knowledge is denoted by B. Nfoil, Kfoil, Aleph system is 
respectively trained from L and B, three different 
classifiers h1, h2, h3 is obtained. If h2 and h3 agree on the 
labeling of an example x in U, then x can be labeled for 
h1. It is obvious that in such a scheme if the prediction of 
h2 and h3 on x is correct, then h1 will receive a valid new 
example for further training; otherwise, h1 will get an 
example with noisy label. Therefore, in previous work 
[11], we analyses the PAC theory of concept class CB,d,M, 
then gives the sufficient condition to ensure that the 
classification accuracy of individual classifier could be 
improved by re-training on the new training set, and use 
the sufficient condition as criteria to decide whether the 
newly labeled example set should be used for re-training. 
To guarantee the integrity of the article, this paper briefly 
describes the sufficient condition. 

According to the conclusion of Horuath, Sloan and 
Turan [18], The concept class CB,d,M is polynomially PAC 
learnable with random classification noise with sample 
size 
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 , where ε is the hypothesis worst-case classification error 
rate, η (<0.5) is an upper bound on the classification 
noise rate, δ is the confidence , m is the arity of target 
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predicate, |M| is the number of modes in M, a is the 
maximum arity of any predicate in background 
knowledge, d is depth bound, CB,d,M is concept class with 
background knowledge B that are represented by Horn 
clauses of depth at most d satisfying M. 

Let
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(1) 
For a specific concept class CB,d,M, m, |M|, a, d are 

constants, δ is confidence and is also a constant. 
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then p, q are constant,  Eq. (1) can be rewritten as: 
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In each round of R-tri-training, the classifiers h2 and h3 
choose some examples in U to label for h1. Since the 
classifiers are refined in the R-tri-training process, the 
amount as well as the concrete unlabeled examples 
chosen to label may be different in different rounds. Let 
Lt and Lt-1 denote the set of examples that are labeled for 
h1 in the tth round and the (t-1)th round, respectively. 
Then, the training set for h1 in the tth round and the (t-
1)th round are L∪Lt and L∪Lt-1, whose sample size are 
|L∪Lt| and |L∪Lt-1|, respectively. Let e1,t (<0.5) denote 
the upper bound of the classification error rate of h2&h3 
in the tth round, i.e., the error rate of the hypothesis 
derived from the combination of h2 and h3. Thus, the 
number of examples in Lt that are mislabeled is e1,t|Lt|. 
Therefore, the classification noise rate in the tth round is: 
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Let εt-1, εt denote the classification error of h1 in (t-1)-
th iteration and t-th iteration, respectively. Eq. (2) could 
respectively be reformed as Eq. (4) and Eq. (5) in (t-1)-th 
iteration and t-th iteration.  
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With Eq. (4) and Eq. (5), the sufficient condition of 
εt<εt-1 can be given  

|Lt|≥|Lt-1| and ηt<ηt-1  
Considering Eq. (3), we have 
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It is the sufficient condition for re-training used in 
relational tri-training. 

III.  EXPERIMENT 

A.  Dataset 
The Web page dataset, we use for our experiments is 

the Web-Kb [19] dataset. This data set consists of 4,167 
Web pages collected from Web sites of Computer 
Science departments of four universities: Cornell 
University, University of Texas, University of 
Washington, and University of Wisconsin. These pages 
have been labeled into a number of categories, among 
which the category student home page is regarded as the 
target. That is, student home pages (13 percent) are the 
positive examples and all other pages are negative 
examples. 

B.  Effect of unlabeled web page 
Experiment settings: we randomly selected 40% of all 

web pages as test examples to evaluate the performance 
of the learned hypothesis, while the rest are used as the 
pool of training examples, i.e., L∪U. In each pool, L and 
U are partitioned under different unlabeled rates 
including 80 percent, 60 percent, 40 percent, and 20 
percent. For instance, assuming a dataset contains 1,000 
examples, 400 examples are selected as test examples, the 
remaining 600 examples are the pool of training 
examples. When the unlabeled rate is 80 percent, 120 
examples are put into L with their labels while the 
remaining 480 examples are put into U without their 
labels. Here, the pos/neg ratio of L, U, and test set are 
similar to that of the original dataset. 

Under each unlabeled rate, three different random 
partitions of L and U are generated and one independent 
run is performed for each random partition, then the 
average classification error rate of three runs is computed 
and as the final performance evaluation. 

