
User Interface of Test System

Test Management and Programming Tool

Sets

Test Executable (TE)

System Under Test (SUT)

Implementation

Adaptor

Platform

Adaptor

Figure 1. Abstract test system model

A Micro-Kernel Test Engine for Automatic Test

System

Shuai Wang
1. Department of Automation, Tsinghua University

2. Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, China

Email: wangshuai81@gmail.com

Yindong Ji
1. Department of Automation, Tsinghua University

2. Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, China

Email: jyd@tsinghua.edu.cn

Shiyuan Yang
Department of Automation, Tsinghua University, Beijing, China

Email: ysy-dau@tsinghua.edu.cn

Abstract—In traditional automatic test solutions, a test

engine usually encompasses all functions in its kernel,

including compiling test program, generating test event

chain, scheduling test process and executing test events. This

makes the engine tightly coupled with test language and the

system under test, so that it is difficult to maintain, optimize

and extend the test engine. In order to solve these problems,

a micro-kernel test engine is designed and implemented

based on the service oriented architecture. This micro-

kernel approach decouples function modules to make the

test engine kernel independent of the system under test and

the test language. This also makes the test engine more

modularized, so that the debugging process and

maintenance work of the engine can be much easier. With

new compiling component and test adapters, the engine

kernel can be extended for new test methods or reused in

new test applications. The application example and

extensibility analysis discussed in section 6 show the

feasibility of this micro-kernel test engine.

Index Terms—automatic test system, test engine, micro-

kernel, service oriented architecture

I. INTRODUCTION

Automatic testing is an efficient approach to cope with

the test application of systems which are more and more

complex. A typical automatic test system usually consists

of multiple function components: user interface of test

system, test management and programming tool sets, and

test executable unit.

A general test system model is shown in Fig. 1 and the

functions of components are described as follows.

 User interface of test system help testers use test

system.

 Test management and programming tool sets are

used to manage test requirement, test case, test

program, fault trace and so on.

 Test executable unit is responsible for the runtime

behavior of test program. In other words, actual test

execution takes place at this component.

The heart of an automatic test system is the executable

unit that glues everything together and makes the desired

test possible. It is also called test execution environment

or test engine. In the following discussion, we use test

engine to denote it.

A test engine can be seen as a virtual machine that

provides the run-time execution environment for the test

programs. Compiling a test program, creating test event

chain (test process has the same meaning) according to

the program, scheduling the test process and managing

the running of each event are the essential chores of a test

engine. These functions should be coded and embedded

in every automatic test system solution. In this sense,

every automatic test system should entail a test engine in

one way or another.

In traditional automatic test system solutions, all these

functions are all implemented in the core of test engine.

JOURNAL OF COMPUTERS, VOL. 6, NO. 1, JANUARY 2011 3

© 2011 ACADEMY PUBLISHER
doi:10.4304/jcp.6.1.3-10

These monolithic kernels are tightly coupled with the

systems under test and the specific test languages [1]-[5].

When the system under test (SUT) changed (function

update or sub-system replaced with products of different

manufactures), the updating work of the test engine is

cumbersome. At the same time, the debugging, updating

and maintenance for the test engine are also problems,

when it is monolithic. At the worst situation, we may

need to redevelop a new test engine.

However, we often want to have the freedom to change

the system under test without developing entirely new

test engine from the scratch for each function, and at the

same time ease the work of debugging and maintenance

of the engine. Especially, we hope that the invariant part

can be reused or embedded in forthcoming test

applications. To this end, we are interested in isolating

the core invariant portion of test engine, and providing a

generalized framework for building other functions on

top of the core to reuse the invariant portion in different

application as well as optimization of existing engine

components without the need for engine-wide changes.

In this paper, a micro-kernel test engine is designed

and implemented for this aim.

The desired micro-kernel [6] approach for building

automatic test engine (ATE) is based on analogy with

operating systems [7]. In operating systems that are based

on micro-kernel architecture, a very basic set of services

are provided by the operating system core (e.g., process

identifiers and address spaces). Using such primitive

services, the rest of the system services are in fact built

outside the core (e.g., file systems and networking). A

micro-kernel operating system provides an easy and safe

way of adding new system/kernel services, such as new

network protocols and file systems.

