
COTS and Design Pattern Based High Fidelity

Flight Simulator Prototype System

Shupeng Zheng
School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China

Email: hitzsp@163.com

Shutao Zheng and Junwei Han
School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China

Email: {zhengst, hjw}@hit.edu.cn

Abstract—Flight simulator is among the most sophisticated

software systems in existence. It is highly distributed, has

rigorous timing requirements, and must be amenable to

frequent updates to maintain high fidelity with the ever-

changing vehicle and environment it is simulating. Current

flight simulation framework and software developing

pattern are complicated to use and time consuming. We

have accomplished a flight simulator prototype system

based on a new distributed real-time simulation framework

and non-flight-certified Commercial-off-the-shelf (COTS)

solutions and have proved its fidelity and coordination

characters as a flight training device. The distributed real-

time simulation framework uses mediator design pattern as

an information “broker” among flight simulation models of

a sub-system which minimizes model interdependencies,

improves the extendibility for the simulator and makes the

maintenance easier. Meanwhile, the simulation models and

executable code in the simulator were generated through

COTS software and run on a PC cluster by which the

difficulties of programming tasks are descend. The

simulation modeling process and virtual prototype of the

motion system are also expatiated. The validation methods

and contrasting simulation results are presented finally to

show the feasible design to carry out flight simulation with

high quality.

Index Terms—COTS, design pattern, flight simulation, real-

time system, fidelity, prototype system

I. INTRODUCTION

The aim of flight simulation is to produce and control

animated images, sound reproduction, and device

feedback in a manner as realistic and responsive as the

real flight, and chasing this ideal has constantly pushed

the flight simulator study forward in many different ways.

Individual simulators have adopted techniques such as

multi-processor, high performance graphics cards,

distributed sensors and actuators to approach the desired

objective. In comparison with the flourish of hardware

power, there is large lag disparity of the development in

the software system. The main reason for the

phenomenon is result from the high complexity of the

flight simulator software system. For example, a typical

level D full mission flight simulator is commonly

comprised of over a million lines of code which must run

and communicate under the constraint of hard real-time

performance [1].

Commercial simulation development software and

software design patterns [2] are effective, efficient, and

established solutions to common software design

problems in the flight simulation. Represented by

MATLA○R /Simulink, MATRIXx/System Build, etc., the

commercial simulation development software are now

widely used in engineering simulation. They have

become the modeling tools of choice because their

graphic interfaces mimic the function-block

methodologies taught in universities and technical

schools. This reduces the learning time and increases

engineering productivity. Another useful feature of these

packages is automatic code generation which frees

engineers from the tedious and error-prone task of writing

code. They make it possible to go from concept to

simulation without ever having to write code. And by

using “tried and true” software design patterns, the

enhanced extendibility and easier maintenance for the

simulation software system can be efficiently achieved.

Considering advantages of developing simulation

application based on COTS solutions and software design

patterns, we built a Boeing 737-800 flight simulator

prototype system. The models and executable code in the

simulator were generated through commercial simulation

development software and run on a PC cluster，which

composed a man-in-the-loop real-time distributed flight

simulation system. And through using the mediator

design pattern, a distributed real-time simulation

framework is proposed which simplifies model interfaces

and eliminates model interdependencies. By this means,

the difficulties of programming tasks descend while the

quality of the simulator is still excellent. This system

afforded a platform for key technology research of flight

simulator such as flight dynamic modeling methods,

This work was supported by the fund of China's "World class
university (985)" project (CDAZ98502211) and supported by Program

for New Century Excellent Talents in University (NCET_04_0325).

28 JOURNAL OF COMPUTERS, VOL. 6, NO. 1, JANUARY 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jcp.6.1.28-35

Figure 1. A generic flight simulation functional model

Periodic Sequence

initialize

reconfigure

set_parameter

hold_parameter

process_malfunction

input

update

output

Aperiodic

Operations

Periodic

Operations

updateset_parameter

initialize

process_malfunction

Subsystem

...Aerody-

namics
updateset_parameter

initialize

process_malfunction

Landing

Gear

GDS

Event Handler

Schedule Table
Event Queue

Flight System

Engine System
...

Control Flow

Data Flow

Surrogate

 Frame Synchronization
Timeline Synchronizer

Ethernet

Figure 2. Structural elements of the distributed real-time simulation

famework.

advanced simulation methods, man-machine-interface,

and so on. This paper describes our work and shows the

character of flight simulator. In section two, a functional

model of a flight simulator is presented. Section three

introduces the distributed real-time simulation framework

based on the mediator design pattern. In section four, we

choose a main route of data flow in the flight simulator

and describe the building methods of simulation models

along the route. This is presented to show the advantage

of rapid modeling method provided by MATLAB○R and

the reason why we accomplish the software development

easily while with high quality. In section five, we present

a method to testify the coordination of our flight

simulator. And then we give the simulation results which

are compared with true airplane flight test record to verify

the fidelity of the flight simulator. Finally we conclude

our work and indicate its effectiveness.

