Security Mediated Certificateless Signatures Without Pairing

Zhongmei Wan
College of Science, Hohai University, Nanjing, 210098, P.R. China
zmeiwan@gmail.com

Jian Weng
Department of Computer Science, Jinan University, Guangzhou 510632, P.R. China
cryptjweng@gmail.com

Jiguo Li
College of Computer and Information Engineering, Hohai University, Nanjing, 210098, P.R. China
lijiguo@hhu.edu.cn

Abstract—Security-mediated certificateless (SMC) signature provides a method for immediate revocation of security capabilities in certificateless signature (CLS). In addition, SMC signature maintains the merits in CLS: implicit certification without key escrow. Unfortunately, most of the existing schemes for CLS and SMC signature are based on bilinear pairing. There are schemes without bilinear pairing such as [1] and [2] which is based on discrete logarithm problem. In this paper, based on the schemes in [2] and [3], we propose another SMC signature scheme without bilinear pairing. Our scheme is existential unforgeable in the random oracle model based on the intractability of the factoring problem. In addition, it is also efficient in signing and verifying.

Index Terms—security mediated, SMC cryptography, ID-based cryptography, certificateless signature, factoring

I. INTRODUCTION

In 1984, Shamir [4] introduced the concept of ID-based cryptography (IBC) where any strings such as email addresses, server names or phone numbers, can be used as public keys. This simplifies certificate management procedures of public key infrastructure (PKI) in traditional public key cryptography. However, an inherent problem of ID-based cryptography is the key escrow problem. To handle this problem, Al-Riyami and Paterson [5] introduced the concept of certificateless public key cryptography (CLPKC) in which the Key Generation Center (KGC) generates a user’s partial private key from the master secret key. The user also independently generates a secret value and the corresponding public key, and a user’s full private key is

This paper was partially supported by the National Natural Science Foundation of China (No. 60903178), the Fundamental Research Funds for the Central Universities (No.2010B09614) and the Foundation of Hohai University (2084/409265).

doi:10.4304/jcp.5.12.1862-1869

a combination of his partial private key and his secret value, in such a way that the key escrow problem can be security capabilities in CLPKC. Chow, Boyd and González Neito [6] introduced in PKC 2006 the notion of SMC cryptography which maintains the merits in CLPKC: implicit certification without key escrow. The notion of SMC cryptography is a generalization of the notion of plain CLPKC.

Since Al-Riyami and Paterson [5] presented the first concrete construction of the certificateless signature (CLS) scheme, a lot of CLS schemes [7-15] based on bilinear pairing [16] have been proposed. Recently, there are CLS schemes without pairing such as [1] and [2] which are pretty efficient. The schemes of [1] and [2] are based on the intractability of the discrete logarithm problem. To avoid putting all our eggs in the same basket, it is common practice in cryptography to try to find alternative constructions of a primitive based on different intractability assumptions. Therefore it is desirable to design a proven secure SMC signature scheme based on factoring.

Our contribution. Based on the schemes in [2] and [3], we present another provable secure SMC signature scheme without bilinear pairing. It is existential unforgeable in the random oracle model. In addition, our scheme is very efficient computationally. Since signing requires only four exponentiations in Z_N^* and verifying requires only three exponentiations in Z_N^*. To the best of our knowledge, this is the first SMC signature scheme based on the intractability of the factoring problem.

The rest of the paper is organized as follows. In section II, we give a brief review of some basic concepts and theorems used in our scheme. In section III we review the formal definition and security model for SMC signature. In section IV, we present our concrete scheme. In section V, we describe the security proof. A conclusion is drawn in section VI.
II. PRELIMINARIES

A. Quadratic Residue

For positive integer N, an integer a is called a quadratic residue modulo N if \(\text{GCD}(a,N) = 1 \) and \(x^2 \equiv a \mod N \) for some integer x, where x is called a square root of a modulo N.

Let N = p q be a composite modulus, where p and q are two large prime numbers, satisfying p = \(2p' + 1 \), q = \(2q' + 1 \), with themselves primes. Let N denote the subgroup of squares in \(Z_N^* \). Then, it is well known that \(Q_N \) is a cyclic group with order p = \((p-1)(q-1)/4 \) [17].

Remark: Following the theorems introduced in [3], a 2\(^{th}\) root s of a could be efficiently computed as \(s = a^{d} \), where \(d \) is computed over modulo p q'. Note, factorization of N must be known, otherwise it is computationally infeasible to calculate the 2\(^{th}\) root.

B. the Hardness Assumption of Factoring

Informally, the factoring problem is stated as follows: given a k-bit composite N, which is a multiple of two large primes p and q, to output p or q. The factoring problem is always assumed to be \((t, \epsilon)\)-hard, in the sense that there is no algorithm that can output p or q with probability over \(\epsilon \) in polynomial time t (with respect to some security parameter k).

III. FRAMEWORK of SECURITY MEDIATED CERTIFICATELESS SIGNATURE

In this section we review the formal definition and security model for security mediated certificateless signature [2].