We borrow this design idea into our test engine.

Similarly, a micro-kernel ATE provides an easy way to

add new objects under test (equipment or system) or

engine functions without the need for an overhaul of the

entire engine implementation.

In this paper, we argue the micro-kernel principle,

decoupling each function module and remaining only the

test process scheduling capability in the kernel.

Following this, a micro-kernel test engine is designed

based on service oriented architecture. All other functions

supporting test execution are implemented as services for

the kernel. The benefits of this micro-kernel method are

summarized as follows.

1) The engine is modularized, so the debugging

process and maintenance work of the engine are

much easier.

2) The updating work of the engine becomes easier.

3) The reuse of the invariant portion of test engine in

other application domain becomes possible.

The rest of this paper is organized as follows. Section 2

reviews some other test engines. The guiding principles

are discussed in section 3. The design of this micro-

kernel test engine is introduced in Section 4. The

implementation details of the micro-kernel are described

in Section 5. One application of this engine and its

extensibility are discussed in section 6. Finally,

conclusion is presented in Section 7.

II. BACKGROUND AND RELATED WORK

In some of our current railway domain projects, we are

pursuing a special automatic test system. This test system

is used to assure the function features of train control

system [8] which is a distributed system. The train

control system is composed of numbers of sub-systems

which may be manufactured by different companies and

run on different platforms. The primary goal of our test

system is to make testing for this system more efficient to

support the heterogeneous applications. Because the

changeability and complexity of train control system, the

test engine needs to be extended and reused easily. At the

same time the debugging and maintenance work should

be alleviated. To this aim, the micro-kernel test engine is

designed.

A. Related work

Traditional test environments are usually dependent on

the implementations of system under test and the adopted

test languages. Several test execution environments are

illustrated as follows.

TTCN-executable: The Testing and Test Control

Notation (TTCN) [9] is a test specification and

implementation language. It was first developed for

conformance and interoperability testing of

communication protocols in telecommunication domain

and now have been extended and broadened to allow the

testing of local/distributed and reactive/proactive systems.

The test execution environment for TTCN is used to

parse the TTCN program and execute the test. Many

research institutions and companies have done a lot of

work to develop the test engines for TTCN to make the

program of TTCN executable, e.g. the test system for

maglev control system design [10] and TTCN-3 test

harness [11-12].

The separation between the engine and test adapter is

suggested in TTCN reference model, so TTCN

executable unit is decoupled with SUT. But all

implementations depend on the TTCN language notations,

so the extension of the test engine capability is constraint

within the ability of TTCN standard. The reuse of the

engine may be also constrained in the TTCN application

domain. Due to the coupling of other functions, the

maintenance and updating may also be a cumbersome

work.

CONCEPTUAL [13]: It is a toolset created to

facilitate the construction and explication of special

purpose network performance tests. The test execution

environment of the CONCEPTUAL is based on a

straightforward approach to code generation, after that a

list of test events is constructed. These two processes are

all implemented in the kernel of the test execution

environment, so this environment couples with test

language of CONCEPTUAL and it can only run the test

for performance of network transport layer. The

extension and reuse in other application domain are

4 JOURNAL OF COMPUTERS, VOL. 6, NO. 1, JANUARY 2011

© 2011 ACADEMY PUBLISHER

difficult, and the maintenance of the test execution

environment may be another problem.

AGEDIS [14]: The aim of this project is to increase

the efficiency and competitiveness of the software

industry by automating software testing, and improving

the quality of software while reducing the expense of the

testing phase. AGEDIS achieves this by developing a

methodology and a set of tools for the automation of

software testing with emphasis on distributed component-

based software systems. The primary goal of the test

execution environment [15] for it is to support test

execution on the heterogeneous distributed system. The

implementation of this environment has no SUT platform

or language dependencies, but its architecture does not

have a structural separation between the functions of test

program compiling and test events executing. The

maintenance and updating of the test environment may be

a difficult work.

