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Abstract—Security-mediated certificateless (SMC) signature 
provides a method for immediate revocation of security 
capabilities in certificateless signature (CLS). In addition, 
SMC signauture maintains the merits in CLS: implicit 
certification without key escrow. Unfortunately, most of the 
existing schemes for CLS and SMC signature are based on 
bilinear pairing. There are schemes without bilinear pairing 
such as [1] and [2] which is based on discrete logarithm 
problem. In this paper, based on the schemes in [2] and [3], 
we propose another SMC signature scheme without bilinear 
pairing. Our scheme is existential unforgeable in the 
random oracle model based on the intractability of the 
factoring problem. In addition, it is also efficient in signing 
and verifying.  
 
Index Terms—security mediated, SMC cryptography, 
ID-based cryptography, certificateless signature, factoring 
 
 

I.  INTRODUCTION 

In 1984, Shamir [4] introduced the concept of 
ID-based cryptography (IBC) where any strings such as 
email addresses, server names or phone numbers, can be 
used as public keys. This simplifies certificate 
management procedures of public key infrastructure (PKI) 
in traditional public key cryptography. However, an 
inherent problem of ID-based cryptography is the key 
escrow problem. To handle this problem, Al-Riyami and 
Paterson [5] introduced the concept of certificateless 
public key cryptography (CLPKC) in which the Key 
Generation Center (KGC) generates a user’s partial 
private key from the master secret key. The user also 
independently generates a secret value and the 
corresponding public key, and a user’s full private key is  
 
 
solved. To provide a method for immediate revocation of  

a combination of his partial private key and his secret 
value, in such a way that the key escrow problem can be 
security capabilities in CLPKC, Chow, Boyd and 
González Neito [6] introduced in PKC 2006 the notion of 
SMC cryptography which maintains the merits in CLPKC: 
implicit certification without key escrow. The notion of 
SMC cryptography is a generalization of the notion of 
plain CLPKC. 

Since Al-Riyami and Paterson [5] presented the first 
concrete construction of the certificateless signature (CLS) 
scheme, a lot of CLS schemes [7-15] based on bilinear 
pairing [16] have been proposed. Recently, there are CLS 
schemes without pairing such as [1] and [2] which are 
pretty efficient. The schemes of [1] and [2] are based on 
the intractability of the discrete logarithm problem. To 
avoid putting all our eggs in the same basket, it is 
common practice in cryptography to try to find 
alternative constructions of a primitive based on different 
intractability assumptions. Therefore it is desirable to 
design a proven secure SMC signature scheme based on 
factoring. 

Our contribution. Based on the schemes in [2] and [3], 
we present another provable secure SMC signature 
scheme without bilinear pairing. It is existential 
unforgeable in the random oracle model. In addition, our 
scheme is very efficient computationally.  Since signing 
requires only four exponentiations in *

NZ  and verifying 

requires only three exponentiations in *
NZ . To the best 

of our knowledge, this is the first SMC signature scheme 
based on the intractability of the factoring problem. 

The rest of the paper is organized as follows. In section 
II, we give a brief review of some basic concepts and 
theorems used in our scheme. In section III we review the 
formal definition and security model for SMC signature. 
In section IV, we present our concrete scheme. In section 
V, we describe the security proof. A conclusion is drawn 
in section VI. 
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II.  PRELIMINARIES 

A.  Quadratic Residue 
For positive integer N, an integer a is called a quadratic 

residue modulo N if GCD(a,N ) = 1 and x2=a mod N for 
some integer a, where x is called a square root of a 
modulo N.   

Let N = p q be a composite modulus, where p and q are 
two large prime numbers, satisfying p=2p′+1, q=2q′+1, 
with themselves primes. Let N denote the subgroup of 
squares in *

NZ . Then, it is well known that QN is a cyclic 
group with order φ(N)/4 = (p−1)(q−1)/4 [17]. 

Remark: Following the theorems introduced in [3], a 
2lth root s of a could be efficiently computed as ,

lds a=  
where dl is computed over modulo p′q′. Note, 
factorization of N must be known, otherwise it is 
computationally infeasible to calculate the 2lth root. 

