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Abstract—In this paper, the problem on solving nonlinear 
equations is transformed into that of function optimization. 
A new Quasi-Newton Population Migration Algorithm 
(QPMA) is proposed via combination of population 
migration algorithm and Quasi-Newton method. The 
algorithm has the advantages of the Population Migration 
Algorithm (PMA) such as region search in a certain extent 
and avoid getting into the local optimum and the Quasi-
Newton method such as Quasi-Newton’s local strong 
searching. Finally, the numerical experiments result show 
that this algorithm can find the rapid and effective interval 
solution and the probability of success is higher. 
 
Index Terms—Nonlinear equations, Quasi-Newton method, 
Population Migration Algorithm 

I.  INTRODUCTION 

Solving nonlinear equations is the actual engineering 
is an important problem in numerical weather prediction, 
oil geological exploration, computing biochemistry, and 
control field and track design, etc, which has a strong 
application background. For a long time, people made a 
lot of research in the theoretical and numerical 
calculations of the nonlinear equations. But solving for 
systems of nonlinear equation still haunt the people a 
problem[1], especially for the high nonlinearity of the 
practical engineering problems. It is always the lack of 
efficient and reliable algorithms. Traditional solutions for 
the problem have mainly iterative method, the gradient 
method; conjugate direction method and so on. But these 
methods have high demands for characteristic equations; 
there is also a big obstacle for many complex equation 
systems. 

Population Migration Algorithm (PMA) [2], which 
simulates the population with the economic center of 
gravity and the transfer mechanism, thereby contributing 
to a better algorithm for selection of regional search, and 
it simulates the diffusion mechanism with the population  
pressures increase to a certain extent, it can avoid falling 
into local minima. Quasi-Newton method has a faster 
local convergence and is a very effective local search 

iterative algorithm. However, local search property of 
these algorithms will be efficient only when the initial 
values are near the optimal values.  Therefore, a   new 
method was proposed combined Population Migration 
Algorithm’s region search with Quasi-Newton’ local 
search. 

The paper is organized as follows. The problem on 
solving nonlinear equations function optimization model 
is described in Section 2. In Section 3, the Quasi-Newton 
population migration algorithm is introduced. Some of 
numerical equations examples application is introduced 
in Section 4. Finally, a few conclusions are presented. 

 

II.  DESCRIPTION OF THE PROBLEM  

General form of nonlinear equations (Assume that 
there are n variables and n equations) is 
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Solving this equation is equivalent to a global 
optimization of the following problem: 
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In equation (2), Φ  is interval of equations, when 

)(Xf  minimum value equal to zero, Corresponding X  
is a solution of equations. Thus the solution of nonlinear 
equations is transformed into minimum issue of PMA.  
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III.  QUASI-QEWTON POPULATION MIGRATION 
ALGORITHM 

A.  Quasi-Qewton Method [3-5] 
Since a function for computing the Hessian used in 

computing the direction is rarely available, attention has 
focused on computing it numerically. The calculation of 
the Hessian is very expensive computationally, however, 
and efforts were made to find a way to produce the 
Hessian more cheaply. The critical insight from which 
came the current  Quasi-Newton methods was made 
byBroyden   use information from the current   iteration 
to compute the new Hessian [6]. Let 

 

1k m m m ms x x α δ+= − =                          (3) 
 

Be the change in the parameters in the current iteration, 
and   

1k m mg gη += −                                     (4) 
 
be the change in the gradients. Then a natural estimate of 
the Hessian at the next iteration 1mH +  would be the 
solution of the system of linear equations  
 

1m m mH s etα+ =                                      (5) 
 
that is, 1mH +  is the ratio of the change in the gradient to 
the change in the parameters. This is called the quasi-
Newton condition. There are many solutions to this set of 
equations. Broyden suggested a solution in the form of a 
secand update  
      

     1
t

m mH H uv+ = +                  (6) 
 
Further work has developed other types of secant 

updates, the most important of which are the DFP (for 
Davidon [7], and Fletcher and Powell [8], and the BFGS 
(for Broyden [7], Fletcher [9], Goldfarb[10], and Shanno, 
[11]). The BFGS is generally regarded as the best 
performing method:   
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taking advantage of the fact that  
 

m m m m m m mH s H gα δ α= =                       (8) 
 
The BFGS method is used in the GAUSS function 
QNEWTON. However, the update is made to the 
Cholesky factorization of H rather than to the Hessian 
itself, that is to R where tH R R= .In QNEWTON H 
itself is not computed anywhere in the iterations. The 

direction .m is computed using CHOLSOL, that is as a 
solution to 
 

t
m m mR R gδ =                                    (9) 

 
where mR  and mg  are its arguments, and mR  is the 

Cholesky factorization of mH .Then 1mR +  is computed 

as an update and a down date to mR  using the GAUSS 
functions CHOLUP and CHOLDN. 
 

