
An Effective Economic Management of
Resources in Cloud Computing

Ghalem Belalem

Dept. of Computer Science, Faculty of Sciences, University of Oran (Es Senia), Oran, Algeria
Email: ghalem1dz@yahoo.fr

Samah Bouamama

Dept. of Computer Science, Faculty of Sciences, University of Oran (Es Senia), Oran, Algeria
Email: samahu@hotmail.com

Larbi Sekhri

Dept. of Computer Science, Faculty of Sciences, University of Oran (Es Senia), Oran, Algeria
Email: Larbi.sekhri@univ-oran.dz

Abstract— In Cloud computing, the availability and
performance of services are two important aspects to be
lifted, because users require a certain level of quality service
in terms of timeliness of their duties in a lower cost. Several
studies have overcome this problem by the proposed
algorithms borrowed from economic models of real world
economy to ensure that quality of service, our job is to
extend and enrich the simulator CloudSim by auction
algorithms inherited from GridSim simulator, but its
algorithms do not support the virtualization which is an
important part of Cloud Computing, why we introduced
several parameters and functions adapted to the
environment of cloud computing as well as users to meet
their requirements.

Index Terms— Cloud computing, CloudSim, Auction model.

I. INTRODUCTION

Cloud Computing environment is hinting at a future
in which we won’t compute on local computers, but on
centralized facilities operated by third-party compute and
storage utilities [9]. This environment, with a great
flexibility and ease of use, the availability, of data and of
services, becomes one of the biggest problems to treat
and to improve [12].

With cloud computing, companies can scale up to
massive capacities in an instant without having to invest
in new infrastructure, train new personnel, or license new
software. Cloud computing is of particular benefit to
small and medium-sized businesses who wish to
completely outsource their Data center infrastructure, or
large companies who wish to get peak load capacity
without incurring the higher cost of building larger
Datacenters internally.

The CloudSim simulator was proposed to simulate
and evaluate the various approaches suggested with the
platforms of Cloud Computing [3] [6]. The execution of
the simulator makes it possible to make announce a
whole of the breakdowns in the treatment of the requests
subjected by the users.

GridSim is an event management tool for simulation
of heterogeneous Grid resources. It supports the modeling
of network entities, users, machines, and the network,
including network traffic.

It is able to model and simulate the behavior of Grid
applications (execution, scheduling, allocation and
monitoring) in a distributed environment consisting of
multiple organizations of the grid, but is unable to
withstand the demands infrastructure and application
levels under the cloud computing paradigm.

In particular, there is very little or no support in the
existing grid toolkits for simulation modeling of
virtualization to the application to allow the management
of resources and applications. Therefore, modeling cloud
infrastructure simulation toolkits should provide support
to economic entities such as brokers and exchanges cloud
for the negotiation of services between customers and
suppliers. Among the currently available simulators
discussed in this document GridSim that offers support
for managing economic resources [2] thing that
CloudSim does not have. The work presented in this
research is to satisfy the customer in terms of providing a
high quality treatment in a minimum cost and in the
Clouds Computing offering any improved of algorithms
auction of GridSim specific of CloudSim to simulate an
economic environment in the cloud computing, with the
goal of providing virtualized resources to treat Cloudlet
from users.

We offer a hybridization of the two main aspects of
simulators GridSim and CloudSim, which are the
implementation of economic models of bidding GridSim
and virtualization of computing resources CloudSim.

The rest of the paper is structured as follows: in
Section 2, we define cloud computing environments as an
important scientific trend. Section 3 is dedicated to the
simulator GridSim; define the simulator and its uses in
the Grid. We present in Section 4, the simulator
CloudSim, The following section identifies changes to
CloudSim to ensure proper management of resources in

404 JOURNAL OF COMPUTERS, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jcp.6.3.404-411

the simulator CloudSim. The different experiments are
presented in Section 6. We end our paper with a summary
and some extension work that we will consider doing so.

II. CLOUD COMPUTING

Cloud computing can be defined as "A type of parallel
and distributed system consisting of a collection of
interconnected computers and they are virtualized and
dynamically generated and submitted as one or more
computing resources based on service level agreement
established through negotiation between the provider and
consumers" [4]. Some examples of new infrastructure are
Microsoft Azure Cloud Computing [8], Amazon EC2,
Google and Aneka [15].

