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Figure 1. Abstract test system model 
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Abstract—In traditional automatic test solutions, a test 

engine usually encompasses all functions in its kernel, 

including compiling test program, generating test event 

chain, scheduling test process and executing test events. This 

makes the engine tightly coupled with test language and the 

system under test, so that it is difficult to maintain, optimize 

and extend the test engine. In order to solve these problems, 

a micro-kernel test engine is designed and implemented 

based on the service oriented architecture. This micro-

kernel approach decouples function modules to make the 

test engine kernel independent of the system under test and 

the test language. This also makes the test engine more 

modularized, so that the debugging process and 

maintenance work of the engine can be much easier. With 

new compiling component and test adapters, the engine 

kernel can be extended for new test methods or reused in 

new test applications. The application example and 

extensibility analysis discussed in section 6 show the 

feasibility of this micro-kernel test engine. 

 

Index Terms—automatic test system, test engine, micro-

kernel, service oriented architecture 

 

I.  INTRODUCTION 

Automatic testing is an efficient approach to cope with 

the test application of systems which are more and more 

complex. A typical automatic test system usually consists 

of multiple function components: user interface of test 

system, test management and programming tool sets, and 

test executable unit. 

A general test system model is shown in Fig. 1 and the 

functions of components are described as follows. 

 User interface of test system help testers use test 

system. 

 Test management and programming tool sets are 

used to manage test requirement, test case, test 

program, fault trace and so on. 

 Test executable unit is responsible for the runtime 

behavior of test program. In other words, actual test 

execution takes place at this component. 

The heart of an automatic test system is the executable 

unit that glues everything together and makes the desired 

test possible. It is also called test execution environment 

or test engine. In the following discussion, we use test 

engine to denote it.  

A test engine can be seen as a virtual machine that 

provides the run-time execution environment for the test 

programs. Compiling a test program, creating test event 

chain (test process has the same meaning) according to 

the program, scheduling the test process and managing 

the running of each event are the essential chores of a test 

engine. These functions should be coded and embedded 

in every automatic test system solution. In this sense, 

every automatic test system should entail a test engine in 

one way or another.  

In traditional automatic test system solutions, all these 

functions are all implemented in the core of test engine. 
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These monolithic kernels are tightly coupled with the 

systems under test and the specific test languages [1]-[5]. 

When the system under test (SUT) changed (function 

update or sub-system replaced with products of different 

manufactures), the updating work of the test engine is 

cumbersome. At the same time, the debugging, updating 

and maintenance for the test engine are also problems, 

when it is monolithic. At the worst situation, we may 

need to redevelop a new test engine. 

However, we often want to have the freedom to change 

the system under test without developing entirely new 

test engine from the scratch for each function, and at the 

same time ease the work of debugging and maintenance 

of the engine. Especially, we hope that the invariant part 

can be reused or embedded in forthcoming test 

applications. To this end, we are interested in isolating 

the core invariant portion of test engine, and providing a 

generalized framework for building other functions on 

top of the core to reuse the invariant portion in different 

application as well as optimization of existing engine 

components without the need for engine-wide changes. 

In this paper, a micro-kernel test engine is designed 

and implemented for this aim. 

The desired micro-kernel [6] approach for building 

automatic test engine (ATE) is based on analogy with 

operating systems [7]. In operating systems that are based 

on micro-kernel architecture, a very basic set of services 

are provided by the operating system core (e.g., process 

identifiers and address spaces). Using such primitive 

services, the rest of the system services are in fact built 

outside the core (e.g., file systems and networking). A 

micro-kernel operating system provides an easy and safe 

way of adding new system/kernel services, such as new 

network protocols and file systems. 

We borrow this design idea into our test engine. 

Similarly, a micro-kernel ATE provides an easy way to 

add new objects under test (equipment or system) or 

engine functions without the need for an overhaul of the 

entire engine implementation. 

In this paper, we argue the micro-kernel principle, 

decoupling each function module and remaining only the 

test process scheduling capability in the kernel. 

Following this, a micro-kernel test engine is designed 

based on service oriented architecture. All other functions 

supporting test execution are implemented as services for 

the kernel. The benefits of this micro-kernel method are 

summarized as follows. 

1) The engine is modularized, so the debugging 

process and maintenance work of the engine are 

much easier. 

