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Abstract—Protein remote homology detection and fold 
recognition are central problems in bioinformatics. 
Currently, discriminative methods based on support vector 
machine (SVM) are the most effective and accurate methods 
for solving these problems. The performance of SVM 
depends on the method of protein vectorization, so a 
suitable representation of the protein sequence is a key step 
for the SVM-based methods. In this paper, two kinds of 
profile-level building blocks of proteins, binary profiles and 
N-nary profiles, have been presented, which contain the 
evolutionary information of the protein sequence frequency 
profile. The protein sequence frequency profiles calculated 
from the multiple sequence alignments outputted by PSI-
BLAST are converted into binary profiles or N-nary 
profiles. The protein sequences are transformed into fixed-
dimension feature vectors by the occurrence times of each 
binary profile or N-nary profile and then the corresponding 
vectors are inputted to support vector machines. The latent 
semantic analysis (LSA) model, an efficient feature 
extraction algorithm, is adopted to further improve the 
performance of our methods. Experiments with protein 
remote homology detection and fold recognition show that 
the methods based on profile-level building blocks give 
better results compared to related methods. 

Index Terms—fold recognition; remote homology detection; 
Support Vector Machine; Latent semantic analysis, 
frequency profiles  

I.  INTRODUCTION 
Protein homology detection is one of the most 

intensively researched problems in bioinformatics. 
Researchers are increasingly depending on computational 
techniques to classify proteins into functional or structural 
classes by means of homologies. Most methods can detect 
homologies at high levels of sequence similarity, while 
accurately detecting homologies at low levels of sequence 
similarity (remote homology detection) is still a 
challenging problem. 

Many powerful methods and algorithms have been 
proposed to detect homology between proteins. Early 
methods were based on the pairwise similarities between 
protein sequences. Among those algorithms, the Smith-
Waterman dynamic programming algorithm [1] which 
finds an optimal score for similarity according to a 

predefined objective function is among the most 
successful methods. Some heuristic algorithms, such as 
BLAST [2] and FASTA [3] trade reduced accuracy for 
improved efficiency. These methods do not perform well 
for remote homology detection, for the alignment score 
falls into a twilight zone when the protein sequences 
similarity is below 35% at the amino acid level [4]. The 
later methods challenged this problem by incorporating 
the family information. These methods are based on a 
proper representation of protein families and can be split 
into two groups [5]: generative models and discriminative 
algorithms. Generative models which provide a 
probabilistic measure of association between a new 
sequence and a particular family. These methods such as 
profile hidden Markov Models (HMM) [6], can be trained 
iteratively in an semi-supervised manner using both 
positively labeled and unlabeled samples by pulling in 
close homology and adding them to the positive set [7]. 
The discriminative algorithms such as Support Vector 
Machine (SVM) [8] provided state-of-the-art performance 
with appropriate kernel. In contrast to generative methods, 
the discriminative algorithms focus on learning a 
combination of the features that discriminate between the 
classes. These algorithms are trained in a supervised 
manner using both positive and negative samples to 
establish a discriminative model. The first discriminative 
method is the SVM-Fisher [9], which represents each 
protein sequence by a vector of Fisher scores. SVM-
pairwise [10] is another successful method, in which each 
protein sequence is represented as a vector of pairwise 
similarities to all protein sequences in the training set. 
Many other SVM-based methods also have been proposed 
such as SVM-k-spectrum [11], Mismatch-SVM [12], 
SVM-I-sites [13], SVM-n-peptide [14], Monomer-dist [5], 
GPkernel [15], SVM-LA and SVM-SW [16]. A 
comparison of SVM-based methods has been performed 
by Saigo et al. [17]. 

Sequence homologies are an important source of 
information about proteins. Multiple sequences 
alignments of protein sequences contain much information 
regarding evolutionary processes. This information can be 
detected by analyzing the output of PSI-BLAST [18, 19]. 
Since protein sequence frequency profiles are a richer 
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encoding of protein sequences than the individual 
sequence, it is of great significance to use such 
evolutionary information for protein remote homology 
detection and fold recognition. 

 In this study, the protein sequence frequency profiles 
calculated from the multiple sequence alignments 
outputted by PSI-BLAST are converted into binary 
profiles or N-nary profiles. The protein sequences are 
transformed into fixed-dimension feature vectors by the 
occurrence times of each binary profiles or N-nary 
profiles and then the corresponding vectors are inputted to 
support vector machine (SVM). The two methods are 
further improved by applying an efficient feature 
extraction algorithm from natural language processing, 
namely, latent semantic analysis (LSA) [20]. When tested 
on two SCOP benchmarks, the superfamily and fold 
recognition problems, the two methods give better results 
compared to related methods. 