B.  CHOLUP and CHOLDN 
Suppose one was using a Cholesky factorization of a 

moment matrix computed on a data set in some analytical 
method. Then suppose you have acquired an additional 
observation. The Cholesky factorization could be re-
computed from the original data set augmented by the  
additional row. Such a complex and time consuming 
computation is not necessary. Numerical methods have 
been worked out to computer the new updated 
factorization with the new observation without having to 
re-compute the moment matrix and factorization from 
scratch. This update is handled by the GAUSS CHOLUP 

Function. In a similar way a Cholesky factorization can 
be downdated, i.e., a new factorization is computed from 
a data set with one observation removed. In either of 
these functions there are two arguments, the original 
factorization and the observation to be added or removed. 
 

In this section, let back to the BFGS secant update in 

the Quasi-Newton method. The factorization 1+mR  is 
generated by first adding the “observation” 

m
t
mm sηη /

and then removing the 

“observation” m
t
mm gg δ/

. 
 
C.  Population Migration Algorithm  

  Population migration algorithm (PMA) was proposed 
by ZHOU Yonghua, MAO Zongyuan in 2003, it is a kind 
of global optimization algorithm that simulates 
population migration mechanism. In the PMA, the 
optimization variables x correspond to the population 

habitual residence, the objective function )(xf  
corresponds to the attractive place of residence, the global 
(local) optimal solution of the problem corresponds to the 
most attractive (the beneficial) areas. Population 
Migration Algorithm can be divided into population 
mobility, population migration and population 
proliferation of three basic forms: population flow 
corresponds to the local random search of the algorithm; 
population migration corresponds to the way of choosing 
solution according to the rule of people flow to the rich 
places; population proliferation corresponds to overall 
search strategy and escape from local optimum strategy 
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according to the rule of moving from developed areas to 
less developed areas.     

 
As a swarm intelligence optimization algorithm, in  the  

PMA,   the  optimization  variable   x  refers   to  living   

places,  the objective function )(xf refers to attractive of 
the residence place, the optimal solution (local optimal 
solution) refers to the most attractive place (beneficial 
region), the "up" or "mountain climbing" of algorithm 
refers to move to beneficial region, escaping from the 
local optimal refers to move out of beneficial region as a 
result population pressure; population flow corresponds 
to random, local searching method; and population 
migration corresponds to the way to choose the 
approximate solution like as population struggles 
upwards; population proliferation combines the overall 
searching with escaping from the local optimal strategy.  

The general process of PMA is as follows: 
 

BEGIN 
          Initialize: Initialize the model of the population, record 

the best individual and best value 
according to the evaluation function 

          While (Termination rules not satisfied) do 
 

                  ｛ 
Flow in their respective regions, and record 
the point’s value;  
Determine the beneficial region according to 
the largest value point, and produce new    
population to replace the original population    
in the new beneficial region; 
Contraction the beneficial region, then 
population flow also produces new 
population in the region of the largest value 
point; 
If the population pressure is too heavy, then 
population proliferation, produce new 
population in the original searching places. 

｝ 
            

End While 
                   Output the best individual and best value. 
END 

 
For global optimization problems, optimization 

problems are usually defined as: 
  

       
Sxts
xf

∈.,
)(max

                           (10) 