Computing power in cloud computing environments
is provided by a collection of data centers, which are
typically installed with hundreds of thousands of servers
[5]. The layered architecture of a typical cloud-based data
centers is shown in Figure 1. In the lower layers there are
huge hardware resources (storage and application servers)
which feed data centers. The servers are managed
transparently by the level of virtualization [14], services
and toolkits that enable the sharing of their capacity
through virtual instances of servers. These virtual
instances are isolated from each other, this helps to
achieve fault tolerance and isolation of the security
environment.

Figure 1. Typical DataCenter.

Cloud applications such as social networking, game

portals, applications, economic and scientific workflows
running in the highest layer of the architecture. The
patterns of actual use of many real applications vary with
time, mostly unpredictable ways. These applications have
different requirements of Quality of Service (QoS)
depending on the criticality of the time and modes of user
interaction (online / offline).

III. GRIDSIM

GridSim [5] toolkit was developed by Buyya et al to
address the problem of near impossibility of performance
evaluation of real large scaled distributed environments
(typically Grid systems but also P2P networks) in a
repeatable and controlled manner. The GridSim toolkit is

a Java based simulation toolkit that supports modelling
and simulation of heterogeneous Grid resources and users
spread across multiple organizations with their own
policies. It supports multiple application models and
provides primitives for creation of application tasks,
mapping of tasks to resources and managing such tasks
and resources.

IV. CLOUDSIM

CloudSim [3] is a framework developed by the
GRIDS laboratory of University of Melbourne which
enables seamless modelling, simulation and
experimenting on designing Cloud computing
infrastructures. CloudSim is a self-contained platform
which can be used to model data centers, service brokers,
scheduling and allocation policies of a large scaled Cloud
platform. It provides a virtualization engine with
extensive features for modelling the creation and life
cycle management of virtual engines in a data center and
provides flexibility to switch between space-shared and
time-shared allocation of processing cores to virtualized
services.
CloudSim framework is built on top of GridSim
framework also developed by the GRIDS laboratory.

Figure 2 shows the conception of the CloudSim toolkit
[6]. At the lowest layer, we find the SimJava [11] that
implements the core functionalities required for higher-
level simulation such as queuing and processing of
events, creation of system components (services, host,
data center, broker, virtual machines), communication
between components, and management of the simulation
clock. In the next layer follows the GridSim toolkit that
support high level components for modelling multiple
Grid components Such as networks, resources, and
information services.

The CloudSim is implemented as layer by extending
the core functionality of the GridSim layer. CloudSim
provides support for modelling and simulation of
virtualized Datacenters environments such as
management interfaces for VMs, memory, storage, and
bandwidth. CloudSim layer manages the creation and
execution of core entities (VMs, hosts, Datacenters,
application) during the simulation period. This layer
handle the provisioning of hosts to VMs based on user
requests, managing application execution, and dynamic
monitoring. The final layer in the simulation stack is the
User Code that exposes configuration functionality for
hosts (number of machines, their specification and so on),
applications (number of tasks and their requirements),
VMs, number of users and their application types, and
broker scheduling policies. A Cloud application
developer can write an application configurations and
Cloud scenarios at this layer to perform a cloud
computing scenario simulations.

JOURNAL OF COMPUTERS, VOL. 6, NO. 3, MARCH 2011 405

© 2011 ACADEMY PUBLISHER

Figure 2. CloudSim architecture [9].

V. IMPROVED THE CLOUDSIM SIMULATOR

To improve the quality of treatment service of users
cloudlets, we made a comparative study between the
simulator CloudSim who inherits own bidding algorithms
of GridSim simulator, as well as those we have
implemented and integrated into the simulator GridSim
specific of CloudSim, after decompiled CloudSim to
make the changes mentioned above on the simulator
GridSim and then recompiled with the toolkit GridSim
amended. GridSim implements the four types of auction
are: First Price Auction sealed bid (FPSB), English
auction, Dutch auction and Continuous Double Auction
(CDA), these types of betting revolves around one
principle which is the increase or the starting price set by
the supplier or the reduction of a very high price to reach
the reserve price set by supplier to win the auction with a
price that satisfies both the customer and supplier. The
diagram below illustrates the general principle of auctions
in the Clouds Computing.