Till now, most test engines focus on one test

application of specific system, and they are usually

monolithic kernel engines, in which the monolithic kernel

aims at a full-fledged, all-encompassing set of test engine

functions. All function components are coupled tightly is

the main problem for the extension, maintenance and

reuse of the test engines.

III. GUIDING PRINCIPLES

Different form traditional test system solutions that all

functions are implemented in the core of test engine, a

micro-kernel test engine focuses exclusively on providing

test process scheduling capabilities, leaving all of the

remaining functions out of the kernel. The purpose of

developing a micro-kernel test engine is to make the

maintenances and extension of the engine easy as well as

reuse the invariant portion in forthcoming applications.

Thus a micro-kernel test engine kernel must be designed

in a way that is independent of (1) specific test language,

(2) particular ways of interacting with resources (3)

platform and implementation of system under test.

A. Test programming language compiling

Test programming language is used to define test case

and test execution process. Several test languages have

been developed for different test applications [16]-[17].

In order to make the test executable, test engines which

depend on the notations of a specific test language are

implemented. In different test system, different compiling

components of test engine are implemented to generate

test event chain from test program. In the micro-kernel

approach, the engine core needs be independent of the

test language to support test engine extension and reuse.

So a universal description model for test event chain is

used to define the compiling outcome of different test

languages. The details will be discussed in following

section. The model must:

 Be able to describe test process. We can use the

elements of model to define a test process for

different test purpose and methods.

 Be extensible: The model must supply extension

mechanism to add new model elements.

B. Resource Invocation

Many test engines assume some specific ways of

interacting with resources and do not consider that, in a

complex test environment, they may be required to

interact with a variety of resources, from human to

different systems, applications, or even machines and

equipments. Each resource may require a specific kind of

interaction, from reply/request to iterated attempts of task

acceptance and fulfillment. A micro-kernel test engine

cannot make any assumptions on the way that resources

are invoked, or on the way that each resource carries out

its work. In fact, a micro-kernel engine core should not

invoke any resource directly; rather, it should provide a

mechanism that allows it to interact with any resource in

a uniform manner. This way it is possible to invoke any

number or type of resources without having to make any

changes of the test engine.

A kind of adapter, resource adapter is designed out

with this requirement. In essence, they are application

wrappers that allow the test engine to invoke resources

according to a uniform engine-defined interface.

However, a specific resource adapter assumes that a

certain kind of resource will be invoked. In the test

system for circuit, for example, several adapters are used

to retrieve information from different kinds of measure

equipments. The interaction process with different

resources is implemented by different adapters. New test

adapter will be designed to adapt the change of resources

and the addition of new resources, but the test engine core

needs no changes.

C. Interaction with systems under test

Most test engine implementations depend on the

implementation of system under test, so test engine is

tightly coupled with the implementation of SUT. Specific

test interaction way is assumed between test engine and

SUT. But when the system under test is distributed, the

problems appear.

Distributed system may run in different host

environments (physically separated in a network).

Different programming languages may be used to code

the different sub-systems in the system under test. Test

system is required to interact with a variety of sub-

systems under test. Each sub-system requires a different

kind of interaction ways, from communication protocols

to reply/request manners. A micro-kernel test engine core

cannot make any assumptions on the way that interacts

with SUT but need to provide a uniform interface to

invoke SUT so that we can add new sub-system under

test, update engine and reuse the core in other application

domain without having to make any changes to the

implementation of test engine core.

To fulfill this requirement, another kind of adapter, test

adapter is developed. In general, the interaction between

test system and SUT is implemented by a set of test

adapters that specify the physical/electrical characteristics,

the identification and classification. A test adapter is used

to adapt the specific interface of a sub-system under test

to a unified interface that can be recognized by test

JOURNAL OF COMPUTERS, VOL. 6, NO. 1, JANUARY 2011 5

© 2011 ACADEMY PUBLISHER

Compiling

Test Program

Test AdapterResource Adapter

Time handler

Interrupter

System under test

Test process

scheduling

Resource

Test Process

Store

Figure 2. Architecture of the test engine

engine in the high level, so the details of interaction is

concealed behind this interface.