Where
)(,,1,),..,,..,,( 21 xfZdDdRSxxxxx D

Dd ∈≤≤⊆∈=
is the objection function, S is the searching places with 
D dimensions. For PMA, the global optimization 

problem (10), where RSf →: is a real map, 
nRx∈

， ∑
=

=
n

i
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1
],[ is the searching place, 

and .,...,2,1, niba ii =< it is assumed that the global 

optimum value ∗f  existed; the global optimum solution 
M   is   not empty.  In the PMA algorithm,    optimizing 
variables x are corresponding to the information of 
habitual residence population; ),...,,( 21

i
n

iii xxxx =  

refers to the i-th point, i
j

ni xRx ;∈  represents the j-th 

weight of the i-th point; i
j

ni R δδ ,∈   is the radius of the 

j-th weight, ;0),2/()( >−= i
jjj

i
j Nab δδ  

.,...,2,1;,..,2,1 njNi ==  N is the population size. The 
objective function corresponds to the surface space of 
population migration as well as all kinds of information; 
the optimal solution of the question corresponds to the 
most attractive regions; the algorithm to move up or 
climbing refers to migrate the beneficial area, algorithm 
to escape from the local optimization corresponds to 
people emigrate from the beneficial caused by too heavy 
population pressure, population flow  
corresponds to the local random search of the algorithm. 

 

D.  Quasi-Newton Population Migration Algorithm（
QPMA） 

For Optimization problem (10), the Quasi-Newton 
population migration algorithm was designed. In the 
algorithm, people and their location were with point. 
Where 1 2( , , )i i i i

nx x x x= refers to the i -th point, 
i nx R∈ ; i

jx  represents the j -th weight of the i -th point; 
i i

jδ ,δnR∈ is the radius of the j -th weight,  

)2/()( Nab jj
i
j −=δ ， δ 0i

j > ; .,...,2,1;,..,2,1 njNi ==   

N is the population size. 
 
Step 1. In the search space, uniformly and randomly 

generate N points 1 2, , Ny y y . For each i , set the 

center of the region is i icenter y= ,determine it upper 

and lower bound δ±icenter , where 
i
jδ ( ) /(2 )j jb a N= − .   1,2, , , 1,2, ,i N j n= =   (the 

method of i
jδ  makes all of the above are equivalent, so 

the following steps  remove the superscript). 
Step 2. Take , ( 1, 2, , )iy i N= as the initial value 

of the objective function, uses the quasi-newton 
population migration algorithm to optimize then get a 
new set of points  ).,...,2,1( Nixi =  

Step 3. Calculate the income/ attractive )( ixf of all 
the points. 
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Step 4. In accordance with the calculated values from 
Step 3, initialize the value of the best point and the best 
point. 

Step 5. Then people flow in their own region. 
uniformly and randomly change each point: 

       )((*)2 δδ −+= ii centerrandx  

where (*)rand is random value. If j
i
j bx > , 

then j
i
j bx = ; if  j

i
j ax < ,then j

i
j ax = .  

Step 6. Calculate the income/ attractive of all the 
points. 

Step 7. Record the optimal value and the best point. 
Step 8. If the number of population movement  i  is 

less than the number of pre-specified , then go to Step 5. 
Step 9. Population migration: let the most attract point 

as the center, according to the size of each component δ  
to determine the beneficial areas. Uniformly and 
randomly generate N  points in this region to replace the 
original points. 

Step 10. Calculate the income/ attractive of all the 
points. 

Step 11. Record the optimal value and the best point. 
Step12. The way of shrink the region as 

follows: ∆∆−= ),1(δδ is contraction coefficient, 
where )10 <∆< . 

Step 13. People flow in the beneficial areas and 
transfer with the economic gravity: let the most attract 
point as the center, according to the size of each 
component δ  to determine the beneficial areas. 
uniformly and randomly generate N  points in this 
region to replace the original points. 

Step 14. Calculate the income/ attractive of all the 
points. 

Step 15. Record the optimal value and the best point. 
Step 16. If αδ >jmax  (α is population pressure 
parameter, it is a given value), go to step 12.  
Step 17. Report the results. 
Step 18. Population flow: uniformly and randomly 

generate N points in this region to replace the original 
points. Determine the regions of people movement 
according to Step 1. 

Step 19. Calculate the income/ attractive of all the 
points. 

Step 20. Record the optimal value and the best point.   
Step 21. Add1 to the number of iteration, if less than 

the specified number then goes to Step 5.  
Step 22. End. 

IV. NUMERICAL EXPERIMENTS 

In order to test the performance of QPMA algorithm 
for solving systems of nonlinear equations, this paper 
selects nine typical nonlinear equations as examples, and 
compares the other algorithms with QPMA then the 
results show that QPMA has a high success rate and 
precision, strong robust. 
 

Example 1[12]. Solving for nonlinear equation 

⎪
⎩
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where .10,,0 321 ≤≤ xxx                       

The best result is * (4,3,1)Tx = . 