A. Syntax

Definition 1. A security mediated certificateless signature scheme consists of five tuples of polynomial time algorithms as follows:

1. Setup: is a probabilistic polynomial time (PPT) algorithm, run by a Key Generation Center (KGC), given a security parameter \(1^k \) as input, outputs a randomly chosen master key s and a list of public parameters params.

2. KeyGen: is a PPT algorithm, run by the user, given a list of public parameters params as input, outputs a private key \(s_{k_{ID}} \) and a public key \(PK_{ID} \).

3. Register: is a PPT algorithm that takes as input a list of public parameters params, the master key s, a user identity ID and a public key \(PK_{ID} \). It returns the SEM private signing key \(S_{ID} \).

4. Signing: is an interactive probabilistic protocol between the user and the SEM. Their common inputs include a list of public parameters params, a message m, and a user identity ID. The SEM has an additional input of \(S_{ID} \) to run the sub-algorithm SEM-Sign; while the user has an additional input of \(s_{k_{ID}} \) to run the sub-algorithm User-Sign. The protocol finishes with either a signature \(\sigma \) or \(\perp \) when the SEM refuses to give a valid partial signature, for example in the case where the user’s signing capability has been revoked.

5. Verifying: is a deterministic algorithm that takes as input a list of public parameters params, a message m, a user identity ID, a user public key \(PK_{ID} \) and a signature \(\sigma \). It returns true or false.

B. Security Model

As introduced in [5], we discuss the security notions for a SMC signature scheme according to two kinds of adversaries: a type I adversary \(A_I \) and a type II adversary \(A_{II} \). \(A_I \) acts as a dishonest user. \(A_I \) does not have access to the master key but can replace any users public keys at will. \(A_{II} \) acts as a malicious KGC. \(A_{II} \) has access to the master key but cannot replace any user’s public key. We introduce the model in [2] which is extended based on [5].

Definition 2. A SMC signature scheme is secure against the existential forgery on adaptive chosen message and identity attacks (EUF-CMA) against adversary \(A=(A_I, A_{II}) \) if no polynomial time algorithm A has a non-negligible advantage against a challenger C in the following game:

1. Setup: C as input \(1^k \), runs the Setup algorithm, and gives A the resulting params. The master key is given to A if it is a Type II adversary. A makes the following requests or queries adaptively:

2. SEM-Key Extraction Queries: On input an identity ID, the adversary is returned with \(S_{ID} \) held by SEM for doing the partial signing on behalf of the user. (Note that it is only useful to Type I adversary)

3. Public Key Extraction Queries: On input an identity ID, the adversary obtains user ID’s public key \(PK_{ID} \).

4. Private Key Extraction Queries: On input an identity ID, the adversary gets the user’s private key \(s_{k_{ID}} \). This query is reasonably disallowed if the public key of user ID has already been replaced by the adversary. (In the case of Type I adversary)

5. Public Key Replacement Queries: (For Type I adversary only) On input an identity ID and a valid public key, the public key of user ID is replaced by this new one.

6. SEM-Sign Queries: On input a message m and an identity ID, the adversary is returned with the partial signing result by using \(S_{ID} \).

7. User-Sign Queries: On input a message m and a public key \(PK_{ID} \), the adversary is returned with the partial signing result by using \(s_{k_{ID}} \) even if the public key \(PK_{ID} \) is previously replaced by the (Type I) adversary.

8. Complete-Sign Queries: On input a message m and a public key \(PK_{ID} \), the adversary is returned with the complete signing result by using \(s_{k_{ID}} \) and \(S_{ID} \), even if the user public key \(PK_{ID} \) is previously replaced by the (Type I) adversary.
9. **Forgery**: A outputs $(m^*, ID^*, PK_{ID^*}, \sigma^*)$ such that the following conditions hold:

- (ID^*, m^*) was never appeared in the Complete-Sign queries.
- **Verifying (params, $m^*, ID^*, PK_{ID^*}, S^*)$=1**.
- If it is Type I, ID^* has not been submitted to SEM-Key Extraction Queries. Moreover, (ID^*, m^*) has not been submitted to both SEM-Sign Queries and Complete-Sign Queries.
- If it is Type II, ID^* has not been submitted to Private Key Extraction Queries. Moreover, (ID^*, m^*) has not been submitted to both User-Sign Queries and Complete-Sign Queries.

We define A’s advantage as the probability of winning this game.

IV. CONSTRUCTION OF OUR SCHEME

In this section, we propose a security mediated certificateless signature scheme which is built on quadratic residue. The merit of this approach is that no pairing computation is needed at all. Our scheme is motivated from those in [2] and [3].

1. **Setup**: Given the security parameter (k, l), the KGC performs the following.