IV. MICRO-KERNEL TEST ENGINE DESIGN

In this section, we introduce the design details of the

micro-kernel test engine. The design rule is uncoupling

all engine functions. The kernel of engine only focuses on

the test process scheduling capability, and other functions

are all extracted out of the engine kernel.

In our design, this micro-kernel test engine is

implemented based on service-oriented architecture (SOA)

[18]. Each function is taken as a service for the execution

of test program. Combining the required functions we can

implement the automatic test system. New functions can

be implemented under this architecture, and combined

with existing functions to fulfillment new test application

requirement; and the debugging process is restricted in

the scope of each function module, so the update and

maintenance of the engine is easy to achieve. At same

time, some of the function modules can be reused in other

test application domains.

A. Architecture of the test engine

On the whole, the micro-kernel test engine has two

layer meanings:

1) The function of test engine kernel is very simple. It

only deals with the scheduling approach of test

process. In other word, when one test event has

finished, the test engine kernel continues the test

process according to the test event chain.

2) The functions are modular and are coupled loosely.

So the updating, extension and reuse are easy to

achieve.

The architecture of test engine designed based on SOA

is shown in Fig. 2. Implementing reusable and removable

services as system components is the key motivation in

using SOA for developing system solutions. In our design

of micro-kernel test engine, all functions are implemented

as services in order to modularize and reuse each module.

Because of the modularized design, the maintenance and

update of each module are easy.

The functions of main modules are stated as follows:

Compiling: This module is used to compiles the test

program and the implementation of this module is

according to the test language definition. The test event

chain which describes test process has been generated.

Test process scheduling: This module is the kernel of

test engine, and it is responsible for executing test events

and scheduling test process. The engine kernel is

independent with the platform and language of SUT.

Test Adapter: Different test adapters must be

implemented and they are used to handle the messages

communication with SUT and SUT process call. Test

engine kernel doesn’t send the test data to SUT directly

but test adapters instead. The test data defined in test

program is only the application related data, but not

packed with communication protocol and mechanism.

The test adapter composes the abstract test data into the

type which the SUT can recognize, and then send the data

to SUT through specific physical link. When the

implementation of system under test changed, new test

adapters are developed for the concrete test execution,

and other functions have no need to change.

Resource Adapter: Resource adapter is responsible

for interaction with specific resource. With the resource

adapters, test system need not to take care of the invoking

details. A uniform invoking manner is used for different

resources. New resources can be invoked by test system

through developing new resource adapters.

Test process store: This function module is used to

store test process instance when the test program is very

long so that the whole test event chain cannot be stored in

the memory.

Of course, other function modules can be implemented

to help engine finish specific test purposes, such as time

handler and interrupter.

B. Core services

The kernel of the test engine focuses on the scheduling

capability of the test event. It needs assuring that the test

process executes according to the process definition from

one test event to another. The kernel needs to solve two

problems: scheduling test process and maintaining test

process context.

The test process model is the foundation of test process

scheduling. The test process model described in [19] is

adopted by this paper.

Test process model: A test program usually describes

a test logic which is composed of test events and the

executing logic of these events. Compiling outcomes of

different test languages are modeled as a universal test

process model to make the engine kernel independent of

specific test language. The test process model (TPM) is

defined as:

 :: (, , , ,)TPM E Q L V t . (1)

(1)
1 2:: (), , , mE e e e , E is a set of test events.

0m , m is the number of the events;

(2) Q is the tag set of starting tags and ending tags of

test process;

6 JOURNAL OF COMPUTERS, VOL. 6, NO. 1, JANUARY 2011

© 2011 ACADEMY PUBLISHER

Start node

Test input data

D1 D2 D3 D4

D5 D6

D1

D2
Test event1

D7

D7

D3
Test event3

D8

D8

D6
Test event6

D11

D7

D4
Test event2

D9

D9

D5
Test event5

D10

End node

Test output data

D7 D8 D9 D10

11

SUTs

Resources

SUTs

Resources

Figure 4. Example of test process scheduling

e1

e2 e3

Xf

l 1

l2 l3

Figure 3. Note how the caption is centered in the column.