II. GENERIC FLIGHT SIMULATION FUNCTION MODEL

Before discussing the structure and properties of flight

simulator software framework any further, it is useful to

look at the functionality which a flight simulator-any

flight simulator must support. The functional model [3] of

flight simulator is shown in Fig. 1.

A flight simulator must provide a great number and

great variety of services to its users. Its users consist of

the crew being trained: pilot, co-pilot, and instructor-

operator. The instructor-operator is in charge of the

pedagogical aspects of flight simulation—it is the person

who decides what mission will be run, and under what

conditions, hence the name “instructor”. However, this

person also controls the simulation in real time, hence the

name “operator”.

The flight simulator software must provide visual,

audio and motion cues to the users—the aircrew. In

addition, it has to provide force-feedback cues. These

sensory cues are generated in order to provide the sights,

sounds and feel of a normal air vehicle. The software

must also simulate the air vehicle’s normal set of

instruments. These must all be simulated to a high degree

of fidelity, with a high degree of coordination.

It is important to keep this set of functions in mind,

because the satisfaction of all aspects of this functionality,

both in terms of the array of functions and their real-time

performance, is the requirements which a flight simulator

must fulfill.

III. THE DISTRIBUTED REAL-TIME FLIGHT SIMULATION

FRAMEWORK

Before the advent of object-orient simulation

technology and design patterns, the data-driven software

architecture was the de facto standard for aircrew trainer

simulation software. Dating back to the earliest digital

computer based aircrew trainers, data-driven software

architectures provided a good solution to the trainer

simulation software problem as it existed from the 1960s

to the 1980s [4]. It was an effective solution to the trainer

software problem as it existed 20 years ago; the problem,

however, has changed dramatically. Today’s airplanes are

more complex and dynamic; today’s computer hardware

is less expensive and more powerful, while today’s

software is more complex and expensive. Application of

the data-driven architecture to software trainers for

modern aircraft is something of a mismatch between the

newer problem and the older solution.

Symptoms of this mismatch surface during

maintenance of systems based on the data-driven

architecture. The functional decomposition of the data-

driven architecture spreads the state information and

calculations, as well as the communication of state

information, across the subsystems. Data coherence

problems have resulted from this spreading. The

spreading of state representation, calculation, and

communication leads to interdependencies among the

data-driven architecture’s system routines. Those

interdependencies complicate the concurrent

development of the simulator software, the incremental

development of the simulator software, simulation of

malfunctions, and freezing, saving, and restoring of state

information.

In order to address the limitation of the traditional

ways of building flight simulators, we developed a new

distributed real-time simulation framework by employing

design patterns. It can be divided into two main sets of

concerns: executive and application, as shown in Fig. 2.

JOURNAL OF COMPUTERS, VOL. 6, NO. 1, JANUARY 2011 29

© 2011 ACADEMY PUBLISHER

Synchronization
Periodic

Operations

Aperiodic

Operations

Slack

Time

Time t(n) t(n+1)

Periodic

Communication

Figure 3. Time allocation.

Aerodynamics

EquationMotion

Weight

Turbulence LandingGear

Atmosphere

(a) Class dependencies (b) The mediator pattern

 abound. to the rescue.

Figure 4. Comparison of components’ coupling.

FlightSimulator

system_list:list<Subsystem*>

update():void

Boeing_737_800

update():void

Flight

Subsystem

flight:Flight_Simulator*

getFlight():int

update():void

Flight_System

update():void

Mediator:

Decouple the model from the flight

SimulationModel

mode:Mode&

timer:Timer&

getMode():int

getTimer():int

initialize():int

Aerodynamics

Model

Figure 5. The flight system mediator.

The executive handles coordination issues: real-time

scheduling of sub-systems, synchronization between

processors, event management from the instructor-

operator station, data sharing, and data integrity. These

functions are implemented via “Timeline Synchronizer”,

“Periodic Sequencer”, “Event Handler”, and “Surrogate”.

The application handles computation, which solely

consists of modeling the air vehicle. The application’s

functions are implemented by “Subsystem” and “model”.

A. The Executives

The flight simulator is typically implemented as

multiple processes on multiple, distributed processors.