 - Generate two random primes p_1, q_1, such that $p_1 = 2p_1' + 1$, $q_1 = 2q_1' + 1$, with p_1', q_1' being primes too, satisfying $2^{k+1} \leq (p_1 - 1)(q_1 - 1)$ and $p_1q_1 < 2^l$, then compute $N_1 = p_1q_1$.
 - Select $a \in \mathbb{Z}_N^*$, such that Jacobi symbol $(a/N_1) = -1$.
 - Compute $d = (N_1 - p_1q_1 + 5)/8$.
 - Select four one-way hash function h_0, h_1, h_2, h_3, satisfying $h_1 : \{0, 1\}^* \rightarrow \mathbb{Z}_N^*$ and $h_0, h_2, h_3 : \{0, 1\}^* \rightarrow \{0, 1\}$.

 The master key of KGC is set to be $\text{msk} = (p_1, q_1, p_1', q_1', a, d)$ and the public parameter of KGC are $\text{params}(N_1, h_0, h_1, h_2, h_3, a, l)$.

2. **KeyGen**: The user performs the following.

 - Generate two random primes p_2, q_2, such that $p_2 = 2p_2' + 1$, $q_2 = 2q_2' + 1$ with p_2', q_2' being primes too, satisfying $2^{k+1} \leq (p_2 - 1)(q_2 - 1)$ and $p_2q_2 < 2^l$, then compute $N_2 = p_2q_2$.
 - Randomly select $x_{ID} \in \mathbb{Z}_N^*$, set $sk_{ID} = (p_2, q_2, p_2', q_2', x_{ID})$ as the user private key.
 - Compute $P_{ID} = x_{ID} mod N_2$, set $PK_{ID}=(N_2, P_{ID})$ as the user public key.

3. **Register**: Now the user ID wants to register a public key, the KGC performs the following:

 - Authenticate and register (ID, PK_{ID}).
 - Compute $c_1 = \begin{cases} 0 & (h_1(ID)/N_1) = 1 \\ 1 & (h_1(ID)/N_1) = -1 \end{cases}$.
 - Compute $h = a^t h_1(ID)$ and $c_2 = \begin{cases} 0 & (h/p_1) = (h/q_1) = 1 \\ 1 & (h/p_1) = (h/q_1) = -1 \end{cases}$.

 Let $H(ID) = (−1)^c a^t h_1(ID)$, then $H(ID) \in Q_{N_1}$.

 - Compute S_{ID} as a $2t$th root of $H(ID)$, $S_{ID} = H(ID)^{d'} mod N_1$.

 Note $S_{ID}^{2^{2t'}} = H(ID) mod N_1$.

 - Send the SEM private key S_{ID}, two tags (c_1, c_2) and the (ID, PK_{ID}) to the SEM over a confidential and authentic channel.

4. **Signing**: Suppose the user ID wants to get the signature of message m, the SEM checks whether ID is revoked; if not, the interaction between the signer and the SEM is as follows:

 - **SEM-Sign(I)**: Chooses $r_u \in \mathbb{Z}_N^*$, computes $R_u = r_u^{2^t} mod N_2$, sends $c_1 = h_{ID} mod N_1$ to the user.
 - **User-Sign(I)**: Chooses $r_u \in \mathbb{Z}_N^*$, computes $R_u = r_u^{2^t} mod N_2$, sends $R_u = r_u^{2^t} mod N_2$, $c_1 = h_{ID} mod N_1$ and sends back (R_u, t_u) to the user.

 - **SEM-Sign(II)**: Computes $R \mod N_1N_2$ by using the Chinese Remainder Theorem such that $R=R_1 mod N_1, R=R_2 mod N_2$, then computes $h_{ID}=h_{ID}(ID, PK_{ID}, R, m||0), t_u = r_u S_{ID}^{h_{ID}} mod N_1$ and sends back (R_u, t_u) to the user.

 - **User-Sign(II)**: Checks if $c_1 = h_{ID}(R_u)$; if they are equal, computes $R \mod N_1N_2$ by using the Chinese Remainder Theorem such that $R=R_1 mod N_1, R=R_2 mod N_2$, then computes $h_{ID}=h_{ID}(ID, PK_{ID}, R, m||1), t_u = r_u S_{ID}^{h_{ID}} mod N_2$. Finally computes $t mod N_1N_2$ by using the Chinese Remainder Theorem such that $t=t_u mod N_1, t=t_u mod N_2$.

 The final signature is $σ=(R, t, c_1, c_2)$.

5. **Verifying**: Given a signature $σ=(R, t, c_1, c_2)$ on a message m, any party could verify the validity by the following operations:

 - Compute $H(ID) = (−1)^c a^t h_1(ID)$, $h_{ID}=h_{ID}(ID, PK_{ID}, R, m||0), h_{ID}=h_{ID}(ID, PK_{ID}, R, m||1)$.
 - Compute $R'_u = t^2 H(ID)^{h_{ID}} mod N_1$, and $R''_u = t^{2t'} H(ID)^{−h_{ID}} mod N_2$, compute $R' mod N_1N_2$ by using the Chinese Remainder Theorem such that $R' = R'_u mod N_1, R' = R''_u mod N_2$.