2) The updating work of the engine becomes easier. 

3) The reuse of the invariant portion of test engine in 

other application domain becomes possible. 

The rest of this paper is organized as follows. Section 2 

reviews some other test engines. The guiding principles 

are discussed in section 3. The design of this micro-

kernel test engine is introduced in Section 4. The 

implementation details of the micro-kernel are described 

in Section 5. One application of this engine and its 

extensibility are discussed in section 6. Finally, 

conclusion is presented in Section 7. 

II.  BACKGROUND AND RELATED WORK 

In some of our current railway domain projects, we are 

pursuing a special automatic test system. This test system 

is used to assure the function features of train control 

system [8] which is a distributed system. The train 

control system is composed of numbers of sub-systems 

which may be manufactured by different companies and 

run on different platforms. The primary goal of our test 

system is to make testing for this system more efficient to 

support the heterogeneous applications. Because the 

changeability and complexity of train control system, the 

test engine needs to be extended and reused easily. At the 

same time the debugging and maintenance work should 

be alleviated. To this aim, the micro-kernel test engine is 

designed.  

A.   Related work  

Traditional test environments are usually dependent on 

the implementations of system under test and the adopted 

test languages. Several test execution environments are 

illustrated as follows. 

TTCN-executable: The Testing and Test Control 

Notation (TTCN) [9] is a test specification and 

implementation language. It was first developed for 

conformance and interoperability testing of 

communication protocols in telecommunication domain 

and now have been extended and broadened to allow the 

testing of local/distributed and reactive/proactive systems. 

The test execution environment for TTCN is used to 

parse the TTCN program and execute the test. Many 

research institutions and companies have done a lot of 

work to develop the test engines for TTCN to make the 

program of TTCN executable, e.g. the test system for 

maglev control system design [10] and TTCN-3 test 

harness [11-12]. 

The separation between the engine and test adapter is 

suggested in TTCN reference model, so TTCN 

executable unit is decoupled with SUT. But all 

implementations depend on the TTCN language notations, 

so the extension of the test engine capability is constraint 

within the ability of TTCN standard. The reuse of the 

engine may be also constrained in the TTCN application 

domain. Due to the coupling of other functions, the 

maintenance and updating may also be a cumbersome 

work.   

CONCEPTUAL [13]: It is a toolset created to 

facilitate the construction and explication of special 

purpose network performance tests. The test execution 

environment of the CONCEPTUAL is based on a 

straightforward approach to code generation, after that a 

list of test events is constructed. These two processes are 

all implemented in the kernel of the test execution 

environment, so this environment couples with test 

language of CONCEPTUAL and it can only run the test 

for performance of network transport layer. The 

extension and reuse in other application domain are 
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difficult, and the maintenance of the test execution 

environment may be another problem. 

AGEDIS [14]: The aim of this project is to increase 

the efficiency and competitiveness of the software 

industry by automating software testing, and improving 

the quality of software while reducing the expense of the 

testing phase. AGEDIS achieves this by developing a 

methodology and a set of tools for the automation of 

software testing with emphasis on distributed component-

based software systems. The primary goal of the test 

execution environment [15] for it is to support test 

execution on the heterogeneous distributed system. The 

implementation of this environment has no SUT platform 

or language dependencies, but its architecture does not 

have a structural separation between the functions of test 

program compiling and test events executing. The 

maintenance and updating of the test environment may be 

a difficult work.  

Till now, most test engines focus on one test 

application of specific system, and they are usually 

monolithic kernel engines, in which the monolithic kernel 

aims at a full-fledged, all-encompassing set of test engine 

functions. All function components are coupled tightly is 

the main problem for the extension, maintenance and 

reuse of the test engines. 

III. GUIDING PRINCIPLES 

Different form traditional test system solutions that all 

functions are implemented in the core of test engine, a 

micro-kernel test engine focuses exclusively on providing 

test process scheduling capabilities, leaving all of the 

remaining functions out of the kernel. The purpose of 

developing a micro-kernel test engine is to make the 

maintenances and extension of the engine easy as well as 

reuse the invariant portion in forthcoming applications. 

Thus a micro-kernel test engine kernel must be designed 

in a way that is independent of (1) specific test language, 

(2) particular ways of interacting with resources (3) 

platform and implementation of system under test.  