Initially, the user submits Cloudlets to his broker. In
the Cloud, a broker is responsible for submitting and
monitoring Cloudlets on the user’s behalf. The broker
creates an auction and sets additional parameters of the
auction such as Cloudlet length, the quantity of auction
rounds, the reserve price and the policy to be used (e.g.
English or Dutch auction policy). As the broker also
plays the role of auctioneer, it posts the auction to itself;
otherwise, the auction would be post to an external
auctioneer. The auctioneer informs the bidders that an
auction is about to start. Then, the auctioneer creates a
call for proposals (CFP), sets its initial price, and
broadcasts the CFP to all the bidders. Providers formulate

Figure 3. General view auction mechanism.

bids for selling a service to the user to execute the
Cloudlet. The first time that bidders evaluate the CFP,
they decide not to bid because the price offered is below
what they are willing to charge for the Data center. This
makes the auctioneer to increase or decrease the price and
send a new CFP with this new price. Meanwhile, the
auctioneer keeps updating the information about the
auction. In the second round, a bidder decides to bid. The
auctioneer clears the auction according to the policies
specified before. Once the auction clears, it informs the
outcome to the user and the bidders.

A. First Price Sealed Bid Auction

Bidders are not aware of each other's offers [1]. In
addition, it is a single round auction. When bidders
receive a call for proposals, they can verify the minimum
price and either decide to bid or not to bid for the good.
The auctioneer waits a given time for the bids and then
allocates the good to the bidder who has valued the good
the most. Part of this class is presented in Algorithm 1.

B. English Auction (EA)

This economic model [7] is an ascending auction in
which the auctioneer tries to find the price of a good by
proposing an initial price below the supposed market
value and slowly raising the price until no bidder is
interested in paying the current price for the good. Then
the best past bid is chosen. Part of this algorithm is
presented in Algorithm 2.

406 JOURNAL OF COMPUTERS, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

C. Dutch Auction (DA)

This economic principle [7] is a descending auction and
differs from the English auction in the sense that the
auctioneer starts by issuing a call for proposals with a
price much higher than the expected market value. The
auctioneer then gradually decreases the price until some
bidder shows interest in taking the good for the price
announced. Part of this algorithm is presented in
Algorithm 3.

D. Continuous Double Auction (CDA)

The Continuous double auction [10] works with a
system of bids and asks. The price is found by matching
asks and bids. The auctioneer accepts asks and bids and
tries to match them. The auctioneer informs the price to
the bidder and the seller when a match is made. Part of
this algorithm is presented in Algorithm 4.

The principle of continuous double auction is shown

in the diagram in Fig. 4.
Among the improvements in our work is that we have

introduced a specific parameter to the user who is the
budget in order to manage its budget by the number of
Cloudlet and their importance in terms of size.

The user will bid with the broker representing the
Data Center on an auction mentioned above, when the
user tries to treat all its Cloudlet in minimum time and
with less cost. CloudSim GridSim and assume that the
size of the Cloudlet before treatment is fixed this means

Algorithm 1: FirstPriceSealedBidAuction
Var double Min_Price, Current_Price,
Reserve_Price, Final_Price;
/*ReservePrice is the maximum price at which a
seller is willing to sell a Data center*/
/*CurrentPrice is the price of asker*/
MessageCallForBids Msg ;
MessageBid best
int AuctionID, currentRound;

/* This method is called when a round is
started*/
void onStart(int round)
 if (round == 1) then
 Min_Price:=Reserve_Price;
 Current_Price:=Reserve_Price;
 end if
/* Creates a call for proposal that is broadcast to
all bidders*/
 Msg = new
MessageCallForBids(AuctionID,AuctionProtocol,Mi
n_Price,currentRound);
 broadcastMessage(Msg);
end;

/* This method is invoked when a round
finishes*/
void onClose(int round)
 best = getFirstBid();

 if (best != null) then
 double price = best.getPrice();
 if (price >=Reserve_Price)
 then
 FinalPrice:=price;
Winner_Id:=best.getBidder()

 else
 Final_Price:=Current_Price;
 end if
 else Final_Price:=Current_Price;
 end if
end;

Algorithm 2: English Auction
Var double Min_Price, Current_Price,
Reserve_Price, Final_Price;
/*ReservePrice is the maximum price at which
a seller is willing to sell a Data center*/
/*CurrentPrice is the price of asker*/
MessageCallForBids Msg ;
MessageBid bestBid
int NumberOfRounds ;
boolean shouldIncrease