II. METHODS 

A. Data sets 
We use a common superfamily benchmark [10] to 

evaluate the performance of our method for protein 
remote homology detection. The benchmark contains 54 
families and 4352 proteins from SCOP version 1.53 which 
are extracted from the Astral database [21] and include no 
pair with a sequence similarity higher than an E-value of 
10. Because PSI-BLAST is unable to generate profiles on 
short sequences, the protein sequences with lengths less 
than 30 are removed. For each family, the proteins within 
the family are taken as positive test examples, and the 
proteins outside the family but within the same 
superfamily are taken as positive training examples. 
Negative examples are selected from outside of the 
superfamily and are separated into training and test sets. 

A recently established fold benchmark [15] is used for 
protein fold recognition. The benchmark contains 3840 
proteins from 374 superfamilies and 86 superfamilies are 
tested. These proteins extracted from SCOP version 1.67 
are filtered with Astral database [21] and contain no pair 
with a sequence similarity more than 95%. The proteins 
with lengths less than 30 are also removed. For each tested 
superfamily, there are at least 10 proteins in its positive 
training and test set. The proteins within one superfamily 
are taken as positive test samples, while the others in the 
same fold are taken as positive training examples. The 
negative test samples are selected from one random 
superfamily from each of the other folds and the negative 
training samples are selected from the remaining proteins. 
Because most of the proteins within a fold have a very low 
degree of similarity, this fold benchmark is considerably 
harder than the superfamily benchmark. 

B. Generation of protein sequence frequency profiles 
A protein sequence frequency profile can be 

represented as a matrix M, the dimensions of M are L×N, 
where L is the length of the protein sequence and N is the 
number of all standard amino acids, which is a constant 
value of 20. Each element of M is the target frequency 

which indicates the probability of an amino acid in a 
specific position of a protein sequence during evolutionary 
processes. The rows of M are the amino acid frequency 
profiles. For each row the elements add up to one. Each 
column of M corresponds to one of the 20 standard amino 
acids. The protein sequence frequency profiles are 
calculated from the multiple sequence alignments 
outputted by PSI-BLAST [18]. The parameter values of 
PSI-BLAST are set to default except that the number of 
iterations is set to 10. The database for PSI-BLAST to 
search against is nrdb90 database 
(http://www.ebi.ac.uk/~holm/nrdb90) from EBI [22]. A 
subset of multiple sequence alignments with sequence 
identity less than 98% is used to calculate the protein 
sequence frequency profiles. The sequence weight is 
assigned by the position-based sequence weight method 
[23]. The calculation of the target frequency is similar to 
that implemented in PSI-BLAST. Formula (1) is used to 
calculate the pseudo-count for amino acid i (gi). 

∑
=

=
20

1

)/(*
j

jijii pqfg                              (1) 

where fi is the observed frequency of amino acid i, pj is 
the background frequency of amino acid j, qij is the score 
of amino acid i being aligned to amino acid j in 
BLOSUM62 substitution matrix, which is the default 
score matrix of PSI-BLAST.  

The target frequency is then calculated with the 
pseudo-count as: 

)/()( βαβα ++= iii gfQ                             (2) 

where β is a free parameter set to a constant value of 
10 which is initially used by PSI-BLAST and α is the 
number of different amino acids in a given column minus 
one. 

C. Converting protein sequence frequency profiles into 
binary profiles 
Two approaches are used to extract the evolutionary 

information of the protein sequence profiles. The first 
approach uses binary profiles to approximately represent 
the protein sequence profiles. The protein sequence 
profiles are converted into binary profile by a threshold Ph. 
When the frequency of an amino acid is higher than Ph, it 
is converted into an integral value of 1, which means that 
the specific amino acid can occur in a given position of 
the protein sequence during evolution. Otherwise it is 
converted into 0. A substring of amino acid combination 
is then obtained by collecting the binary profile with non-
zero value for each position of the protein sequences. 
These substrings approximately represent the amino acids 
that possibly occur at a given sequence position during 
evolution. Each combination of the twenty amino acids 
corresponds to a binary profile and vice versa. Binary 
profiles make up of a profile-based building block of 
proteins. The process of generating and converting the 
protein sequence frequency profile into binary profiles is 
shown in the left part of Fig. 1. 
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D. Converting protein sequence frequency profiles into 
N-nary profiles 
The second approach uses N-nary profiles to extract 