A.  Test programming language compiling 

Test programming language is used to define test case 

and test execution process. Several test languages have 

been developed for different test applications [16]-[17]. 

In order to make the test executable, test engines which 

depend on the notations of a specific test language are 

implemented. In different test system, different compiling 

components of test engine are implemented to generate 

test event chain from test program. In the micro-kernel 

approach, the engine core needs be independent of the 

test language to support test engine extension and reuse. 

So a universal description model for test event chain is 

used to define the compiling outcome of different test 

languages. The details will be discussed in following 

section. The model must: 

 Be able to describe test process. We can use the 

elements of model to define a test process for 

different test purpose and methods. 

 Be extensible: The model must supply extension 

mechanism to add new model elements.  

B.  Resource Invocation  

Many test engines assume some specific ways of 

interacting with resources and do not consider that, in a 

complex test environment, they may be required to 

interact with a variety of resources, from human to 

different systems, applications, or even machines and 

equipments. Each resource may require a specific kind of 

interaction, from reply/request to iterated attempts of task 

acceptance and fulfillment. A micro-kernel test engine 

cannot make any assumptions on the way that resources 

are invoked, or on the way that each resource carries out 

its work. In fact, a micro-kernel engine core should not 

invoke any resource directly; rather, it should provide a 

mechanism that allows it to interact with any resource in 

a uniform manner. This way it is possible to invoke any 

number or type of resources without having to make any 

changes of the test engine. 

A kind of adapter, resource adapter is designed out 

with this requirement. In essence, they are application 

wrappers that allow the test engine to invoke resources 

according to a uniform engine-defined interface. 

However, a specific resource adapter assumes that a 

certain kind of resource will be invoked. In the test 

system for circuit, for example, several adapters are used 

to retrieve information from different kinds of measure 

equipments. The interaction process with different 

resources is implemented by different adapters. New test 

adapter will be designed to adapt the change of resources 

and the addition of new resources, but the test engine core 

needs no changes. 

C.   Interaction with systems under test 

Most test engine implementations depend on the 

implementation of system under test, so test engine is 

tightly coupled with the implementation of SUT. Specific 

test interaction way is assumed between test engine and 

SUT. But when the system under test is distributed, the 

problems appear. 

Distributed system may run in different host 

environments (physically separated in a network). 

Different programming languages may be used to code 

the different sub-systems in the system under test. Test 

system is required to interact with a variety of sub-

systems under test. Each sub-system requires a different 

kind of interaction ways, from communication protocols 

to reply/request manners. A micro-kernel test engine core 

cannot make any assumptions on the way that interacts 

with SUT but need to provide a uniform interface to 

invoke SUT so that we can add new sub-system under 

test, update engine and reuse the core in other application 

domain without having to make any changes to the 

implementation of test engine core. 

To fulfill this requirement, another kind of adapter, test 

adapter is developed. In general, the interaction between 

test system and SUT is implemented by a set of test 

adapters that specify the physical/electrical characteristics, 

the identification and classification. A test adapter is used 

to adapt the specific interface of a sub-system under test 

to a unified interface that can be recognized by test 

JOURNAL OF COMPUTERS, VOL. 6, NO. 1, JANUARY 2011 5

© 2011 ACADEMY PUBLISHER



Compiling 

Test Program

Test AdapterResource Adapter

Time handler

Interrupter

System under test

Test process 

scheduling

Resource

Test Process 

Store

 
 

Figure 2. Architecture of the test engine 

engine in the high level, so the details of interaction is 

concealed behind this interface. 

IV.  MICRO-KERNEL TEST ENGINE DESIGN 

In this section, we introduce the design details of the 

micro-kernel test engine. The design rule is uncoupling 

all engine functions. The kernel of engine only focuses on 

the test process scheduling capability, and other functions 

are all extracted out of the engine kernel. 

In our design, this micro-kernel test engine is 

implemented based on service-oriented architecture (SOA) 

[18]. Each function is taken as a service for the execution 

of test program. Combining the required functions we can 

implement the automatic test system. New functions can 

be implemented under this architecture, and combined 

with existing functions to fulfillment new test application 

requirement; and the debugging process is restricted in 

the scope of each function module, so the update and 

maintenance of the engine is easy to achieve. At same 

time, some of the function modules can be reused in other 

test application domains. 