The executive binds the group of sub-systems within a

given process, handling the scheduling of those sub-

systems. The executive(s) are responsible for

coordination of the multiple processes within the flight

implementation, external (to a system) communication of

state information, and the overall synchronization of a

system with the rest of the simulator.

The executive is partitioned by function, into software

that supports periodic control, aperiodic control, external

communication, and overall control and coordination.

Periodic control is handled by the “Periodic Sequencer”.

It invokes the sub-system according to a previously

computed, fixed scheduling table, thereby ordering the

execution of its associated sub-systems. Aperiodic control

is handled by the “Event Handler”, which is responsible

for determining and then executing the appropriate code

in response to an event (e.g., a request from the IOS).

External periodic communication is handled by the

“Surrogate”, which is responsible for hiding the details of

external state information communications. The overall

system is controlled by the “Timeline Synchronizer”,

which is responsible for synchronizing the system with

the rest of the simulator, and scheduling and invoking the

periodic and aperiodic control software. The basic

schedule scheme is based on the fixed period of time

allocation, as shown in Fig. 3. The concrete scheduling

algorithms are detailed described in [5, 6].

B. The Mediator Based Sub-system Architecture

Besides the executive, Fig. 2 also shows the module

types that exit in the application sub-part. There are only

two: the “Subsystem” and the “Simulation Model”. We

used the mediator design pattern to decouple simulation

models inside and outside the sub-system. It is a kind of

“restrict communication” tactic. In the pattern,

“Subsystem” passes data to and from other subsystem

instances and to their simulation models. Subsystem

simulation models pass data only to and from their father,

namely “Subsystem”, not to any other sub-system

simulation models. They also receive control only from

their father and return it only to their father. These

restrictions on data and control passing preclude a sub-

system simulation models from passing data or control

even to a sibling.

Fig. 4 (a) is the class diagram for the models of

flight system. The figure illustrates the

interdependencies that result when simulation models

of a flight system share data through direct interaction.

Each class is dependent on all the other classes from

which it needs data. This creates a tightly coupled

system. Any new data or behavior added to one class

affects all the other classes that depend on it. As the

tightly coupled system grows, it tends to take on the

characteristics of a monolithic class. This limits

reusability, hampers testability and significantly increases

the software maintenance cost. In the worst scenario,

every class would be dependent on every other class.

After use of the mediator design pattern, their explicit

dependencies are eliminated. Fig. 4 (b) illustrates the

impact of a mediator on the system shown in Fig. 4 (a).

It is the superior design. Fig. 5 shows how a mediator

class fits into the framework to decouple one part of

a design from another.

The aggregate classes no longer depend on each other.

In fact, they do not even depend on the mediator

class which encapsulates them. This autonomy greatly

increases reusability. Testability is increased in that

each class may be tested as a single unit, rather than

testing the whole system at once. Finally, software

maintenance cost are reduced by the fact that a

software change which only affects one class will only

require recompilation of that class, not an entire

coupled system.

30 JOURNAL OF COMPUTERS, VOL. 6, NO. 1, JANUARY 2011

© 2011 ACADEMY PUBLISHER

Figure 6. Models of the flight sub-system.

IV. MODEL CONSTRUCTION

As seen in Fig. 2, flight simulator contains many sub-

systems, and every sub-system contains tremendous

simulation models. Just aircraft model which belongs to

simulation model is composed of flight control sub-

system, engine sub-system, navigation sub-system, auto

flight sub-system, fuel sub-system, electrical power sub-

system, hydraulic power sub-system, air conditioning

sub-system, and so on. Further more, flight sub-system

contains aerodynamic model, equation of motion,

atmosphere model, crash model, ground model, height

above terrain, reposition, thrust model, weight model, and

so on. Model and model connect each other by data flows,

which organize a complex big net. But tremendous data

flows have a basic and main route, which begins from

data input by pilots, and passes flight control sub-system,

flight sub-system, finally outputs flight state to visual

sub-system, instruments sub-system, motion sub-system

and force feedback sub-system. For the sake of

convenience to show the rapid prototype modeling

method and prepare for the next section to testify the

coordination and fidelity of our flight simulator, we

choose some models on this typical route to describe their

building process, such as equation of motion,

aerodynamic coefficients, and the virtual prototype of the

motion system, which are colored in Fig.6.