 - Check whether $R=R'$ mod N_1N_2 holds or not. If the equation holds, output “valid” or, otherwise, output “invalid”.

The correctness of the proposed scheme can be easily verified as follows.
Theorem 1. If the factoring problem is \((t', \epsilon')\)-hard, then our scheme is \((t, \epsilon)\)-existential unforgeable against Type I adversary, satisfying

\[
\epsilon' \geq \frac{1}{2q_h}\left(-\frac{\Delta^2}{q_h} - 2^{-i}\Delta\right), \quad t' = t + O(k^2l + k^3),
\]

where

\[
\Delta = \epsilon - q_s(q_h + q_s + q_s, q_h + q_s + q_s)2^{l - 2k} - (q_s + q_h + 1)^22^{l - 2k} - q_s / 2^{l},
\]

\((k, l)\) are security parameters introduced in section 4. \(q_s\) denotes the number of queries made to the SEM-Sign oracle and User-Sign oracle altogether, \(q_l\) denotes the number of queries made to the oracle public key extraction and private key extraction altogether, \(q_h, q_h, q_h, q_h\) denote the number of queries made to the oracle \(h_0, h_1, h_2, h_3\) respectively.

Proof: Here we follow the idea from the schemes in [2] and [3]. Assume there exists a Type I adversary \(A_1\). We start by describing how an adversary \(A_1\) can be used by a probabilistic polynomial time algorithm \(B\) to solve the factoring problem with probability at least \(\epsilon'\) and in time at most \(t'\).

Now, we will show how to build an algorithm \(B\) that on input of a given instance of factoring problem \(N = p_1 q_1\) for some unknown \(p_1\) and \(q_1\), outputs \(p_1\) or \(q_1\) with non-negligible probability.

Firstly \(B\) chooses \(a \in Z^*_{N_1}\) satisfying Jacobi symbol \((a/N_1) = -1\), chooses a secure parameter \(l \geq 160\), and sends \((N_1, a, l)\) to \(A_1\) as public parameters. \(B\) picks an identity \(ID^*\) at random as the challenged ID in this game. Then, \(B\) responds to \(A_1\)'s queries as follows:

\(h_0\)-Queries: When \(A_1\) queries \(h_0\), \(B\) checks the corresponding \(h_0\)-list and outputs \(c\) if such query has already been made. Otherwise, \(B\) picks \(c \in \{0, 1\}^l\) at random, updates the \(h_0\)-list and outputs \(c\) as answer.

\(h_1\)-Queries: When \(A_1\) queries \(h_1\) on input \(ID\), \(B\) checks the corresponding \(h_1\)-list and outputs \(h_1\) if such value is defined. Otherwise, \(B\) chooses a random number \(s \in Z^*_{N_1}\) and two random bits \((c_1, c_2) \in \{0, 1\}^2\), and returns \(h_1 = s^2 \pmod{N_1}\) as the answer, then adds the entry \((ID, h_1, s, c_1, c_2)\) to the \(h_1\)-list.

\(h_2\)-Queries: When \(A_1\) queries \(h_2\) on input \((ID, PK_{ID}, R, m)||0\), \(B\) checks the corresponding \(h_2\)-list and outputs \(h_2\) if such value is defined. Otherwise, \(B\) picks a random \(h_2 \in \{0, 1\}^l\), returns \(h_2\) as the answer, then adds the entry \((ID, PK_{ID}, R, m)||h_2\) to the \(h_2\)-list.

\(h_3\)-Queries: When \(A_1\) queries \(h_3\) on input \((ID, PK_{ID}, R, m)||1\), \(B\) checks the corresponding \(h_3\)-list and outputs \(h_3\) if such value is defined. Otherwise, \(B\) picks a random \(h_3 \in \{0, 1\}^l\), returns \(h_3\) as the answer, then adds the entry \((ID, PK_{ID}, R, m)||h_3\) to the \(h_3\)-list.

SEM-Key Extraction Queries: For queries on input \(ID\), if \(ID = ID^*\), \(B\) aborts. Otherwise, \(B\) acts as follows:

- If \(ID\) already exists on the \(h_1\)-list in the tuple \((ID, h_1, s, c_1, c_2)\), \(B\) returns \(S_{ID^*}\) as well as \((c_1, c_2)\) as the answer.
- Otherwise, \(B\) adds a new tuple containing \(ID\) in the same way as handling \(h_1\)-query, then returns \(s\) and \((c_1, c_2)\) as the answer.

Public Key Extraction Queries: \(B\) keeps the list List of user public/private key. It first puts the public key \(PK_{ID^*} = (N_2, P_{ID^*})\) of the identity \(ID^*\) into List. Upon receiving a public key extraction query on \(ID\), \(B\) looks up its list List to find out the corresponding entry. If it does not exist, \(B\) runs KeyGen to generate a private and public key pair. It stores the key pair in the list List and returns the public key as the query output.