/* This method is called when a round is
started */
void onStart(int round)
 if(round == 1)then
 initialBidders =getBidders();
 Current_Price :=Min_Price;
 end if

broadcastMessage(msg);
end;
/* This method is invoked when a round
finishes */
void onClose(int round)
boolean stop = false;
 if (!shouldIncrease|| round
==NumberOfRounds)

stop = true
 else shouldIncrease = false;
 double increase=(Max_Price–
Min_Price)/(NumberOfRounds - 1);
 Current_Price= Current_Price +
increase;
 end if
 if (stop) then

 if (bestBid != null) then
 double price = bestBid.getPrice();
 if (price >= Reserve_Price)
then
 Final_Price:=price;
 Winner:=bestBid.getBidder()
 else Final_Price:=Current_Price;
 end if
 else Final_Price:=Current_Price;
 end if

 end if
end;

JOURNAL OF COMPUTERS, VOL. 6, NO. 3, MARCH 2011 407

© 2011 ACADEMY PUBLISHER

Figure 4. Continuous Double Auction Diagram.

that all have the same budget Cloudlet view that it
depends on their size using the following formula:

UnitaryPriceKB = Budget/TotalSizeOfAllCloudlets (1)

From the Formula (1), we can deduce the estimated
cost to cloudlet given by the formula below:

CostOfCloudlet = UnitaryPriceKB*SizeOfCloudlet (2)

In specific auction algorithms of GridSim, the price

offered by the Data Center is random and that generated
by the user depends on this price, does not guarantee the
true estimate of data center cost and the treatment of a
cloudlet is why we have proposed a function that
generates the offer price. This function estimates the cost
of executing the Cloudlet and the cost of their transfers

Algorithm 3: Dutch Auction
Var double Min_Price, Current_Price,
Reserve_Price, Final_Price, Current_Price;
/*ReservePrice is the minimum price at which a
seller is willing to sell a Data center*/
/*CurrentPrice is the price of asker*/
MessageCallForBids Msg ;
int NumberOfRounds ;
boolean shouldIncrease

/* This method is called when a round is started
*/
public void onStart(int round)
 if (round == 1) then

Current_Price:=MaxPrice;
 end if

broadcastMessage(msg);
end;

/* This method is invoked when a round
finishes */
public void onClose(int round) {
 if (round >=NumberOfRounds) then

 if (bestBid == null) then
 setFinalPrice(getCurrentPrice())

else double decrease=
Max_Price/(NumberOfRounds
- 1);

 Current_Price:=Current_Price -
decrease; end if;

 end if;
end;

Algorithm 4: Continuous Double Auction
Var LinkedList asks,bids; /*the list of offers
and requests*/
Comparator compAsks,compBids;
/* Called when a bid is received.*/

public void onReceiveBid(MessageBid bid)
Collections.sort(asks,compAsks);
 if (asks.size() > 0) then
 MessageAsk ask =
(MessageBid)asks.getFirst();
 double priceAsk = ask.getPrice();
 double priceBid = bid.getPrice();

 if(priceBid >= priceAsk){
 double finalPrice = (priceAsk +
priceBid) / 2;
 match(ask, bid, finalPrice);
 asks.remove(ask)
 else bids.add(bid);
 end if

 else bids.add(bid) ;
 end if;
end;

/* Called when a ask is sent by a provider. */
public void onReceiveAsk(MessageAsk ask)
Collections.sort(bids,compBids);
 if(bids.size() > 0) then
 MessageBid bid =
(MessageBid)bids.getFirst();
 double priceAsk = ask.getPrice();
 double priceBid = bid.getPrice();

 if(priceBid >= priceAsk)then
 double finalPrice = (priceAsk +
priceBid) / 2;

 match(ask,bid,finalPrice);
 bids.remove(bid)

 else asks.add(ask);
 end if

 else asks.add(ask);
 end if;

end;

408 JOURNAL OF COMPUTERS, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

before and after the execution assuming that its size
before and after treatment is the same (see Formula 3).

GenBid = (CostPerCPU*TimeCPU)+2*(SizeOfCloudlet*
CostPerBandWidth) (3)

Each algorithm has 3 major auction prices for auction
process, these prices are: max price, min price and
reserve price.

The reserve price is the same in all algorithms of
auction and it is equal to the Formula 2, the maximum
price in the Dutch and English auction is equal to
Formula 4.