Fig.6 describes the models of the flight sub-system

which are enclosed in dash frame. The most important

block is the equation of motion. It works out the flight

state according to the summation of forces and moments

acting on the center of gravity of the simulated aircraft

(A/C). The forces and moments come from various

source. Firstly, aerodynamic coefficients are defined in

the Aerodynamic Coefficients block as functions of the

flight state of the A/C including such as Mach number,

angle of attack, angle of sideslip, true airspeed, and

geometric characteristics of the aircraft. The geometric

characteristics of the aircraft include such as control

surfaces deflections, high lift devices, landing gear, and

center of gravity location [7]. And then, aerodynamic

block uses these coefficients, air density, true airspeed,

wing platform area, wing span, and wing mean

aerodynamic chord to work out aerodynamic forces and

moments. Secondly, the landing gear block works out

landing forces and moments according to flight state and

runway conditions. Thirdly, the Thrust block works out

engine thrust, engine drag and ram drag. Finally, the

gravity, of course, is computed in the weight block. The

weight block also calculates the inertia of tensor and

estimates the center of gravity according to the fuel

consumption, landing gear position, and deflections of the

wing flaps. The equation of motion summates these

forces and moments, then integrates the effect of wind

and turbulence, furthermore obeys the commands sent out

by IOS and at last outputs the state of flight. The detailed

descriptions of some models building methods are

following.

A. Equation of Motion

As the core of the simulation model, the equation of

motion affects the fidelity of the flight simulation directly.

So we consider many effects which influence the

dynamic of the A/C, such as earth rotation, earth

flattening, mass of A/C altering. And we use quaternion

instead of Euler angles to describe the A/C attitude in

order to avoid singularity. Meanwhile, we neglect the

earth’s nutation and polar motion which affect the flight

dynamic trivially.

The Equation of Motion block considers the rotation of

an Earth-centered Earth-fixed (ECEF) coordinate frame

 ECEFECEFECEF ZYX ,, about an Earth-centered inertial

(ECI) reference frame ECIECIECI ZYX ,, . The origin of the

ECEF coordinate frame is the center of the Earth,

additionally the body of A/C is assumed to be rigid, an

assumption that eliminates the need to consider the forces

acting between individual elements of mass. The

representation of the rotation of ECEF frame from ECI

frame is simplified to consider only the constant rotation

of the ellipsoid Earth (
e) including an initial celestial

longitude ()0(GL) [8].

The translational motion of the ECEF coordinate frame

is given in (1), where the applied forces T

zyx FFF][

are in the body frame.

))((][iebib

T

zyxb xDCMVmFFFF

)(2(bebibbb VDCMVVm

)))((ieebi xDCM . (1)

Where biDCM is the direction cosine matrix from ECI

frame to Body frame, and the change of position in ECI

(ix) which is used to define the A/C position in ECI (ix)

is calculated in

 iebib

T

ECIECIECIi xVDCMzyxx][. (2)

The velocity in body-axis bV is defined as
Twvu][,

angular rates in body-axis b as
Trqp][, and Earth

rotation rate e as
T

e]00[. The relative angular

rate (rel) used to calculate the attitude of A/C in body-

axis is defined as

 ebibrel DCM , (3)

The rotational dynamics of the body defined in body-

fixed frame are given in (4), where the applied

moments are
TNML][, and the inertia tensor

I is with respect to the body origin.

)(][bbb

T

b IINMLM , (4)

JOURNAL OF COMPUTERS, VOL. 6, NO. 1, JANUARY 2011 31

© 2011 ACADEMY PUBLISHER

12

Ab

11

pdot,qdot,rdot

10

p,q,r

9

p,q,r rel

8

Vb

7

DCM_ef

6

DCM_be

5

DCM

4

Euler
3

XG

2

XECEF

1

VECEF

1

s
xo

p,q,r

pm_0

[0 0 w_E]

m/s m/s

Velocity Conversion

Matrix

Multiply

Matrix

Multiply

u
T

LG0

LG0

Trigger

[Vb]

[DCM_IF]

[XEI]

[XECEF]

[Trigger]

[Trigger]

[DCM_IF]
[DCM_IF]

[Trigger]

[Vb]

[XEI]

[Trigger]

[XECEF]

LG DCM_IF

ECEF to Inertial

X
f

 l

h

ECEF Position

to LLA

Vb

f orces

mass

mdot

I

I_dot

f orces

mass

I, I_dot

Out9

Determine Force,

Mass & Inertia

L
G

(0) L
G

Celestial Longitude

of Greenwich

p q r

I, I_dot

Moments

pdot qdot rdot

Calculate omega_dot

XEI

Ab

p q r

DCM

we

Trigger

Vb

p q r rel

Calculate Velocity

in Body Axes

Vb

DCM_if

we

DCM

Trigger

V_mass

XEI

Calculate Position in EI

p q r

mu l

DCM_if

Trigger

DCM

Euler

DCM_be

DCM_ef

Calculate DCM &

Euler Angles

DCM_be

DCM_ef

DCM_f b

Calculate Body

to ECEFdeg rad

Enable

7

Triger

6

I
5

I_dot

4

mass
3

m_dot

2

Moments

1

Forces

Figure 7. Simulink diagram of the equation of motion.