Private Key Extraction Queries: For queries on input \(ID\), if \(ID = ID^*\), \(B\) aborts. Otherwise, \(B\) looks up the list List to find out the corresponding entry. If it does not exist, \(B\) runs KeyGen to generate a private and public key pair. It stores the key pair in the list List and returns the private key as the query output.

Public Key Replacement Queries: Upon receiving a public key replacement query on \(ID\), \(B\) searches the list List to replace the corresponding entry. If it does not exist, \(B\) creates a new entry for this identity.

SEM-Sign Queries: Upon receiving a query for a SEM signature of \((m, ID, PK_{ID})\), if \(ID = ID^*\), \(B\) can extract the SEM private key and run the algorithm SEM-Sign. Otherwise, \(B\) acts as follows:

- Recover the tuple \((ID^*, h_1, s, c_1, c_2)\) from the list \(h_1\)-list.
- Compute \(H(ID^*) = (-1)^{c_1}a^{c_1}h_1\).
- Pick \(t_s \in Z^*_{N_1}\); \(h_i \in \{0, 1\}^l\) and compute \(R_s = t_s^{2^l}H(ID^*)^{h_i}\).
- Execute \(h_0\) oracle simulation, get \(c = h_0(R_s)\) and send it to \(A_1\).
- After getting \(R_s\) from \(A_1\), compute \(R\) mod \(N_1N_2\), where \(R = R_s\mod N_1\), \(R = R_s\mod N_2\), set \(h_3(ID^*, PK_{ID^*}, R, m)||h_3\) to \(h_3\).
- Send \((R_s, l, c_1, c_2)\) to \(A_1\).

User-Sign Queries: Upon receiving a query for a user signature of \((m, ID, PK_{ID})\), if \(ID = ID^*\), \(B\) can extract the user private key and run the algorithm User-Sign. Otherwise, \(B\) acts as follows:

- An \(l\)-bit commitment \(c\) is obtained from the adversary, which models the first message that SEM should be sent to initiate the User-Sign process.
• Parse $PK_{ID^*} = (N_2, P_{ID^*})$, pick $u \in \mathbb{Z}_{N_2^*}$, $h_u \in \{0, 1\}^l$, and compute $R_u = \frac{u^{1/2}}{P_{ID}^h}$.

• After obtained (R_u, h_u, c_1, c_2), compute $R \mod N_1N_2$, where $R = R_u \mod N_1$, $R = R_u \mod N_2$.

• Search for h_u-list to find R'_u such that $h_u(R'_u) = c$.

• If found, set $h_u(ID^*) = PK_{ID^*}$, $R, m \in \{1\}$ if $h_u = h_u$. If $h_u(R'_u) = c$, but no R'_u can be found or $R'_u \neq R'_u$, stop User-Sign.

• Otherwise, compute $t \mod N_1N_2$, where $t = t_u \mod N_1$, $t = t_u \mod N_2$, return (R, t, c_1, c_2) as an answer.

Complete-Sign Queries: If both the SEM private key and the user private key are available, signing is trivial. If either one of them is unavailable, this request can be simulated faithfully as a combination of the above two simulation.

Forgery: The next step of the simulation is to apply the general forking lemma in [18]: Let (t^*, R^*, c_1, c_2) be a forgery of a signature on a message m with respect to (ID^*, PK_{ID^*}) that is output by A_1 at the end of the attack. If A_1 does not output ID^* as a part of the forgery then B aborts.

B then replays A_1 with the same random tape but different h_2 after the point $(ID^*, PK_{ID^*}, R^*, m^*[0])$. Suppose h_2 outputs h_s and h'_s in the first round and the second round respectively, where $h_s \neq h'_s$. So we get another valid forgery (t', R^*, c'_1, c'_2), i.e.

\[
t' = R^*H(ID^*)^{h_s} \mod N_1;	\]

\[
t' = R^*H(ID^*)^{h'_s} \mod N_1B\] thus gets $H(ID^*)^{h_s} = (t' \mod t)^2 \mod N_1$. Then B can easily compute a square root s' of $H(ID^*)$, setting $w = h_s - h'_s, X = (t' \mod t)^2 \mod N_1$. Now, B searches in the h_1-list to find the entry $<ID, h_1, s, c_1, c_2>$, and if $s' \neq \pm s^{1/2} \mod N_1$, N_1 could be factored. Otherwise, B reports failure. Note, s is some random root of $H(ID^*)$ chosen by B, which is independent of $A_1's$ view. Thus, the probability that $s' \neq \pm s^{1/2} \mod N_1$ is 1/2. Since B has to run A_1 twice, and takes some additional operations to factor N_1, such as exponentiation over modulo N_1, GCD operations for division and factoring N_1, the time B needs to factor N_1 is estimated as $t' = 2t + O(k^2 + k^3)$.