Example 2[12]. Solving for nonlinear 

equation
1 2 3

1 2
2 2

1 2

+ -2 =0
=0

+ =2

x x x
x x

x x

⎧
⎪
⎨
⎪
⎩

,  

where .10,,0 321 ≤≤ xxx   

The best result is * (1,1,1)Tx = . 

Example 3[13]. Solving for nonlinear equation 

2821 263 661 0
613 977 268 0
977 373 647 811 0

x yz
xz yx
xz x yz

⎧ − + =
⎪ − − =⎨
⎪ + − − =⎩

 

 where .10,,0 ≤≤ zyx  

The best result is * (2,3,5)Tx =  

Example 4[13]. Solving for nonlinear equation 

23 2 - 2 6 0

2 1 0

2 1 0

x yz x

xz y

xy z

⎧ + − =
⎪⎪ − − + =⎨
⎪ − − + =⎪⎩

 

where .2,,0 ≤≤ zyx  

The best result is * ( 2,1,1)Tx = . 

Example 5[14]. Solving for nonlinear equation 

15 2 3

2 20

20

94 64 90 38 0
64 22 37 0

20 7 4 1 0

x x xy
y z xy

x y y z

⎧− − + − =
⎪

− − =⎨
⎪− − + + + =⎩

, 

where .5,,5 321 ≤≤− xxx . 

The best result is unknown. 

Example 6[14]. Solving for nonlinear equation 

2
1 1 2

2 1 2

( ) 1 0
( ) cos(0.5 ) 0

f x x x
f x x xπ

⎧ = − + =
⎨

= − =⎩
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where [ 2,2]x∈ − . 

The best result is ( 1/ 2,1.5)Tx∗ = − ， (0,1)Tx∗ = ，

( 1,2)Tx∗ = − . 

    

Example 7[15]. Solving for nonlinear equation 

2 2
1 1 2 3

2 2
2 2 3 1

2 2
3 1 3 2

( ) ( 5 ) 40sin (10 ) 0

( ) ( 2 ) 40sin (10 ) 0

( ) (3 ) 40sin (10 ) 0

f x x x x

f x x x x

f x x x x

⎧ = − + =
⎪

= − + =⎨
⎪ = + + =⎩

, 

where .1,,1 321 ≤≤− xxx  

The best result is * (0,0,0)Tx = . 

Example 8. Solving for nonlinear 

equation

1

2

3

3
1 1 2 3

3
2 1 2 2

3 2 3

( ) 2 1 0

( ) 2 3 0

( ) 2 1 0

x

x

x

f x x e x x

f x x x x e

f x x x e

⎧ = + + + + =
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, 

 

where 1 2 32 , , 2x x x− ≤ ≤ . 

 The best result is unknown. 

Example 9. Solving for nonlinear 

equation

1 2

2
3

2
1 1 2 4 6

(1 )
2 2

3 3 4 6

(1 )
4 4

5 5 2 6

6 6 1 5

1( ) 0.75 0
4

( ) 0.405 1.405 0
1( ) 1.25 0
4

( ) 0.605 0.395 0
1( ) 1.5 0
2

( ) 0

x x

x

f x x x x x

f x x e

f x x x x

f x x e

f x x x x

f x x x x

+

−

⎧ = + + =⎪
⎪
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⎪
⎪ = − + =⎪
⎨
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⎪
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⎪

= − =⎪⎩

, 

 where  1 2 3 4 5 62 , , , , , 2x x x x x x− ≤ ≤ .    

The best result is ( 1,1, 1,1, 1,1)Tx∗ = − − −  

 

 

Table Ⅰ. 

Performance of QPMA comparing with other algorithm 

NO. Algorithm 1x  2x  3x  Success-rate 

1 

PMA 3.999 991 95 2.999 994 97 0.999 979 86 85% 
References[12] 3.999 4 3.007 9 1.007 9 - 

QPMA 3.999 999 998 62 2.999 999 997 50 0.999 999 998 21 100% 
Best result 4 3 1 - 

2 

PMA 0.999 561 61 1.004 389 43 0.999 991 94 88% 
References[12] 1.1075 0.9822 0.999 9 - 

QPMA 1.000 361 371 04 0.999 638 496 94 0.999 999 933 88 100% 
Best result 1 1 1 - 