Calculate Position in EI

2

XEI

1

V_mass

A

B
C

Cross

Product

C = AxB

pxwe

1

s

xo

p

xg_0

Matrix

Multiply

Matrix

Multiply

Matrix

Multiply

u
T

 l

h

X
f

LLA to ECEF Position

4

DCM

5

Trigger

4

DCM

3

we

2

DCM_if
1

Vb

Figure 8. Simulink diagram of A/C reposition and position calculating.

The integration of the rate of change of the quaternion

vector is given below,

3

2

1

0

3

2

1

0

0

0

0

0

2

1

q

q

q

q

pqr

prq

qrp

rqp

q

q

q

q

. (5)

Now, we have listed the equations which satisfy one of

the functions of the Equation of Motion block. The next

step, we need to transform these equations to Simulink

models. Fortunately, Aerospace Blockset [9] which is one

of the Simulink components offered us a ready-made

model, Custom Variable Mass 6DoF ECEF (Quaternion).

So we just needed to do a little improvement on it. This is

an advantage of COTS software, mature, reliable and

easy to use. Fig.7 presents the position of each equation.

Equation (1) were realized in the blocks identified by red,

(2) in the green, (4) in the yellow, (3) and (5) in the light

blue.

There are other functions need to be realized in the

Equation of Motion block, which don’t compute the state

of the A/C. These functions allow IOS to freeze the A/C,

or reset the state of the A/C, such as reposition. For

freezing the A/C, we add an Enable block colored by

orange in Fig.7 to hold the integrators in the Equation of

Motion. For reposition, we used an external signal, which

was colored by magenta in Fig.7, sent by IOS to reset the

integrator in Fig.8. Once the falling edge trigger signal is

coming, the integrator will be reset to its initial condition

value colored by green in Fig.6 which has been modified

by IOS using the API function provided by RT-Lab. And

then the position of A/C will be reset to the new value.

Fig.8 describes the Simulink diagram of equations to

calculate A/C position in ECI coordinate frame, and the

A/C reposition function.

B. Aerodynamic Coefficients

The reason why an aircraft can fly is the aerodynamic

force acting on it and lifting it up. The Aerodynamic

Coefficients block reflects the flight character of the A/C.

Accurate identification of aerodynamic models of aircraft

behaviour is important to the fidelity of a flight simulator.

Here, we use cubic spline to represent nonlinear

aerodynamic functions. This method offer advantages

over traditional linear lookup table representation for the

problem of parameter identification from flight test data.

The method offers a natural fit to a smooth function with

a twice continuity property. In addition, the cubic spline

coefficients offer improved conditioning to the

identification process, promising improved convergence

properties of identification algorithms [10].

A spline is a smooth piecewise polynomial function.

There are two commonly used ways to represent a

polynomial spline, the ppform and the B-form. A spline

in ppform is often referred to as a piecewise polynomial.

The ppform of a polynomial spline of order k provides a

description in terms of its breaks
1 …

1l and the local

polynomial coefficients jic of its l pieces as in (6),

,)()(
1

k

i

ji

ik

jj cxxp lj :1 . (6)

A cubic spline is of order 4, corresponding to the fact that

it requires four coefficients to specify a cubic polynomial.

The ppform is convenient for the evaluation and uses of a

spline.

The concept of the ppform extends naturally to

functions with more than one independent variable. Such

a bivariate spline comprises, analogously, a cell array of

break sequences, a multidimensional coefficient array, a

vector of number pieces, and a vector of polynomial

orders. We made use of MATLAB○R Spline Toolbox [11]

to achieve the spline functions. Fig.9 shows a graph of an

extract of the basic lift coefficient due to flap and body

angle of attack taken from Boeing aerodynamic data

package (Boeing D611A001 Revision G). This is similar

to a conventional lift curve, the coefficient increasing

with the angle of attack and the effective flap deflection

angle. The spline function as in (7) has coefficients which

form a 242121 matrix, breaks which form a 21 cell

with 54 values of angle of attack, 7 values of effective

flap deflection, and 53 pieces in column and 6 pieces in

row.