Maximum price = Budget/NB_Cloudlet (4)

For the minimum price of Dutch auction is zero, while

that of the English auction is equal to a price that exceeds
the offer price of formula (3) to respect the procedure of
the English auction described above.

VI. SIMULATIONS

We conducted four sets of simulation to prove that
the auction algorithms provide good quality service in
terms of cost and duration of minimum bid. The aim of
the first series is to see the impact of size variation of the
cloudlet in its cost, therefore we have fixed the number of
datacenter to 5, the number of host to 20 each has 2
processors which costs $3 (Price of treatment) with 2MB
of RAM which costs $0.5 (price list), 128 MB / sec which
costs $0.01 (cost of the bandwidth), 500GB of storage
which costs $0.1 (price of storage), the number of virtual
machine is 2, the number of user is 1 with a budget of
$300 and 20 Cloudlet varied their size between 100 and
1000 KB in increments of 100, the number of rounds for
the Dutch and English auction is 10 duration 120 ms,
Figure 5 shows the resulting graph.

Figure 5. Average cost of Cloudlets according to their size

We can note from the Figure 5 that FPSB lower the

cost of Cloudlet more than other auction models despite
the increased size of Cloudlet because it is the user who
set the starting price this is dependent on its budget,
unlike the CDA, where the price proposed is carried by
the user and the datacenter divided by two, we also note
that despite the size variation of Cloudlet, the average
cost DA and EA is stable because in this example the

reserve price coincides with the ask price, with a net
increase of EA versus DA.

The aim of the second set of simulation is to see the
impact of varying number of data centers on the average
cost of cloudlet, we set the size to 300KB Cloudlet 50
each, and varied the number of data center from 1 to 10
by no one, the figure below shows (see Figure 6) that the
average cost of four model bid.

Figure 6. Average cost of Cloudlets according the number of

datacenter

The third set of simulation has to stumble to see the
impact of number de cloudlets on the average time of the
auction, we found the following result (see Figure 7), all
bidding models are slow in terms of increasing the
number of Cloudlets, but the auction CDA is much faster
than other auction for it is not a continuous enhancements
such as DA or EA, FPSB in second place because the
price generated by the user is compared with the reserve
price and the supplier awarded directly, but EA much
time compared to DA because it attempts to maximize the
greatest possible gain of the supplier without it has a
price limit.

Figure 7: Impact of variation in number of cloudlet on the average time

of the auction

Fourth set of simulation has to stumble to see the
impact of varying the number of users on the average
time of auction, Figure 8 shows that increasing the
number of users to a negative impact on the average time

JOURNAL OF COMPUTERS, VOL. 6, NO. 3, MARCH 2011 409

© 2011 ACADEMY PUBLISHER

of the auction, but CDA is the fastest of all the models
auction saw its operating principle, we also note the EA
and DA will coincide in the point (6 ; 150000) that is to
say, 6 users both bids are the same time, but beyond 6 EA
takes less time compared to the DA this is due to that the
competitor to raise prices as quickly as possible to break
the price of other competing offers.

Figure 8. Average time of auction the number of users

VII. CONCLUSION

The recent efforts to design and develop Cloud
technologies focus on defining novel methods, policies
and mechanisms for efficiently managing Cloud
infrastructures.

The main objective of our work is to satisfy customers
Clouds, while providing economic functions that reduce
the cost of processing cloudlets and improved auction
algorithms implemented in GridSim to reduce the time
auction and to assure a rapid and effective acquisition of
computing resources. The experimental results obtained
are very satisfactory and meet our expectations. For a
continuation of our work, several perspectives can be
envisaged:

- Proposing a method or approach that will satisfy
both the customer and supplier resource.

- Extend this work by a process of discovery and
allocation of appropriate resources in the cloud
computing [13].

- Find a solution for customers who want a high
quality of treatment but who do not have enough
budgets, by the possibility of credit.

- Propose an implementation of auction club using a
multi-agent system.

ACKNOWLEDGMENT

This work is supported by Computer Science
Laboratory of Oran, Algeria (LIO).

REFERENCES

[1] M. D. D. Assuncao, and R Buyya, “An Evaluation of
Communication Demand of Auction Protocols in Grid

Environments”, In Proceedings of the 3rd International
Workshop on Grids Economics & Business (GECON
2006), pp. 24-33, Singapore, May 2006.