A.   Architecture of the test engine 

On the whole, the micro-kernel test engine has two 

layer meanings: 

1) The function of test engine kernel is very simple. It 

only deals with the scheduling approach of test 

process. In other word, when one test event has 

finished, the test engine kernel continues the test 

process according to the test event chain. 

2) The functions are modular and are coupled loosely. 

So the updating, extension and reuse are easy to 

achieve. 

The architecture of test engine designed based on SOA 

is shown in Fig. 2. Implementing reusable and removable 

services as system components is the key motivation in 

using SOA for developing system solutions. In our design 

of micro-kernel test engine, all functions are implemented 

as services in order to modularize and reuse each module. 

Because of the modularized design, the maintenance and 

update of each module are easy. 

The functions of main modules are stated as follows: 

Compiling: This module is used to compiles the test 

program and the implementation of this module is 

according to the test language definition. The test event 

chain which describes test process has been generated. 

Test process scheduling: This module is the kernel of 

test engine, and it is responsible for executing test events 

and scheduling test process. The engine kernel is 

independent with the platform and language of SUT. 

Test Adapter: Different test adapters must be 

implemented and they are used to handle the messages 

communication with SUT and SUT process call. Test 

engine kernel doesn’t send the test data to SUT directly 

but test adapters instead. The test data defined in test 

program is only the application related data, but not 

packed with communication protocol and mechanism. 

The test adapter composes the abstract test data into the 

type which the SUT can recognize, and then send the data 

to SUT through specific physical link. When the 

implementation of system under test changed, new test 

adapters are developed for the concrete test execution, 

and other functions have no need to change.  

Resource Adapter: Resource adapter is responsible 

for interaction with specific resource. With the resource 

adapters, test system need not to take care of the invoking 

details. A uniform invoking manner is used for different 

resources. New resources can be invoked by test system 

through developing new resource adapters. 

Test process store: This function module is used to 

store test process instance when the test program is very 

long so that the whole test event chain cannot be stored in 

the memory. 

Of course, other function modules can be implemented 

to help engine finish specific test purposes, such as time 

handler and interrupter. 

B.   Core services 

The kernel of the test engine focuses on the scheduling 

capability of the test event. It needs assuring that the test 

process executes according to the process definition from 

one test event to another. The kernel needs to solve two 

problems: scheduling test process and maintaining test 

process context. 

The test process model is the foundation of test process 

scheduling. The test process model described in [19] is 

adopted by this paper. 

Test process model: A test program usually describes 

a test logic which is composed of test events and the 

executing logic of these events. Compiling outcomes of 

different test languages are modeled as a universal test 

process model to make the engine kernel independent of 

specific test language. The test process model (TPM) is 

defined as:  

                      :: ( , , , , )TPM E Q L V t .                     (1) 

(1) 
1 2:: ( ), , , mE e e e , E  is a set of test events. 

0m  ,  m  is the number of the events; 

(2) Q  is the tag set of starting tags and ending tags of 

test process; 
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Figure 4. Example of test process scheduling 
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Figure 3. Note how the caption is centered in the column. 

(3) 1 2:: ( ), , , pL l l l , 0p  , L  is a set of links 

among test events, p  is the number of the links; 

(4) V  defines the test information (input variables 

and output variables for system under test) and 

process variables. 

(5) 1 2:: ( ), , , qt t t t , 0q  , t  is optional set to 

specify time-related test events.  

The restrictions of TPM are: 

(1) N Q   ; 

(2) N T   ; 

(3)  ,Q b f , b  is the starting tag and f  is the 

ending tag. 

A test process model can be represented by a directed 

graph ( , )G N E , where the set 
1{ , }nN n n  of nodes 

represents the set of specified events of the test process 

and the directed edges E  represent the execution order  

of events. In general, the graph of a certain test process 

contains a start node, an end node, several test event 

nodes and links which are associated with the execution 

logic of these events. 

In the implementation of test engine, node is a base 

class. Node with specific properties and type can execute 

specific test event. The type of the node defines its 

runtime behavior. A test process model is shown in Fig. 3. 

In this example, e1, e2, e3 are test interaction events 

(inputting test data or receiving test outcome). Xf is a 

“XOR-fork” test control event. The runtime behavior of 

Xf is discussed in [19]. 