Experiment results: The average predictive error rates 
of the final hypothesis and of each base classifier (Nfoil, 
Kfoil, Aleph) under different unlabeled rate are 
respectively shown in table I, II, III, IV, respectively. 
Where initial denotes the performance at round 0, i.e., the 
performance obtained using only the labeled training 
examples, final denotes the performance when algorithm 
finished, improve denotes the corresponding 
improvements, and Hypothesis denotes the performance 
of the hypotheses, i.e., the learned models. Table I, II, III, 
and IV show that on the Web page classification task, 
relational tri-training can effectively utilize unlabeled 
data to enhance the learning performance. 

 
TABLE I. CLASSIFICATION ERROR RATES OF THE INITIAL AND FINAL 
CLASSIFIERS UNDER 80 PERCENT UNLABELED RATE 

Classification error rate on test dataset 
classifier 

initial final improve 

Nfoil 0.0650 0.0442 32.00% 

Kfoil 0.0804 0.0684 14.93% 

Aleph 0.0788 0.0729 7.49% 

Hypothesis 0.0470 0.0394 16.17% 
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TABLE II. CLASSIFICATION ERROR RATES OF THE INITIAL AND FINAL 
CLASSIFIERS UNDER 60 PERCENT UNLABELED RATE 

Classification error rate on test dataset 
classifier 

initial final improve 

Nfoil 0.0450 0.0402 10.68% 

Kfoil 0.0840 0.0716 14.76% 

Aleph 0.0792 0.0658 16.92% 

Hypothesis 0.0402 0.0342 14.93% 
 
TABLE III. CLASSIFICATION ERROR RATES OF THE INITIAL AND FINAL 
CLASSIFIERS UNDER 40 PERCENT UNLABELED RATE 

Classification error rate on test dataset 
classifier 

initial final improve 
Nfoil 0.0428 0.0392 8.41% 
Kfoil 0.0632 0.0316 50.00% 
Aleph 0.0868 0.0859 0.94% 

Hypothesis 0.0356 0.0254 28.65% 

 
TABLE IV. CLASSIFICATION ERROR RATES OF THE INITIAL AND FINAL 
CLASSIFIERS UNDER 20 PERCENT UNLABELED RATE 

Classification error rate on test dataset 
classifier 

initial final improve 
Nfoil 0.0579 0.0504 13.66% 
Kfoil 0.0759 0.0612 19.37% 
Aleph 0.0963 0.0747 22.43% 

Hypothesis 0.0449 0.0384 14.48% 

 
Figure 1, 2, 3, and 4 depicts the error rates change of 

the final hypothesis and three base classifiers (Nfoil, 
Kfoil, Aleph) along with the re-training iterations. Note 
that since the relational tri-training algorithm may 
terminate in different iterations, the error rates at 
termination are used as the error rates of the iterations 
after termination. 

 

 
Figure 1. Iterative change of the error rates under 80 percent unlabeled 
data 
 

 
Figure 2. Iterative change of the error rates under 60 percent unlabeled 
data 
 

 
Figure 3. Iterative change of the error rates under 40 percent unlabeled 
data 
 

 
Figure 4. Iterative change of the error rates under 20 percent unlabeled 
data 
 

Figure 1, 2, 3 and 4 reveal that on all percent unlabeled 
data, the final hypotheses generated by relational tri-
training are better than the initial hypotheses, which 
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confirms that relational tri-training can effectively exploit 
unlabeled examples to enhance the learning performance. 

The time complexity of relational tri-training can be 
analyzed from Figure 1, 2, 3 and 4. It shows that the 
maximum number of iterations under different unlabeled 
rate does not exceed five times, and after four iterations, 
the error rate of hypothesis is no longer obviously 
changed. Therefore, the time complexity of relational tri-
training is very low based on the iteration number when 
the training is over. 

C.  Comparison with other systems 
1) Algorithms used for comparison 
Naive Bayes classifier 
Naive Bayes algorithm is often applied to text learning 

problems. Nuanwan and Boonserm [20] test the 
performance of naive Bayes using two feature sets which 
are heading and content feature on Web-Kb dataset. 

Co-training algorithm 
Co-training algorithm was proposed by Blum and 

Mitchell [21]. Two individual classifiers are trained 
separately on two different views, i.e. two independent 
sets of attributes, and then each individual classifier 
labels some unlabeled ones for the other to augment the 
training set for re-training. The standard co-training 
assumes that the attributes are naturally partitioned into 
two sets, each of which is sufficient for learning and 
conditionally independent to the other given the class 
label. When the assumption is satisfied, the cotrained 
classifiers could make fewer generalization errors by 
maxmizing their agreement over the unlabeled data [22]. 