),(fbf fCl . (7)

The piecewise polynomial functions which represent

the aerodynamic model are recorded in a file after they

were identified. Once the simulation task beginning, the

file is loaded to memory and used by real-time simulation

program to computer the aerodynamic coefficients

according to the parameters of the spline functions.

Everything in this process from the spline construction

to their use becomes easy with the help of MATLAB○R .

And this is the reason why we accomplished the flight

simulator easily, quickly, and with high quality.

32 JOURNAL OF COMPUTERS, VOL. 6, NO. 1, JANUARY 2011

© 2011 ACADEMY PUBLISHER

Figure 9. Spline of basic lift coefficient due to flap and angle of

attack.

ADAMS

Sub-assemblies
(Parts need to be driven)

ADAMS

Complete Assembly

VRML

VRML Files

Matlab simulink

SimMechanics Model

Matlab simulink

Simulation Model

VRML

VRML Model

LabView

Virtual Reality

QNX

Real-time model

assemble

Save as VRML CAE

Compose as transform
nodes and add Java script

Add controller
and interface

Activex
Cortona Contact API RT-Lab

UDP

Figure 10. The development process of the motion system’s virtual

prototype.

Figure 11. Structure of the computer cluster.

Figure 12. Picture of the cockpit and the computer cluster.

C. Virtual Prototype of the Motion System

As we know, it is difficult to analyze kinematics and

dynamics of Stewart platform. If we designed and

developed the virtual prototype of the platform with

traditional method, it would cost a lot of time on dynamic

equations [12]. Even if we worked out the dynamic

equation of every part of the Stewart platform such as

actuators, joints, and the platform, it was also difficult to

drive these numerous parts in virtual reality by those

equations. For these reason, we chose SimMechanics

CAE Translator as a bridge to combine CAE of the

Stewart platform’s mechanical system, SimMechanics

model and virtual reality. With the CAE Translator,

models of the motion system’s virtual prototype were

unified in the MATLAB○R environment and could be used

to drive virtual reality.

This method used SimMechanics CAE Translator to

transform ADAMS geometric assembly into Simulink

block diagram model. After adding controller’s model,

actuators’ models and washout filters, the motion

system’s model could perform dynamics simulation.

Then the model was combined with the flight simulation

model as a whole. Finally we used RT-Lab to compile the

whole model and loaded it to separate computational

nodes, which was the source of driving signals to virtual

reality.

At the same time, we built a LabVIEW Virtual

Instrument (VI) to contain the VRML model which was

generated from ADAMS sub geometric assemblies and

added Java script node. Then UDP communication blocks

were added to receive driving data and sent back object-

to-object collision information which was provided by

Cortona Clients (ParallelGraphics. Inc) and would be

used for platform structure interference validation.

Connecting the simulation part with the virtual reality

part by Ethernet was the last step to complete the virtual

prototype of the motion system. The development process

is described in Fig.10.

The virtual prototype has the same control interface

and similar dynamic character as the real motion system.

And its animation is exquisite as in Fig.2. Its major

advantage is utilizing the existence resource in the

process of motion platform design stage. The method

decreases the difficulties of generating virtual prototype

and makes the development fast and high quality.

V. COORDINATION AND FIDELITY VALIDATION

An experimental flight simulator has been built for

testifying the software framework. The whole system

consists of 11 PCs as a cluster, control loading system,

digital geometry and soft edge correction machine

(Equipe 3ch-ProMap), 3 projectors (Equipe Contour 300),

2 speakers, and a virtual prototype of motion system. The

refresh rate of the flight simulation model was set to 30

frames per second, which could ensure fidelity and

coordination of the simulator.

Simulation models were transformed to C code

through MATLAB ○R /RTW and loaded by RT-Lab to

QNX real-time computational nodes to be compiled and

executed. Moreover, RT-Lab provided API function to

IOS for model running control and monitor, such as

loading model, executing model, pausing model and

changing parameter values. Fig. 11 shows the structure of

the computer cluster. And Fig. 12 shows the picture of

the cockpit and the room for computer cluster.

JOURNAL OF COMPUTERS, VOL. 6, NO. 1, JANUARY 2011 33

© 2011 ACADEMY PUBLISHER

0 5 10 15 20 25 30 35 40 45 50
-50

0

50

100

Time (sec)

A
lti

tu
de

 (
m

)

A/C Altitude

0 5 10 15 20 25 30 35 40 45 50
-10

-5

0

5

Time (sec)

A
ng

le
 (

de
g)

Elevator Angle

Flight Test

Simulator

Simulator

Figure 14. Elevator angle vs. A/C altitude during taking off

Flight Control

IOS

Aerodynamic

Coefficients

Equation of

Motion

1
S

1

S

1
S

1

S

Pilots

Visual System

Cockpit Instruments

Motion System

Force-Feedback

System

Task

Executive

Process

Flight State

Flight State

Flight State Feedback

Begin

End

Once the states equal, or a

flag appears, record the output

value of the Integrator

corresponding to the cue

system with task done

1
time1

time2

time3

time4

1

1

1

Figure 13. Diagram of the coordination validation.