(3) 1 2:: (), , , pL l l l , 0p , L is a set of links

among test events, p is the number of the links;

(4) V defines the test information (input variables

and output variables for system under test) and

process variables.

(5) 1 2:: (), , , qt t t t , 0q , t is optional set to

specify time-related test events.

The restrictions of TPM are:

(1) N Q ;

(2) N T ;

(3) ,Q b f , b is the starting tag and f is the

ending tag.

A test process model can be represented by a directed

graph (,)G N E , where the set
1{ , }nN n n of nodes

represents the set of specified events of the test process

and the directed edges E represent the execution order

of events. In general, the graph of a certain test process

contains a start node, an end node, several test event

nodes and links which are associated with the execution

logic of these events.

In the implementation of test engine, node is a base

class. Node with specific properties and type can execute

specific test event. The type of the node defines its

runtime behavior. A test process model is shown in Fig. 3.

In this example, e1, e2, e3 are test interaction events

(inputting test data or receiving test outcome). Xf is a

“XOR-fork” test control event. The runtime behavior of

Xf is discussed in [19].

Test process scheduling: It focuses on how to

schedule the test process execution. We adopt tokens to

schedule test process and the test event which has a token

can execute its behavior. The tokens are transferred from

one event to next to prompt the test process. In TPM, test

events trigger tokens transfer between events through

links. Events are therefore responsible for the

continuation of the test process execution. Links are

associated with execution direction.

When a token arrives on a node, a certain event must

be invoked, regardless of what that event will effectively

do. The event may dispatch a task to SUT or resource, or

it may request a remote machine operation, or it may

perform some operation on a variable, for example. The

input data for any SUT, as well as the output data that

were brought back to the engine kernel by means of

events, are represented as message. A signal is generated

with specific link after certain test event has finished.

Continuous execution of the test process is done by the

leave method of event objects. When receiving an

unnamed signal, the token will leave its current event

over the default leaving link. When a link-name is

specified in the signal, the token will leave its event over

the specified link.

Take the test process model described in Fig. 3 for

example. The instance of this model is constructed and

illustrated in Fig. 4. The start event and the end event are

attached in the test event chain in order to define the

beginning and ending of this test process. In some

complex test application scenario, the end nodes may be

more than one.

A token is created for the main path of test execution

after the test process instance has been constructed. This

token is called the root token of the test process and it is

positioned in the start event of the test process. A start

signal instructs the token to start the process execution.

Then, each test event triggers the token transferring

between events through the links. When the token arrived

in the end event, the process end event will be executed

to stop the process execution.

Test process context: The test process context is

about process variables and process resources. Process

variables are key-value pairs that maintain the state of test

process.

V. MICRO-KERNEL TEST ENGINE IMPLEMENTATION

In this section, we will introduce the implementation of

the micro-kernel test engine.

A. Compiling component

This component is related to test language, so its

implementation depends on test language. For example, if

the test language is constructed on XML, we can use the

existing XML API to implement the compiler for it. Its

main function is to compile test program to a test event

chain shown in Fig. 5.

JOURNAL OF COMPUTERS, VOL. 6, NO. 1, JANUARY 2011 7

© 2011 ACADEMY PUBLISHER

Test program Compiling

e2

e3

e4 e5

Test language Compiler Test even chain

Figure 5. Example of test process scheduling

B. Kernel of the test engine

The test engine kernel essentially comprises a set of

objects that are inter-related according to the principles

described in the last section. At the top of the class

hierarchy, class engine provides the access to the set of

currently active processes, as depicted in Fig. 6.

The engine object behaves as a singleton object and it

is the single point of entry for every other component

accessing the test engine kernel. The engine object

contains a list of references to process objects. A process

is comprised of a set of node and link objects that refer

each other. A node references its input and output link

objects, while a link references its input and output node

objects. A token is pointer to node and which node has a

token can run its behavior. A node will usually contain an

action which encapsulates a certain event code, an

invocation of some resource, an interaction with SUT or

an inner action.