[2] G. Belalem, B. Yagoubi and S. Bouamama, “An Approach
Based on Market Economy for Consistency Management
in Data Grids with OptorSim Simulator”, International
Journal of Information Technology and Web Engineering
(IJITWE), vol. 3, no. 3, pp.1-16, 2008.

[3] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and
Simulation of Scalable Cloud Computing Environments
and the CloudSim Toolkit: Challenges and
Opportunities”, Keynote Paper. In Proceedings of the 7th
High Performance Computing and Simulation (HPCS
2009) Conference, Leipzig, Germany 2009.

[4] R. Buyya, C. S. Yeo, and S. Venugopal, “Marketoriented
cloud computing: Vision, hype, and reality for delivering
IT services as computing utilities”. In Proceedings of the
10th IEEE International Conference on High
Performance Computing and Communications, 2008.

[5] R. Buyya, and M. Murshed, “GridSim: A Toolkit for the
Modeling and Simulation of Distributed Resource
Management and Scheduling for Grid Computing”, The
Journal of Concurrency and Computation: Practice and
Experience (CCPE), vol. 14, no. 13-15, pp. 1175-1220,
Wiley Press, Nov.-Dec., 2002.

[6] R. N. Calheiros, R. Ranjan, C. A. F. De Rose, and R. Buyya,
“CloudSim: A Novel Framework for Modeling and
Simulation of Cloud Computing Infrastructures and
Services”, Technical Report, GRIDS-TR-2009-1, Grid
Computing and Distributed Systems Laboratory, The
University of Melbourne, Australia, 2009.

[7] R. Jr. Cassady, “Auctions and Auctioneering”. University of
California Press, Berkley and Los Angeles, California,
1967.

[8] D. Chappell, “Introducing the Azure services platform”.
White paper, Oct. 2008.

[9] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud Computing
and Grid Computing 360-degree compared”, in Grid
Computing Environments Workshop, GCE’08, Austin,
TX, pp.1–10, 12-16 Nov 2008.

[10] D. Friedman, and J. Rust, “The double auction market:
institutions, theories, and evidence”. Addison-Wesley,
1993.

[11] F. Howell, and R. Mcnab, “SimJava: A discrete event
simulation library for java”. In Proceedings of the first
International Conference on Web-Based Modeling and
Simulation, 1998.

[12] T. Rings, G. Caryer, J. R. Gallop, J. Grabowski, T.
Kovacikova, S. Schulz, and I. Stokes-Rees, “Grid and
Cloud Computing: Opportunities for Integration with the
Next Generation Network”, Journal of Grid Computing,
vol. 7, no. 3, pp.375-393, 2009.

[13] A. Sharma and S. Bawa, “Comparative Analysis of
Resource Discovery Approaches in Grid Computing”.
Journal of Computer (JCP), vol. 3, no. 5, pp. 60-64, 2008.

[14] J. E. Smith, and R.Nair, “Virtual Machines: Versatile
platforms for systems and processes”. Morgan
Kauffmann, 2005.

[15] C. Xingchen; K. Nadiminti, J;Chao; S. Venugopal,
and R. Buyya, “Aneka: Next-generation enterprise grid
platform for e-science and e-business applications”. In
Proceedings of the 3rd IEEE International Conference on
e-Science and Grid Computing, pp. 151-159, Bangalore,
10-13 Dec. 2007.

410 JOURNAL OF COMPUTERS, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

Ghalem Belalem graduated from University of Oran,
Algeria, where he received PhD degree in computer science in
2007. His current research interests are distributed systems, grid
and cloud computing, placement of replicas and consistency
management in large scale systems and mobile environment.

Samah Bouamama a master’s candidate in the Department

of Computer Science, Faculty of Sciences, University Of Oran,
Algeria. Her research interests are Grid and Cloud Computing,
replication strategies and consistency management.

Larbi Sekhri received his PhD in Computer Science from
Oran University in 2006 (Algeria). His current research area
include formal modeling in wireless ad-hoc and sensor
networks, systems modeling using Petri nets, automata theory,
diagnosability and monitoring of automated production systems
and reasoning in artificial intelligence.

JOURNAL OF COMPUTERS, VOL. 6, NO. 3, MARCH 2011 411

© 2011 ACADEMY PUBLISHER