the evolutionary information of the protein sequence 
profiles. Because the frequencies of all amino acids are 
belong to interval [0, 1], this interval can be divided into N 
equal size intervals. N different integers ranging from 0 to 
N-1 are used to represent the N different equal size 
intervals respectively (i.e. for N=4, interval [0, 1] is 
divided into 4 equal size intervals: [0, 0.25), [0.25, 0.5), 
[0.5, 0.75), [0.75, 1] and four integers including 0, 1, 2 
and 3 are used to represent the four different equal size 
intervals respectively). When a given amino acid 
frequency belongs to a specific interval, the corresponding 
integer value of the interval is assigned to the amino acid. 
This process is iterated until each of the 20 standard 
amino acids is represented as a corresponding integer. 
Therefore, an amino acid frequency profile is converted 
into a vector with dimensions of 20, in which each 
element takes the value from 0 to N-1. These elements 
discriminate the frequencies of the 20 standard amino 
acids. The bigger the value of the element is, the more 
probable the corresponding amino acid occurs during 
evolution. We call such vectors N-nary profiles. The 
above process is iterated until all amino acid frequency 
profiles in the protein sequence frequency profile are 
converted into N-nary profiles. The process of generating 
and converting the protein sequence frequency profile into 
N-nary profiles is shown in the right part of Fig. 1. 

E. Chi-square feature selection 
Most machine-learning algorithms do not scale well to 

high-dimensional feature spaces [24]. Thus, it is desirable 
to reduce the dimension of the feature space by removing  

 

Figure 1.  The flowchart of calculating and converting protein 
sequence frequency profile. 

non-informative or redundant features. A large number of 
feature selection methods have been developed for this 
task, including information gain, mutual information, chi-
square and so on.  The chi-square algorithm is used in this 
study because it is one of the most effective feature 
selection methods in document classification task [25]. 

The chi-square algorithm measures the lack of 
independence between a feature t and a classification 
category c and can be compared to the chi-square 
distribution with one degree of freedom to judge 
extremeness. The chi-square value of feature t relative to 
category c is defined to be: 

)()()()(
)(),(

2
2

DCBADBCA
BCDANct

+×+×+×+
×−××

=χ             (3) 

where A is the number of times t and c co-occur, B is 
the number of times the t occurs without c, C is the 
number of times c occurs without t, D is the number of 
times neither c nor t occurs and N is the total number of 
protein sequences.  

The chi-square statistic has a natural value of zero, if t 
and c are independent. The category-specific scores of 
each feature can be combined into one score: 

∑
=

=
m

i
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2
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2 ),()(P)t( χχ                        (4) 

where P(ci) is the probability of category ci and m is 
the total number of categories. 

In this paper, a maximum of 8000 binary profiles or 
N-nary profiles with highest average features are selected 
as the “words” of protein sequence language. 

F. Construction of SVM classifiers and classification 
In this study, we employ the publicly available Gist 

SVM package as the implement of SVM. The parameters 
are used by default of the Gist Package except that the 
kernel function is set as Radius Basis Function (RBF). 

The training proteins are transformed into fixed-
dimension feature vectors by the occurrence times of each 
binary profile or N-nary profiles and then the vectors are 
inputted to SVM to construct the classifier for a specified 
class. The test proteins are vectorized in the same way as 
the training proteins and fed into the classifier constructed 
for a given class to make separation between the positive 
and negative samples.  

G. Latent Semantic Analysis 
Latent Semantic Analysis (LSA) [20] is combined with 

our methods to remove noise and compress data. Recently, 
LSA was introduced in computational biology, it was used 
to predict the secondary structure of protein [26] and detect 
protein remote homology [20]. LSA is used to extract and 
represent the context-usage meaning of words by 
statistical computations applied to a large corpus of text 
[27]. The process of LSA is as follows: 

Firstly, a word-document matrix W of co-occurrences 
between words and documents is constructed. The 
elements of W indicate the numbers of times each word 
appears in each document, so the dimensions of W are 
M×N, where M is the total number of words and N is the 
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number of given documents. Each word count is 
normalized to compensate the differences in document 
lengths and overall counts of different words in the 
document and collection [27]. Secondly, singular value 
decomposition is performed on the word-document matrix 
W, as follows: 

TW USV=                                       (5) 

Where U is left singular matrix with dimensions 
(M×K), K is the total ranks of W, S is diagonal matrix of 
singular values with dimensions (K×K), and V is right 
singular matrix with dimensions (N×K). Thirdly, the top R 
(R<<Min (M, N)) dimensions are selected for further 
processing. The dimensions of reduced matrices U, S and 
V are M×R, R×R and N×R respectively.  