Context is used to maintenance the context of test

process. Action objects, event objects and token objects

make use context to execute test process instance. Many

different type events which have specific runtime

behaviors are defined by inheriting the node class.

Usually, nodes are responsible for propagating the

process execution. Their methods for this function are the

most complex part of the engine kernel. Each token

represents a path of execution. A node can create and

destroy tokens, and also launch tokens transfer over links.

Basically, each node has the following options for

propagating the process execution:

1) Propagating the execution over one of the leaving

links of the node. This means that the token that

originally arrived in the node is passed over one of the

leaving links. The node can execute some custom

action and then continue process execution

automatically without waiting.

2) Creating new paths of execution. A node can create

new tokens. Each new token represents a new sub-

path of execution and each new token can be launched

over the node's leaving links.

3) Ending paths of execution. A node can end a path of

execution. That means that the token of this path is

ended and the path of execution is finished.

C. Test adapter

Test adapters are used to help engine kernel to finish

interacting with SUTs. To the aim discussed in last

section, the adapter design pattern [20] is used to supply a

uniform interface for engine kernel to execute test event.

Based on this, numbers of test adapters are developed for

concrete test execution. This makes it possible to invoke

any number or type new SUTs without having to make

any changes to other function of test engine. The class

diagram of test adapter is shown in Fig. 7.

From Fig. 7, we see that appropriate test adapter

facilitates the interaction between the SUT and the test

engine kernel. The physical and electrical characteristics,

the identification and classification, the intended platform

are all supported by test adapters.

generates

Engine

Process

NodeLinkToken

Action

*

-connects to

*

Context

Event

1
*

1
* 1 *

1
*

1

* 1*1
*

1
1

triggers

Figure 6. Simplified class diagram for the engine Kernel

Engine/SUT

+request()

<<interface>>

Target

+Specificrequest()

Adaptee

Engine/SUT

+request()

testAdapter

Figure 7. Class diagram of the test adapter

8 JOURNAL OF COMPUTERS, VOL. 6, NO. 1, JANUARY 2011

© 2011 ACADEMY PUBLISHER

Resource adapters have similar implementation

principle with test adapters, so we will not introduce it

here.

VI. EXAMPLE STUDY AND EXTENSIBILITY ANALYSIS

In this section, we have designed one example to study

the feasibility of this test engine. Our implementation

currently runs on a distributed simulation system which is

used to simulate China train control system level three.

A. Example

This is an example that the test engine is used to test

train control system for the function features validation.

We design a small test program (written with test

language defined by another research of ours) to test

whether the train control system can successfully receive

speed limit command and then execute the expected

actions according to the system requirement specification.

From test system view, this test program is composed of

three test events, sending temporary speed restriction

message to train control system, observing executing

result from train control system, comparing test result and

expected result. The test engine kernel is responsible for

scheduling this test event chain. At the same time, to

implement testing, two specific test adapters are

developed for this application. One is responsible for

interacting with train control center and the other is

responsible for interacting with auto train protect

equipment. The test results are shown in Fig. 8.

When the train is near or in this speed limit span, from

the DMI of train we can see that the speed of the train is

lower than the limit speed which is shown in Fig. 8. We

can conclude that the test engine has good applicability

for such a professional area.

B. Extensibility analysis

According to the discussion in the above sections, this

test engine can be easily extended and reused. We will

explain this in the following four aspects.

Event type extension: Each event objects has a specific

type. The event type determines what will happen when a

token arrives in it at runtime. A pre-implemented set of

event types have been supported by this micro-kernel

engine. In the future, we can write custom code to extend

runtime behavior of node by action object. The extended

event type is used to implement special test applications.

Changes of system under test: When a new sub-system

under test is inserted into the test environment or the

implementation of certain sub-system is changed, the test

environment need to support these changes. By the

micro-kernel approach, a new test adapter is developed

for these changes, and other components of test engine do

not need to be updated.