3 

PMA 1.999 699 23 2.999 960 44 4.999 937 91 87% 
References[13] 1.999 975 1 2.999 960 4 4.999 999 9 - 

QPMA 1.999 999 992 83 2.999 999 990 08 4.999 999 986 60 100% 
Best result 2 3 5 - 

4 

PMA 1.414 211 12 0.999 996 45 0.999 369 12 80% 
References[13] 1.414 212 02 0.999 998 78 0.999 999 75 - 

QPMA 1.414 213 554 90 1.000 000 012 83 1.000 000 014 52 100% 

Best result 2  1 1 - 

5 

PMA 0.658 751 12 -1.001 174 17 1.071 822 30 88% 
References[14] 0.658 768 343 3 -1.001 177 172 1.071 892 300 - 

QPMA 0.658 768 345 64 -1.001 177 174 13 1.071 892 301 83 100% 
Best result - - - 

 

In the test, parameter settings are as follows: 
Population size N=30, the number of population mobility 
l=10, Contraction coefficient ∆ =0.01, population 
pressure parameters α =1e-8, Number of iterations is 
decided by specific examples. Maximum number of 

iterations is 50. Table 1 shows the results of this paper 
comparing with other algorithm. 

As can be seen from the above results, QPMA 
algorithm is the best one than those in the literature in the 
performance, and the success rate achieves 100%. 
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The success rate of the standard algorithm is less than   
the QPMA. For example 1 to 2, times for iteration is only 
ten, we can achieve the best result and spend litter time; 
for example 3 to 4, the accuracy is 8  about the method 
of references literature six, while QPMA can get 15, 
times for iteration are 10; For example 5, references 
literature 7 use preprocessing and interval method can 

obtained four peaks of function, but this paper you can 
quickly find of a solution via iteration 50 times, success 
rate is 100%, although   PMA   algorithm have   ability    
to   search equations approximate solutions, Success rate 
is worse than the other algorithms, which success rates 
are 88% and 86% Respectively. QPMA algorithm is up 
to 100%. 

 

Table Ⅱ. 

 Performance of QPMA comparing with other algorithm 

N0. algorithm times Success-rate Mean of  1x  Mean of 2x  Mean of 3x  

6 

PMA 46 92% -0.707 106 452 2 
0.000 003 071 0 

1.500 009 103 0 
1.000 000 310 3 

23 times 
23 times 

References[15] 43 86% -0.707 724 
0.000 114 

1.500 668 
0.999 817 

26 times 
17 times 

QPMA 50 100% 
-0.707 106 781 2 
0.000 000 000 0 
-1.000 000 000 0 

1.500 000 001 1 
1.000 000 000 0 
2.000 000 000 0 

10 times 
35 times 
5 times 

7 

PMA 44 88% 0.000 000 007 0 0.000 000 000 1 0.000 000 001 2 

References 15] 27 54% 0.000 001 -0.000 012 -0.000 001 

QPMA 50 100% 0.000 000 000 0 0.000 000 000 0 0.000 000 000 0 

8 
PMA 44 88% -0.767 760 553 3 0.075 330 671 04 -1.162 158 841 0 

QPMA 50 100% -0.767 760 563 5 0.075 330 676 2 -1.162 151 184 2 

9 
PMA 43 86% -1.000 001 231 1 

0.999 999 879 9 
0.999 969 548 1 
-1.000 000 362 2 

-1.000 000 012 1 
0.999 998 587 4 

QPMA 50 100% -1.000 000 000 0 
1.000 000 000 0 

1.000 000 000 0 
-1.000 000 000 0 

-1.000 000 000 0 
1.000 000 000 0 

  

V. CONCLUSIONS 

To overcome the problems of the classical algorithms 
for solving nonlinear equations, such as high sensitivity 
to the initial guess of the solution, poor convergence 
reliability and can’t get all solutions, etc. This paper 
presents a new Quasi-Newton Population Migration 
Algorithm (QPMA) for solving systems of nonlinear 
equations; it combined with convergence of PMA and 
Quasi-Newton’s local strong searching. In the course of 
the making algorithm, we insert into Quasi-Newton 
method in the standard PMA and apply advantages   
respectively.  The numerical   experiments results show 
that the QPMA) algorithm can quickly and effectively 
find the interval solution of nonlinear equations, and 
success rate can achieve 100%. It is an effective method 
to solve nonlinear equations. 
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