Let ε' be the probability that N_1 could be factored, ε be the probability that A_1 forges a signature in the real attack, and ε^* be the probability that A_1 forges a signature in a single run in our simulation.

In the simulation of SEM-Sign oracle, embedding h_s as the response of h_2 is not possible if A_1 has queried the h_2 value of $(ID, PK_{ID}, R, m[0])$ beforehand. We consider the case that h_2 has previously queried and the case that it was not. In the first case, A_1 probably knows R, and may have deliberately queried such value. However, since t is chosen randomly by B independent of $A_1's$ view, the probability that A_1 made such h_0 query is at most $(q_{h_0} + q^a) / |Q_{N_1}|$. In the second case, the view of A_1 is completely independent of R. The probability that R appeared (by chance) in a previous q_{h_0} query is against at most $(q_{h_0} + q^a) / |Q_{N_1}|$.

The User-Sign query simulation fails if $h_u(R'_u) = c$, but no R'_u can be found or $R'_u \neq R'_u$. For the first case, the probability that A_1 can predict $h_u(R'_u) = c$ without asking the random oracle is at most $q_{h_0} / 2$. For the second case, collision must have occurred and the probability for this is at most $(q_{h_0} + q^a + 1)^2 / |Q_{N_1}|$. We just assume A_1 asked for $h_u(ID, PK_{ID}, R, m[1])$ if R_u was not found since A_1 knew the value of R_u before B.

So in our simulation, the probability of A_1 winning the game is reduced to

\[
e^* \geq \varepsilon' - q_{h_0} + q^* \geq (q_{h_0} + q^a)2^{e-2k} - (q_{h_0} + q^a + 1)2^{e-2k} - q_{h_0}^2\]

Let p_h be the probability that the forgery was based on the h-th h_2-query in a single run. It could be easily calculated that

\[
e^* = \sum_{h=1}^{q_{h_0}+1} p_h\]

Let $p_{h,s}$ be the probability that the forgery was based on the h-th h_2-query in a single run, given a specific string s of length m, which determines the random tape of A_1 and responses to all the queries. Therefore,

\[
2^m p_h = \sum_{s \in \{0,1\}^m} p_{h,s}\]

For a specific string s, the probability that a forgery was based on the h-th h_2-query in both runs is $p_{h,s}(2^m-p_{h,s})$, since the answer of the h-th h_2-query in the second run should be different from the first run. Let p_h be the probability that a forgery was based on the h-th h_2-query in both two runs. Then

\[
p_h = \sum_{s \in \{0,1\}^m} 2^m(p_{h,s} - 2^{-1})\]

\[= 2^m \left(\sum_{s \in \{0,1\}^m} p_{h,s} - 2^{-1} \sum_{s \in \{0,1\}^m} p_{h,s} \right) \geq p_h^2 - 2^{-1} p_h\]

Therefore, the probability that A_1 outputs two forgeries that are based on the same h_2-queries in both runs is estimated as

\[\sum_{h=1}^{q_{h_0}+1} p_h \geq \frac{1}{q_{h_0} + 1} \sum_{h=1}^{q_{h_0}+1} 2^{-1} p_h \geq \frac{\varepsilon^*}{q_{h_0} + 1} - 2^{-1} \varepsilon^*\]

\[\geq \frac{\Delta^2}{q_{h_0} + 1} - 2^{-1} \Delta\]
where
\[\Delta = \varepsilon - q_s(q_h + q_s)2^{3-k} - q_s(q_h + q_s)2^{6-2k} - (q_s + q_h + 1)^2 2^{6-2k} - q_s / 2^t \]

Moreover, outputting two forgeries on the same \(h_2 \) queries means that \(B \) has a probability of \(1/2 \) to factor \(N_1 \). In addition, \(B \) needs to guess which identity \(A_i \) is going to forge the signature. The probability of guessing correctly is \(1/q_h \), so we have \(\varepsilon' \geq \sum_{h=1}^{q_h} P_h / 2q_h \).

Theorem 2. If the factoring problem is \((t', \varepsilon')\)-hard, then our scheme is \((t, \varepsilon)\)-existential unforgeable against Type II adversary, satisfying
\[\varepsilon' \geq \frac{1}{2q_h} (\Delta^2) - 2^{-i \Delta}, t' = t + O(k^2 l + k^3), \]

where
\[\Delta = \varepsilon - (q_s + q_h + 1)^2 2^{6-2k} - q_s / 2^l, \]

\((k, l)\) are security parameters introduced in section 4, \(q_s, q_h, q'_s, q'_h, q_h \) have the same meaning as those in Theorem 1.

Proof: Assume there exists a Type II adversary \(A_{II} \) against our scheme. We are going to construct another PPT algorithm \(B \) that makes use of \(A_{II} \) to solve the factoring problem with probability at least \(\varepsilon' \) and in time at most \(t' \).

Now, we will show how to build an algorithm \(B \) that on input of a given instance of factoring problem \(N_2 = p q_2 \) for some unknown \(p_2 \) and \(q_2 \), outputs \(p_2 \) or \(q_2 \) with non negligible probability.