A. Coordination Validation

The cues which a flight simulator provides to the pilots

being trained must be strictly coordinated. It wouldn’t do

to have the pilot execute a turn, but not to begin to see the

change visually, or feel the change for even a small

period of time. Even for delays which are so small that

they are not consciously detectable; a lack of

coordination may be a problem. Such delays may result

in a phenomenon known as simulator sickness, a purely

physiological reaction to imperfectly coordinated sensory

inputs.

We verified the coordination with a way as call and

back. We installed a press-button on the cockpit where

the pilots could touch it easily. Before we started the test,

we should control the A/C to fly high above the terrain.

Once the pilots pressed down the button, the message was

captured by a digital-In card and then a step signal was

generated in the flight control model. The step signal had

a very large final value, and replaced one of the normal

control signals such as aileron, elevator, or rudder, which

had specified by IOS and input by the pilots through the

wheel and the pedal. Now the step signal with other

control signals would enter to the aerodynamic

coefficients block to join the computation, and then the

equation of motion block. Because of the large value of

the step signal, there must be a large angular acceleration

on the output port of the equation of motion block

described in detail in section IV. The large and unusual

angular acceleration was detected to reset four Integrators

to their initial conditions 0 and to hold the state of flight

which would be sent to motion system, visual system,

cockpit instruments, and force feedback system.

The cueing systems received the flight state at different

time, and then refreshed their own output devices. To

Visual system, a new frame was drawn on column screen

by three projectors. To Cockpit Instruments system, new

positions of pointers were updated. These two systems

had a common method to deal with the process, which

was executed in a loop. While a loop was executed over,

a refresh task was done. So we added a UDP sender at the

end of the loop. Once a refresh task was done, the data

which the system received from the simulation model, the

state of flight, such as the position of the A/C to Virtual

system, was sent back to simulation model. Currently, the

state of flight had been held in the simulation model.

Then, the feedback state was compared with the held

state. Once the two states were equal, the output value of

the Integrator was recorded. This value was the time

consumed by updating a new cue, which we concerned

with, Fig.13 shows this method.

To motion system and force Feedback system, there

was a little difference to the visual system and cockpit

instruments system. We judged the task done by the

acceleration of these systems. Because we only had a

virtual prototype of Motion system, we measured the

platform’s acceleration by adding a body sensor block on

the centre of gravity of the upper platform in the

SimMechanics model. To force feedback system, we

measured the actuators control signal. When the

acceleration of the platform or the control signal of the

actuators exceeded a predefined value, a flag signal was

sent back to the simulation model to record the output

value of the corresponding Integrators. And then, we had

the consuming time too.

We did the test for several times and with different

control channels, roll, pitch and yaw. We got the longest

time which every cueing system needed to refresh a

frame. The result was exciting. The visual and virtual

motion system could execute to completion with in sixty

milliseconds, and the instruments and force-feedback

system higher which reached 60Hz refresh rate. And the

maximum difference of the delay time between the

cueing systems was less than 30 milliseconds. Under this

refresh rate and delay time, no one would feel

uncomfortable for coordination. This result proved the

design of our flight simulator based on COTS solution

satisfied the coordination demand [13].

B. Fidelity Validation

Fig.14 and 15 are a typical simulation about a normal

taking off under some special conditions. The input

commands are generated by a qualification test program.

The figures describe a pilot pulled the wheel at 35
th

second to make the elevator to a negative degree, and

then the pitch angle increasing, the aircraft began

climbing. In this process, the simulation conformed to the

flight test strictly. It indicated that the states of the A/C

are in the tolerance defined by the Airplane Simulator

Qualification. Other simulations such as cruise, landing

and so on all had the same good performance and all

conformed to the flight tests. Hence, the flight simulator

had enough fidelity as a training device.