Test process scheduling: It focuses on how to 

schedule the test process execution. We adopt tokens to 

schedule test process and the test event which has a token 

can execute its behavior. The tokens are transferred from 

one event to next to prompt the test process. In TPM, test 

events trigger tokens transfer between events through 

links. Events are therefore responsible for the 

continuation of the test process execution. Links are 

associated with execution direction. 

When a token arrives on a node, a certain event must 

be invoked, regardless of what that event will effectively 

do. The event may dispatch a task to SUT or resource, or 

it may request a remote machine operation, or it may 

perform some operation on a variable, for example. The 

input data for any SUT, as well as the output data that 

were brought back to the engine kernel by means of 

events, are represented as message. A signal is generated 

with specific link after certain test event has finished. 

Continuous execution of the test process is done by the 

leave method of event objects. When receiving an 

unnamed signal, the token will leave its current event 

over the default leaving link. When a link-name is 

specified in the signal, the token will leave its event over 

the specified link. 

Take the test process model described in Fig. 3 for 

example. The instance of this model is constructed and 

illustrated in Fig. 4. The start event and the end event are 

attached in the test event chain in order to define the 

beginning and ending of this test process. In some 

complex test application scenario, the end nodes may be 

more than one. 

A token is created for the main path of test execution 

after the test process instance has been constructed. This 

token is called the root token of the test process and it is 

positioned in the start event of the test process. A start 

signal instructs the token to start the process execution. 

Then, each test event triggers the token transferring 

between events through the links. When the token arrived 

in the end event, the process end event will be executed 

to stop the process execution. 

Test process context: The test process context is 

about process variables and process resources. Process 

variables are key-value pairs that maintain the state of test 

process. 

V.  MICRO-KERNEL TEST ENGINE IMPLEMENTATION 

In this section, we will introduce the implementation of 

the micro-kernel test engine. 

A.   Compiling component 

This component is related to test language, so its 

implementation depends on test language. For example, if 

the test language is constructed on XML, we can use the 

existing XML API to implement the compiler for it. Its 

main function is to compile test program to a test event 

chain shown in Fig. 5. 
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Figure 5. Example of test process scheduling 

B.   Kernel of the test engine 

The test engine kernel essentially comprises a set of 

objects that are inter-related according to the principles 

described in the last section. At the top of the class 

hierarchy, class engine provides the access to the set of 

currently active processes, as depicted in Fig. 6.  

The engine object behaves as a singleton object and it 

is the single point of entry for every other component 

accessing the test engine kernel. The engine object 

contains a list of references to process objects. A process 

is comprised of a set of node and link objects that refer 

each other. A node references its input and output link 

objects, while a link references its input and output node 

objects. A token is pointer to node and which node has a 

token can run its behavior. A node will usually contain an 

action which encapsulates a certain event code, an 

invocation of some resource, an interaction with SUT or 

an inner action.  

 

Context is used to maintenance the context of test 

process. Action objects, event objects and token objects 

make use context to execute test process instance. Many 

different type events which have specific runtime 

behaviors are defined by inheriting the node class.  

Usually, nodes are responsible for propagating the 

process execution. Their methods for this function are the 

most complex part of the engine kernel. Each token 

represents a path of execution. A node can create and 

destroy tokens, and also launch tokens transfer over links. 

Basically, each node has the following options for 

propagating the process execution: 

1) Propagating the execution over one of the leaving 

links of the node. This means that the token that 

originally arrived in the node is passed over one of the 

leaving links. The node can execute some custom 

action and then continue process execution 

automatically without waiting.  

2) Creating new paths of execution. A node can create 

new tokens. Each new token represents a new sub-

path of execution and each new token can be launched 

over the node's leaving links.  

3) Ending paths of execution. A node can end a path of 

execution. That means that the token of this path is 

ended and the path of execution is finished.  

C.   Test adapter 

Test adapters are used to help engine kernel to finish 

interacting with SUTs. To the aim discussed in last 

section, the adapter design pattern [20] is used to supply a 

uniform interface for engine kernel to execute test event. 

Based on this, numbers of test adapters are developed for 

concrete test execution. This makes it possible to invoke 

any number or type new SUTs without having to make 

any changes to other function of test engine. The class 

diagram of test adapter is shown in Fig. 7. 