ICT-ILP 
ICT (Iterative-Cross Training) [20] is a semi-

supervised learning algorithm. It consists of two learners 
and each learner gets a small amount of labeled data. The 
strong learner (classifier1) starts the learning process 
from the labeled data and classifies unlabeled data 
(TrainingData2). The weak learner (classifier2) uses these 
newly labeled data to learn and classifies TrainingData1. 
ICT-ILP is the ICT which combines the inductive logic 
programming system into one of the classifiers, that is, 
the Classifier1 of ICT-ILP is the Progol system. 

2) Experiment setting and result 
To exploit the experiment result in [20], the 

experimental configuration is the same as that used in it. 
We randomly selected 30% of all examples to be initial 
labeled data. The unlabeled training data consists of 30% 
of all examples and 40% of all examples were used as a 
test set. 

The performance evaluation is done using the standard 
precision (P), recall (R) and F1-measure (F1). These 
measurements are defined as follows. 

 #
#

correct positive predictionsrecall
positive examples

=  

 #
#

correct positive predictionsprecision
positive predictions

=  

 1
2PRF
P R

=
+

 

Table V shows the results of experiments constructed 
on the Web-Kb dataset, where the results of ICT-ILP, Co-
training and Naïve Bayes derive from [20]. In table V, for 
relational tri-training, classifier1, classifier2 and 
classifier3 denote Nfoil algorithm, Kfoil algorithm and 
Aleph algorithm, respectively. For ICT-ILP, the 
classifier1 is Progol system and the classifier2 is Naïve 
Bayes. For co-training and Naïve Bayes, classifier1 
denotes the heading-based classifier and classifier2 
denotes the content-based classifier. Note that, all 
algorithms except relational tri-training algorithm have 
not classifier3. 

 
TABLE V. PERFORMANCE OF CLASSIFIERS ON THE WEB-KB DATASET 

Classifier 1 Classifier 2 Classifier 3 
Algorithm

P R F1 P R F1 P R F1
R-tri-

training 91.38 95.06 93.18 94.61 95.48 95.05 74.81 91.93 82.49

ICT-ILP 80.00 81.82 80.90 82.61 86.36 84.44 -- -- -- 
Co-

training 73.95 84.69 75.64 79.69 60.72 66.14 -- -- -- 

Naïve 
Bayes 74.99 87.24 79.91 76.95 84.18 79.60 -- -- -- 

 
Comparing the recall results first, we see that R-tri-

training outperform other algorithms on all classifiers. 
Comparing the precision results and F1 scores, we see 
that two classifiers (Nfoil, Kfoil) of R-tri-training 
outperform all classifiers of other algorithms, and one 
classifier (aleph) of R-tri-training is comparative with the 
classifiers of other algorithms. The reason that R-tri-
training got the highest performance came from the 
contribution of relational learning algorithm and 
unlabeled data. 

IV.  CONCLUSION 

Classification of web page content is essential to many 
tasks in web information retrieval such as maintaining 
web directories and focused crawling. The uncontrolled 
nature of web content presents additional challenges to 
web page classification compared with traditional text 
classification, but the interconnected nature of hypertext 
also provides features that can assist the process. An 
interesting aspect of the Web is that it can be thought of 
as a graph in which pages are the nodes of the graph and 
hyperlinks are the edges. 

We apply relational semi-supervised learning 
algorithm named R-tri-training to web page classification. 
The relational component is able to describe the graph 
structure of hyperlinked pages and the internal structure 
of HTML pages. Furthermore, the semi-supervised 
learning component is able to exploit unlabeled data to 
enhance the learning performance. Experiment on Web-
Kb is given and analyzed. We compare the result with the 
supervised Naive Bayes, which is the well-known 
algorithm for the text classification problem. The 
performance of R-tri-training is also compared with other 
semi-supervised learning algorithms which are Co-
Training and ICT-ILP. The experimental results show 
that R-tri-training algorithm outperforms those algorithms. 
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In the analysis of the error rates change of classifiers 
(see figure 1, 2, 3, 4), it is noted that the performance of 
R-tri-training algorithm are usually not stable because the 
unlabeled examples may often be wrongly labeled during 
the learning process. A promising solution to this 
problem may be using data editing mechanisms to help 
identify the wrongly labeled examples. Incorporating data 
editing mechanisms into R-tri-training is an interesting 
issue to be investigated in future work. 
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