VI. CONCLUSION

In this paper, a distributed real-time simulation

framework and COTS-based simulation models

development method for flight simulator prototype

34 JOURNAL OF COMPUTERS, VOL. 6, NO. 1, JANUARY 2011

© 2011 ACADEMY PUBLISHER

0 5 10 15 20 25 30 35 40 45 50
-10

-5

0

5

Time (sec)

A
n
g
le

 (
d
e
g
)

Elevator Angle

0 5 10 15 20 25 30 35 40 45 50
-10

0

10

20

Time (sec)

A
n
g
le

 (
d
e
g
)

Pitch Angle

Simulator

Flight Test

Simulator

Figure 15. Pitch angle vs. elevator angle during taking off.

system are presented. It successfully uses the mediator

design pattern and commercial simulation development

software. The mediator design pattern provides object

decoupling and minimizes simulation model

interdependencies which results in more simple designs

and software which is more maintainable and

extensible.. The application of mature and commercial

simulation development software speeds up and

decreases the risk of engineering productions’

construction. As the modularity implementation nature of

the method, it is easier to improve the fidelity of the flight

simulator as better models becomes available or

additional elements are included in the future, such as

adding various wind models, more malfunction model

and more logic functional model. The methods

simultaneously provide an efficient software development

approach for other real-time distributed simulation

systems.

ACKNOWLEDGMENT

This work was supported by the fund of China's

"World class university (985)" project (CDAZ98502211)

and supported by Program for New Century Excellent

Talents in University (NCET_04_0325).

REFERENCES

[1] Len Bass, Paul Clements, and Rick Kazman, Software

architecture in practice, MA: Addison Wesley, 2003.

[2] Gamma, E., R. Helm, R. Johnson, and J. Vlissides, Design

patterns: plements of reusable object-oriented software,

MA: Addison-Wesley, 1995.

[3] Wang Xinren, Jia Rongzhen, Peng Xiaoyuan, and Feng

Qin, Flight real-time simulation system and technology,

Press of Beihang University, Beijing, 2003.

[4] Rolfe, J.M. & Staples, K.J. Flight simulation, New York,

NY: Cam-bridge University Press, 1986.

[5] Jane W.S. Liu, Real-time systems 1e, Prentice Hall, Inc.,

2000.

[6] Wang Yongji, Chen Qiuping, “On schedulability test of

rate monotonic and its extendible algorithms”, Journal of

Software, vol. 2, pp. 799-814, 2004.

[7] Christopher J. Atkinson, Development of an Aerodynamic

Table Lookup System and Landing Gear Model for the Cal

Poly Flight Simulator, PhD thesis, California Polytechnic

State University, San Luis Obispo, August 2002.

[8] Stevens, B.L. and F.L. Lewis, Aircraft Control and

Simulation, New York John, Wiley & Sons, 1992.

[9] The Mathsworks, Aerospace Blockset for Simulink,

MATLAB USER’S GUIDE, September 2005.

[10] P D Bruce and M G Kellet, “Modeling and Identification

of Nonlinear Aerodynamic Functions Using B-Splines”,

UKACC International Conference on CONTROL,

pp.907~912, September 1998.

[11] The Mathsworks, Spline Toolbox For use with MATLAB,

MATLAB USER’S GUIDE, February 2003.

[12] Sjirk Holger KOEKEBAKKER, Model Based Control of a

Flight Simulator Motion System, PhD thesis, Delft

University of Technology, Delft, 2001, pp.31~118.

[13] Federal Aviation Authority, Airplane Simulator

Qualification, Advisory Circular (AC) 120-40C, July 1995.

Shupeng Zheng, born in Henan, China, 1979, has got a

master degree of computer science in 2004, at the School of

Computer Science, Harbin Institute of Technology. He is a PhD

candidate at the School of Mechatronics Engineering, Harbin

Institute of Technology.

His main research interests include distributed system, real-

time system and software architecture, etc. He has published

more than 5 scientific papers about flight simulation and real-

time system in various periodicals and conference proceedings.

Shutao Zheng, BSc, MSc, PhD, born in Henan, China, 1977,

has got a PhD in Mechanical Engineering, at the School of

Computer Science, Harbin Institute of Technology, 2009.He is

lectorate at the School of Mechatronics Engineering, Harbin

Institute of Technology.

He is an active researcher in flight simulation field. He has

published many scientific papers in various periodicals and

conference proceedings.

Junwei Han, Born in Liaoning, China, 1964, he received

PhD from Harbin Institute of Technology in 1992. Now, he is a

professor in School of Mechatronics Engineering, Harbin

Institute of Technology, Harbin, China.

His research interests include system integration design

theory and technology, computer control technology, electro-

hydraulic servo control theory and application, modern control

theory and application, etc. He has published over 100 scientific

papers in various periodicals and conference proceedings.

JOURNAL OF COMPUTERS, VOL. 6, NO. 1, JANUARY 2011 35

© 2011 ACADEMY PUBLISHER