Service extension: The service oriented architecture

make the kernel easy to integrate new service to fulfill

new test requirements. For example, the time handler can

be developed to supply time service for engine kernel to

support the test engine to cope with time-related test

applications.

Reuse in new application domains: The engine kernel

can be reused in new application domains by developing

new compiling component to support new test language,

new test adapters and resource adapters.

VII. CONCLUSION

In traditional automatic test system solutions, all the

functions of test engine are implemented in the kernel of

engine so that the engine is tightly coupled with test

language and system under test. Especially, this makes

the updating, maintenance and reuse of the test engine

difficult. To solve these problems, a micro-kernel test

engine based on SOA is designed to separate the core

invariant portion from variant portion of test engine.

Instead of developing all the functions in the core of

engine, the micro-kernel test engine introduced in this

paper only provides test process scheduling capabilities in

its kernel, leaving all of the remaining functions out of

the kernel. Based on the idea of SOA, all the functions of

test engine are designed as services. Specific compiling

component compiles the test program to a test process

model which can be executed by engine kernel. This

decouples the coupling between the engine kernel and

test language. Test adapters are responsible for

interacting with SUT. The physical/electrical

characteristics, the identification/ classification, and the

intended platform are all supported by test adapters.

Resource adapters are responsible for the resources

invocation. These two kind adapters make the engine

independent of specific SUT or resource.

Based on the micro-kernel approach, the test engine is

independent of (1) specific test languages; (2) particular

ways of interacting with resources; (3) implementation of

system under test.

The architecture of this micro-kernel test engine gives

an easy way to extend or reuse the engine. Extension of

event type supports new test method or purpose.

Extension of test adapter supports new systems under test

or changes of system under test. Extension of resource

adapter supports new resources. Extension of new service

component supports special test application.

In a word, this micro-kernel approach makes the test

engine easy to be maintained, extended and reused.

Figure 8. DMI of the train

JOURNAL OF COMPUTERS, VOL. 6, NO. 1, JANUARY 2011 9

© 2011 ACADEMY PUBLISHER

ACKNOWLEDGMENT

This work was supported in part by the National Key

Technology R&D Program under Grant 2009BAG12A08,

the R&D Foundation of the Ministry of Railways under

Grant 2009X003 and the Research Foundation of Beijing

National Railway Research and Design Institute of Signal

and Communication.

REFERENCES

[1] P. Lerchbaumer, A. Ochoa and E. Uhlemann, “Test

environment design for wireless vehicle communications,”

Vehicular technology conference, pp.2214-2218. 2007.

[2] Wenli Dong, “Multi-agent test environment for BPEL-

based web service composition,” Cybernetics and

Intelligent Systems, 2008 IEEE Conference, pp.855-860,

2008.

[3] J. L. Amsell, “Enhanced integrated satellite factory test

environment,” AUTOTESTCON 2003, IEEE Systems

Readiness Technology Conference, pp.597-603, 2003.

[4] A. A. Khwaja, “An MFC based multi-threaded test

environment for the validation of an embedded automotive

microcontroller,” Technology of Object-Oriented

Languages and Systems 2000, pp.15 – 24, 2000.

[5] S. J. Youn, Y. J. Byun and et al., “Design and

implementation of software simulation platform for ATM

switching systems,” Proceedings of the 1997 International

Conference on Parallel and Distributed Systems, pp.184-

187, 1997.

[6] P. B. Hansen, “The nucleus of a multiprogramming

system,” Communication of the ACM, Vol.13, Issue 4,

pp.238-241, 1970.

[7] J. Liedtke, “On micro-kernel construction. ACM SIGOPS

Operating Systems Review,” Vol.29, Issue 5, pp.237-250,

1995.

[8] A. Zimmermann, G. Hommel, “Towards modeling and

evaluation of ETCS real-time communication and

operation,” Journal of Systems and Software, Vol.77 Issue

1, pp.47-54, 2005.

[9] ETSI, “Methods for testing and specification (MTS): The

testing and test control notation version 3, Part 1: TTCN-3

core language,” European technological standards Inst.,”

ETSI standard ES 201 873-1, 2007.