Firstly, \(B \) generates two random primes \(p_1, q_1 \), such that \(p_2 = 2p_1^* + 1, q_2 = 2q_1^* + 1 \), with \(p_1^*, q_1^* \) being primes too, satisfying \(2^{k'} \leq (p_1 - 1)(q_1 - 1) \) and \(p_1 q_1 < 2^k \); then computes \(N_1 = p q_1 \) and sets \((p_1, q_1, p_1^*, q_1^*) \) as the KGC’s master-key, \(B \) chooses \(a \in_R \mathbb{Z}_N \), satisfying Jacobi symbol \((a/N_1) = -1\), chooses a secure parameter \(\ell \geq 160 \), and sets \((N_1, a, l)\) as public parameters. Finally \(B \) sends public parameters and master-key to \(A_{II} \). Since \(A_{II} \) has access to the master-key, he can do SEM-Extract and SEM-Sign himself, thus the hash function \(h(l) \) is not modelled as a random oracle in this case.

Suppose that \(A_{II} \) can forge a valid signature on message \(m^* \) for identity \(ID^* \) under public key \(PK_{ID^*} \). \(B \) picks a random \(x_{ID^*} \in \mathbb{Z}_N^* \), computes \(P_{ID^*} = x_{ID^*} \mod N_2 \) and sets \(ID^* \)’s public key as \(PK_{ID^*} = (N_2, P_{ID^*}) \).

\(B \) responds to \(A_{II} \)’s queries as follows:
- \(h_0 \)-Queries, \(h_1 \)-Queries, \(h_{-1} \)-Queries: Random oracles for these queries are modeled the same as described in Theorem 1.

Public Key Extraction Queries: Upon receiving a query for a public key of an identity \(ID \), if \(ID = ID^* \), \(B \) randomly picks two random primes \(p_s, q_s \), such that \(p_s = 2p_1^* + 1, q_s = 2q_1^* + 1 \), with \(p_1^*, q_1^* \) being primes too, satisfying \(2^{k'} \leq (p_1^* - 1)(q_1^* - 1) \) and \(p_1 q_1 < 2^k \), then compute \(N_3 = p q_3 \), picks a random \(x_{ID} \in \mathbb{Z}_N^* \), sets \(sk_{ID} = (x_{ID}, p_3, q_3) \) as \(ID \)’s private value, computes \(P_{ID} = x_{ID} \mod N_3 \), returns \(PK_{ID} = (N_3, PK_{ID}) \) as answer and adds the tuple \((ID, sk_{ID}, PK_{ID})\) to K-list which is initially empty. Otherwise, returns \(PK_{ID} = * \).

Private Key Extraction Queries: Upon receiving a query for a private key of an identity \(ID \), if \(ID = ID^* \), \(B \) aborts. Otherwise, \(B \) searches K-list for the entry \((ID, sk_{ID}, PK_{ID})\), generating a new key pair if this does not exist, and returns \(sk_{ID} \).

User-Sign Queries: Note that at any time during the simulation, equipped with those user private keys for any \(ID \neq ID^* \), \(A_{II} \) is able to generate partial signatures on any message \(m \). For \(ID = ID^* \), the simulation is as follows.

- An \(l \)-bit commitment \(c \) is obtained from the adversary, which models the first message that SEM should be sent to initiate the User-Sign process.
- Pick \(t_a \in \mathbb{Z}_N^* \), \(h_a \in \{0, 1\}^l \), and compute \(R_u = \frac{t_a^c}{P_{ID}^{h_a}} \).
- After obtained \((R_u, t_a, c_1, c_2)\), compute \(R \mod N_1 N_2 \); \(R = R_1 \mod N_1 \), \(R = R_2 \mod N_2 \).
- Search for \(h_a \)-list to find \(R_1^* \) such that \(h_a(R_1^*) = c \).
- If found, set \(h(t_a, ID^*, PK_{ID^*}, R, m || 1) = h_u \).
- If \(h_h(R_1^*) = c \), but no \(R_1^* \) can be found or \(R_1^* \neq R_1^* \), stop User-Sign.
- Otherwise, compute \(t \mod N_1 N_2 \), where \(t = t_a \mod N_1 \), \(t = t_a \mod N_2 \), return \((R, t_1, c_1, c_2)\) as an answer.

Complete-Sign Queries: If the user private key is available, signing is trivial. Otherwise, this request can be simulated faithfully similar to above.

Forgery: The next step of the simulation is to apply the general forking lemma in [18]: Let \((t^*, R^*, c_1, c_2)\) be a forgery of a signature on a message \(m^* \) with respect to \((ID^*, PK_{ID^*})\) that is output by \(A_{II} \) at the end of the attack. If \(A_{II} \) does not output \(ID^* \) as a part of the forgery then \(B \) aborts.