In this paper, values of R in the range [50, 500] are 
selected. Five building blocks are treated as the “words”, 
including N-grams [11], patterns [28], motifs [29], binary 
profiles and N-nary profiles. The protein sequences are 
viewed as the “documents”. Through collecting the weight 
of each word in the documents, the word-document matrix 
is constructed and then the latent semantic analysis is 
performed on the matrix to produce the latent semantic 
representation vectors of proteins in order to remove noise 
and compress data. The latent semantic representation 
vectors are inputted into SVM to give the final results. 

TABLE I.  COMPARISON AGAINST DIFFERENT METHODS FOR 
REMOTE HOMOLOGY DETECTION 

Methods ROC ROC50 
PSI-BLAST 0.6754 0.330 
SVM-Pairwise 0.8259 0.446 
SVM-LA (ß=0.5) 0.9250 0.649 
LSTM 0.9320 0.652 
SVM-Ngram 0.7914 0.584 
SVM-Pattern 0.8354 0.589 
SVM-Motif 0.8136 0.616 
SVM-Bprofile (Ph=0.13)  0.9032 0.681 
SVM-N-profile (N=11) 0.9151 0.733 
SVM-Ngram-LSA 0.8595 0.628 
SVM-Pattern-LSA 0.8789 0.626 
SVM-Motif-LSA 0.8592 0.628 
SVM-Bprofile-LSA (Ph=0.13) 0.9210 0.698 
SVM-N-profile-LSA (N=11) 0.9402 0.736 

 
SVM-Ngram, SVM-Pattern, SVM-Motif, SVM-Bprofile and SVM-N-profile refer to the SVM-
based methods on the five building blocks: N-grams, patterns, motifs, binary profiles and N-
nary profiles respectively. The methods with LSA suffix refer to the corresponding method after 
latent semantic analysis. 

TABLE II.  COMPARISON AGAINST DIFFERENT METHODS FOR FOLD 
RECOGNITION 

Methods ROC ROC50 
PSI-BLAST 0.5010 0.010 
SVM-Pairwise 0.7240 0.359 
SVM-LA 0.8340 0.504 
Mismatch 0.8140 0.467 
eMOTIF 0.6980 0.308 
GPextended 0.7530 0.371 
GPboost 0.6880 0.298 
Gpkernel 0.8440 0.514 
SVM-Bprofile (Ph=0.11) 0.8042 0.644 
SVM-N-profile (N=9) 0.7918 0.652 
SVM-Bprofile-LSA(Ph=0.11) 0.8233 0.658
SVM-N-profile-LSA (N=9) 0.8226 0.658

H. Evaluation methodology 
Two methods are used to evaluate the quality of the 

methods: the Receiver Operating Characteristic (ROC) 
scores and the ROC50 scores [30]. A ROC score is the 
normalized area under a curve that plots true positives 
against false positives for different classification 
thresholds. A score of 1 denotes perfect separation of 
positive samples from negative ones, whereas a score of 0 
indicates that none of the sequences selected by the 
algorithm is positive. A ROC50 score is the area under the 
ROC curve up to the first 50 false positives. 

III. RESULTS AND DISCUSSION 

A. Comparative results of various methods 
Table I and table II compare the performance of the 

methods introduced in this paper against that achieved by 
a number of previously developed methods for the remote 
homology detection and fold recognition.  

The latent semantic analysis model is adopted to 
further improve the performance of our methods on the 
two benchmarks. Fig. 2 and Fig. 3 plot the ROC scores 
between the methods with LSA and without LSA when 
binary profiles and N-nary profiles are taken as the 
building blocks on all test sets for the superfamily 
benchmark and fold benchmark. When the test sets are in 
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Figure 2.  Comparison of the method based on binary profiles with 
LSA and without LSA. The figure show the SVM-Bprofile’s ROC 
scores plotted against those of the SVM-Bprofile-LSA on the 
superfamily (a) and fold (b) benchmarks. 
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Figure 3.  Comparison of the method based on N-nary profiles with 
LSA and without LSA. The figure show the SVM-N-profile’s ROC 
scores plotted against those of the SVM-N-profile-LSA on the 
superfamily (a) and fold (b) benchmarks. 