[10] J. C. Wang, “Research of TTCN-3 based vehicle on-board

equipment test system of maglev control system,” thesis.

[11] J. C. Okika, A. P. Ravn and et al., “Developing a TTCN3

test harness for legacy software,” Proceedings of the 2006

international workshop on Automation of software test,

pp.104-110, 2006.

[12] X. Z. Xing, L. Zhang, F. Jiang, S. Y. Cheng and X. Jiang,

“Combined symbolic and concrete execution of TTCN-3

for automated testing,” Proceedings of the 2008

International Symposium on Information Science and

Engineering, pp.58-61, 2008.

[13] S. Pakin, “The design and implementation of a domain-

specific language for network performance testing,” IEEE

Transactions on Parallel and Distributed Systems, Vol.18

Issue 10, pp.1436-1449, 2007.

[14] A. H., K. Nagin, “The AGEDIS tools for model based

testing,” ACM SIGSOFT Software Engineering Notes.

Vol.29 Issue 4, pp.129-132, 2004.

[15] A. Hartman, A. Kirshin and K. Nagin, “A test execution

environment running abstract tests for distributed software,

Proceedings of SEA 2002.

[16] T. R. Mitchell, “A standard test language – GOAL,”

Proceedings of the 10th workshop on Design automation,

pp.87-96, 1973.

[17] R. Kapur, M. Lousberg and T. Taylor, “CTL the language

for describing core-based test,” International Test

Conference, pp.131-139, 2001.

[18] N. Wilde, and S. Simmons, “Understanding features in

SOA: some experiences from distributed systems,”

Proceedings of the 2nd international workshop on Systems

development in SOA environments, pp.59-62, 2008.

[19] S. Wang, Y. D. Ji, S. Y Yang, “A Novel Test Process

Modeling Method for Automatic Test,” Proceedings of the

2nd IEEE International Conference on Computer Science

and Information Technology, pp.459-463, 2009.

[20] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design

patterns-elements of reusable object-oriented software,”

Addison-Wesley Publishing, Reading, Mass, 1995.

Shuai Wang was born in Changchun, Jilin Province, China, on

April 3, 1981. He received his B.S. degree in control science

and engineering from Beijing Institute of Technology

University, Beijing, China in 2004. Currently, he is a PH.D

candidate working in fields of control science and engineering

at Tsinghua University. His major research interests include

system test, fault diagnosis and reliability analysis.

Yindong Ji was born in Beijing, China in 1962. He received his

B.S. and M.S. all from the Department of Automation, at

Tsinghua University, in 1985 and 1989, respectively. His main

research areas are digital signal process, fault diagnosis,

modeling & simulations. He is a member of IEEE.

Prof. JI is with the Department of Automation, and Tsinghua

National Laboratory for Information Science and Technology,

Tsinghua University, Beijing, China. He has published over 60

papers in journals. His current research interest is in the area of

train control system of high speed railway.

Shiyuan Yang was born in Shanghai, China, in 1945. He

received his B.S. and M.S degree from Tsinghua University in

1970 and 1981, respectively.

Currently, he is a Professor in automation of department in

Tsinghua University. He is an Associate Director of the FTC

committee, China. His main research interests are home

automation network, test technology, electronic technology

application, system fault diagnosing.

10 JOURNAL OF COMPUTERS, VOL. 6, NO. 1, JANUARY 2011

© 2011 ACADEMY PUBLISHER

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4349648
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4664825
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4664825
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8809
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8809
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=6972
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=6972
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(so%20jeong%20youn%3cIN%3eau)&valnm=So-Jeong+Youn&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20young%20joon%20byun%3cIN%3eau)&valnm=+Young+Joon+Byun&reqloc%20=others&history=yes
javascript:%20showAuthorWorks('P21646','Armin%20Zimmermann')
javascript:%20showAuthorWorks('P735856','Gunter%20Hommel')
http://portal.acm.org/author_page.cfm?id=81100057965&coll=GUIDE&dl=GUIDE&trk=0&CFID=4377978&CFTOKEN=98360299
http://www.agedis.de/