\(B \) then replays \(A_{II} \) with the same random tape but different \(h_1 \) after the point \((ID^*, PK_{ID^*}, R^*, m^* || 1)\).

Suppose \(h_0 \) outputs \(h_0 \) and \(h_0' \) in the first round and the second round respectively, where \(h_0 \neq h_0' \). So we get another valid forgery \((t', R^*, c_1, c_2^*)\), i.e.
\[t^* = R \cdot R_1^*, \quad h'_0 = \frac{h_0 - h_0'}{w}, \quad X = (t^* / t')^2. \]
Let ε be the probability that N_2 could be factored, ε be the probability that A_H forges a signature in the real attack, and ε^* be the probability that A_H forges a signature in a single run in our simulation.

The User-Sign query simulation fails if $h_d(R_i)=c$, but no R_i can be found or $R_i \neq R_i'$. For the first case, the probability that A_H can predict $h_d(R_i)=c$ without asking the random oracle is at most $q_s/2^l$. For the second case, collision must have occurred and the probability for this is at most $(q_h + q_s + 1)^2 / |Q_N|$.

So in our simulation, the probability of A_H winning the game is reduced to

$$\varepsilon^* \geq \varepsilon - (q_s + q_h + 1)^2 2^{6-2k} - q_s / 2^l$$

Let p_h be the probability that the forgery was based on the h-th h_1-query in a single run. It could be easily calculated that

$$\varepsilon^* = \sum_{h=1}^{q_h+1} p_h$$

Let $p_{h,s}$ be the probability that the forgery was based on the h-th h_1-query in a single run, given a specific string s of length m, which determines the random tape of A_H and responses to all the queries. Therefore,

$$2^n p_h = \sum_{s \in \{0,1\}^m} p_{h,s}$$

For a specific string s, the probability that a forgery was based on the h-th h_1-query in both two runs is $p_{h,s}$ ($p_{h,s}=2^l$), since the answer of the h-th h_1-query in the second run should be different from the first run. Let P_h be the probability that a forgery was based on the h-th h_1-query in both two runs. Then

$$P_h = \sum_{s \in \{0,1\}^m} 2^{-m} (p_{h,s} - 2^{-l}) = 2^{-m} \left(\sum_{s \in \{0,1\}^m} p_{h,s} - 2^{-l} \sum_{s \in \{0,1\}^m} p_{h,s} \right) \geq p_h^2 - 2^{-l} p_h$$

Therefore, the probability that A_H outputs two forgeries that are based on the same h_1-queries in both runs is estimated as

$$\sum_{h=1}^{q_h+1} P_h \geq \sum_{h=1}^{q_h+1} p_h^2 - \sum_{h=1}^{q_h+1} 2^{-l} p_h \geq \frac{\varepsilon^*}{q_h+1} - 2^{-l} \varepsilon^* \geq \frac{\Delta^2}{q_h+1} - 2^{-l} \Delta$$

where $\Delta = \varepsilon - (q_s + q_h + 1)^2 2^{6-2k} - q_s / 2^l$. Moreover, outputting two forgeries on the same h_1-queries means that B has a probability of $1/2$ to factor N_2. In addition, B needs to guess which identity A_H is going to forge the signature, and assign the problem instance element as the public key of this identity. The probability of guessing correctly is $1/q_h$, so we have $\varepsilon' \geq \sum_{h=1}^{q_h+1} p_h / 2q_h$.

Time complexity analysis is similar to the proof of Type I Adversary.

VI. CONCLUSION

SMC cryptography solves the instantaneous key revocation problem in CLPKC while eliminating key escrow problem inherited in IBC. SMC signature is one of the most important security primitives in SMC cryptography. In this paper, we propose a provable secure SMC signature scheme without bilinear pairing. It is provable secure in the random oracle model based on the intractability of the factoring problem. Our scheme is efficient in the sense that no bilinear pairing is involved.

REFERENCES

-Certificate Public Key Cryptography and Certificateless
Signature / Encryption Scheme in the Standard Model. In
Certificateless Public-Key Signature: Security Model and
Efficient Construction. In Proceedings of ACNS 2006,
LNCS 3989, pp. 293-308. Journal version appeared in
Designs, Codes and Cryptography, 42/2, pp. 109-126,
2007.
certificateless signature. In ACISP 04, pages 200-211.
from the Weil Pairing. Advances in
Cryptology-CRYPTO 2001, Lecture Notes in Computer
[17] V. Shoup. A Computational Introduction to Number
534
[18] M. Bellare and G. Neven. Multi-Signatures in the Plain
Public-Key Model and a General Forking Lemma In

Zhongmei Wan was born in Jiangsu Province, China, on May 4,
1973. She received her Bachelor degree from Yancheng Normal
University, China in 1994. She received her Master degree from
Zhejiang University, China in 2001. She is currently lecturer at
the College of Science, Hohai University, Nanjing, China. Her
major interests are cryptography theory and technology,
cryptography protocol, network and information security.