 the left-upper area, it means that the method labeled by y-
axis outperforms the method labeled by x-axis on this test 
set. Obviously, when binary profiles and N-nary profiles 
are taken as the basic building blocks, the method with 
LSA outperforms the method without LSA for both 
remote homology and fold recognition. As shown in Table 
I, when N-grams, patterns, and motifs are taken as the 
building blocks, the methods with LSA also have better 
performance than the methods without LSA. 
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Figure 4.  Comparison of some common methods for remote homology 
detection on superfamily benchmark. The figure plot the total number of 
families for which a given method exceeds an ROC (a) and ROC50 (b) 
score threshold. 
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(b) 

Figure 5.  Comparison of some common methods for fold recognition 
on fold benchmark. The figure plot the total number of superfamilies for 
which a given method exceeds an ROC (a) and ROC50 (b) score 
threshold. 
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In order to compare our methods with other methods 
across the different classes, the distributions of ROC and 
ROC50 scores are plotted in Fig. 4 and Fig. 5. In each 
graph, a higher curve corresponds to more accurate 
performance. For remote homology detection, the 
proposed methods outperform the compared methods in 
terms of ROC and ROC50. Especially, the ROC50 score 
of SVM-N-profile-LSA is higher than that of SVM-LA by 
8.7 percent. For the fold recognition, our methods are 
comparable with SVM-LA, Gpkernel and show better 
performance than the other compared methods. SVM-LA 
is one of state-of-the-art methods and outperforms many 
other methods, such as Mismatch-SVM [12] and SVM-
Fish [9] as well as FPS [31] and SAM [32]. Therefore, binary 
profiles and N-nary profiles are two efficient 
representations of proteins for solving both remote 
homology detection and fold recognition problems. 
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(b) 
Figure 6.  The influence of Ph on the predict performance. Total 
number of binary profiles (a) and the performance of SVM-Bprofile (b) 
at different threshold Ph on the superfamily benchmark and the fold 
benchmark. 

B. Influences of Ph and N on the performance 
For the method based on binary profiles, the protein 

frequency profiles are converted into binary profiles with 
a threshold Ph. The total number of binary profiles 
depends on the size of the database and the value of 
threshold Ph. Since each combination of the twenty amino 
acids corresponds to one binary profile and vice versa, the 
total number of binary profiles is 220. However, only a 
small fraction of binary profiles appear in practice as 
shown in Fig. 6(a). Note that the binary profiles with low 

occurrence times (<3) are ignored, since these profiles are 
not statistically significant and may introduce much noise. 
Since the threshold Ph is a parameter, it needs to be 
optimized. The results are shown in Fig. 6(b). We 
surprisingly find that the Ph has not significant influence 
on the performance. The results show that a small number 
of binary profiles can contain rich information about 
evolution. 

For the method based on N-nary profiles, the protein 
sequence frequency profiles are converted into N-nary 
profiles by using N different integers to represent the 
corresponding N different equal size intervals. In theory, 
the total number of N-nary profiles is N20. In fact, only a 
small fraction of binary profiles appear in practice (Fig. 
7(a)). The N-nary profiles with low occurrence times (<3) 
are ignored. The influence of N on the predict 
performance is shown in Fig. 7(b). We can see that the 
method based on N-nary profiles performs well for N form 
6 to 12. The detection performance increases greatly for N 
from 2 to 5, since when N<6, there are less than 251 N-
nary profiles, which contain limited evolutionary 
information of protein sequence frequency profiles. Note 
that when N=2 the N-nary profiles are equal to the binary 
profiles with Ph =0.5. The threshold is so high that there 
are only 21 N-nary profiles containing limited 
evolutionary information of the protein sequence 
frequency profiles, which is the reason for the low 
performance. When N>12, the dimension of the feature 
vector is too high, which is possibly the reason for 
decreasing in the detection performance.  
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(b) 
Figure 7.  The influence of N on the predict performance. Total number 
of N-nary profiles (a) and the performance of SVM-N-profile (b) at 
different threshold Ph on the superfamily benchmark and the fold 
benchmark. 
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IV. CONCLUSION 
In this paper, two simple and efficient building blocks 

of proteins are introduced, which contain the evolutionary 
information of protein sequence frequency profiles. The 
two kinds of building blocks are successfully applied for 
protein remote homology detection and fold recognition 
tasks. Experiment results show that the methods based on 
the two profile-level building blocks outperform all other 
building-block-based methods. Therefore, binary profile 
and N-nary profile are suitable profile-level building 
blocks of the protein sequences. Because the two kinds of 
building blocks can represent the proteins at sequence-
level and residue-level, they can be widely used in many 
tasks of the computational biology when protein sequence 
information or amino acid information is needed. 
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