 
From Fig. 7, we see that appropriate test adapter 

facilitates the interaction between the SUT and the test 

engine kernel. The physical and electrical characteristics, 

the identification and classification, the intended platform 

are all supported by test adapters. 
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Figure 6. Simplified class diagram for the engine Kernel 
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Figure 7. Class diagram of the test adapter 
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Resource adapters have similar implementation 

principle with test adapters, so we will not introduce it 

here. 

VI.  EXAMPLE STUDY AND EXTENSIBILITY ANALYSIS 

In this section, we have designed one example to study 

the feasibility of this test engine. Our implementation 

currently runs on a distributed simulation system which is 

used to simulate China train control system level three.  

A.   Example 

This is an example that the test engine is used to test 

train control system for the function features validation. 

We design a small test program (written with test 

language defined by another research of ours) to test 

whether the train control system can successfully receive 

speed limit command and then execute the expected 

actions according to the system requirement specification. 

From test system view, this test program is composed of 

three test events, sending temporary speed restriction 

message to train control system, observing executing 

result from train control system, comparing test result and 

expected result. The test engine kernel is responsible for 

scheduling this test event chain. At the same time, to 

implement testing, two specific test adapters are 

developed for this application. One is responsible for 

interacting with train control center and the other is 

responsible for interacting with auto train protect 

equipment. The test results are shown in Fig. 8. 

 
When the train is near or in this speed limit span, from 

the DMI of train we can see that the speed of the train is 

lower than the limit speed which is shown in Fig. 8. We 

can conclude that the test engine has good applicability 

for such a professional area. 

B.   Extensibility analysis 

According to the discussion in the above sections, this 

test engine can be easily extended and reused. We will 

explain this in the following four aspects. 

Event type extension: Each event objects has a specific 

type. The event type determines what will happen when a 

token arrives in it at runtime. A pre-implemented set of 

event types have been supported by this micro-kernel 

engine. In the future, we can write custom code to extend 

runtime behavior of node by action object. The extended 

event type is used to implement special test applications. 

Changes of system under test: When a new sub-system 

under test is inserted into the test environment or the 

implementation of certain sub-system is changed, the test 

environment need to support these changes. By the 

micro-kernel approach, a new test adapter is developed 

for these changes, and other components of test engine do 

not need to be updated. 

Service extension: The service oriented architecture 

make the kernel easy to integrate new service to fulfill 

new test requirements. For example, the time handler can 

be developed to supply time service for engine kernel to 

support the test engine to cope with time-related test 

applications.  

Reuse in new application domains: The engine kernel 

can be reused in new application domains by developing 

new compiling component to support new test language, 

new test adapters and resource adapters. 

VII.  CONCLUSION 

In traditional automatic test system solutions, all the 

functions of test engine are implemented in the kernel of 

engine so that the engine is tightly coupled with test 

language and system under test. Especially, this makes 

the updating, maintenance and reuse of the test engine 

difficult. To solve these problems, a micro-kernel test 

engine based on SOA is designed to separate the core 

invariant portion from variant portion of test engine. 

Instead of developing all the functions in the core of 

engine, the micro-kernel test engine introduced in this 

paper only provides test process scheduling capabilities in 

its kernel, leaving all of the remaining functions out of 

the kernel. Based on the idea of SOA, all the functions of 

test engine are designed as services. Specific compiling 

component compiles the test program to a test process 

model which can be executed by engine kernel. This 

decouples the coupling between the engine kernel and 

test language. Test adapters are responsible for 

interacting with SUT. The physical/electrical 

characteristics, the identification/ classification, and the 

intended platform are all supported by test adapters. 

Resource adapters are responsible for the resources 

invocation. These two kind adapters make the engine 

independent of specific SUT or resource. 

Based on the micro-kernel approach, the test engine is 

independent of (1) specific test languages; (2) particular 

ways of interacting with resources; (3) implementation of 

system under test. 

The architecture of this micro-kernel test engine gives 

an easy way to extend or reuse the engine.  Extension of 

event type supports new test method or purpose. 

Extension of test adapter supports new systems under test 

or changes of system under test.  Extension of resource 

adapter supports new resources. Extension of new service 

component supports special test application. 

In a word, this micro-kernel approach makes the test 

engine easy to be maintained, extended and reused. 

 

Figure 8. DMI of the train 
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