  

B. the Hardness Assumption of Factoring 
Informally, the factoring problem is stated as follows: 

given a k-bit composite N, which is a multiple of two 
large primes p and q, to output p or q. The factoring 
problem is always assumed to be (t, ε)-hard, in the sense 
that there is no algorithm that can output p or q with 
probability over ε in polynomial time t (with respect to 
some security parameter k). 

Ⅲ.  FRAMEWORK of SECURITY MEDIATED 
CERTIFICATELESS SIGNATURE 

In this section we review the formal definition and 
security model for security mediated certificateless 
signature [2]. 

A.  Synatax 
Definition 1. A security mediated certificateless 

signature scheme consists of five tuples of polynomial 
time algorithms as follows: 

1.  Setup: is a probabilistic polynomial time (PPT)        
algorithm, run by a Key Generation Center (KGC),    
given a security parameter 1k as input, outputs a 
randomly chosen master key s and a list of public 
parameters params. 

2.  KeyGen: is a PPT algorithm, run by the user, 
given a list of public parameters params as input, 
outputs a private key skID and a public key PKID. 

3.  Register: is a PPT algorithm that takes as input a 
list of public parameters params, the master key s, 
a user identity ID and a public key PKID. It returns 
the SEM private signing key SID. 

4.  Signing: is an interactive probabilistic protocol 
between the user and the SEM. Their common 
inputs include a list of public parameters params, 
a message m, and a user identity ID. The SEM has 
an additional input of SID to run the sub-algorithm 
SEM-Sign; while the user has an additional input 
of skID to run the sub-algorithm User-Sign. The 
protocol finishes with either a signature σ or ⊥ 
when the SEM refuses to give a valid partial 

signature, for example in the case where the user’s 
signing capability has been revoked. 

5.  Verifying: is a deterministic algorithm that takes 
as input a list of public parameters params, a 
message m, a user identity ID, a user public key 
PKID and a signature σ. It returns true or false. 

B.  Security Model 
  As introduced in [5], we discuss the security notions 
for a SMC signature scheme according to two kinds of 
adversaries: a type I adversary AI and a type II adversary 
AII . AI  acts as a dishonest user. AI  does not have access 
to the master key but can replace any users public keys at 
will. AII acts as a malicious KGC. AII has access to the 
master key but cannot replace any user’s public key. We 
introduce the model in [2] which is extended based on 
[5]. 

 Definition 2 A SMC signature scheme is secure 
against the existential forgery on adaptive chosen 
message and identity attacks (EUF-CMIA) against 
adversary A=(AI, AII ) if no polynomial time algorithm A 
has a non-negligible advantage against a challenger C in 
the following game: 

1. Setup: C takes as input 1k, runs the Setup 
algorithm, and gives A the resulting params. The 
master key is given to A if it is a Type II 
adversary. 
A makes the following requests or queries 
adaptively: 

2.  SEM-Key Extraction Queries:  On input an 
identity ID, the adversary is returned with SID 
held by SEM for doing the partial signing on 
behalf of the user. (Note that it is only useful to 
Type I adversary) 

3.  Public Key Extraction Queries: On input an 
identity ID, the adversary obtains user ID’s 
public key PKID. 

4.  Private Key Extraction Queries: On input an 
identity ID, the adversary gets the user’s private 
key skID. This query is reasonably disallowed if 
the public key of user ID has already been 
replaced by the adversary. (In the case of Type I 
adversary). 

5.  Public Key Replacement Queries: (For Type I 
adversary only) On input an identity ID and a 
valid public key, the public key of user ID is 
replaced by this new one. 

  6.  SEM-Sign Queries:  On input a message m 
and an identity ID, the adversary is returned with 
the partial signing result by using SID. 

7.  User-Sign Queries:  On input a message m 
and a public key PKID, the adversary is returned 
with the partial signing result by using skID, even 
if the public key PKID  is previously replaced by 
the (Type I) adversary. 

 8.  Complete-Sign Queries:  On input a message 
m and a public key PKID, the adversary is 
returned with the complete signing result by 
using skID and SID, even if the user public key 
PKID is previously replaced by the (Type I) 
adversary. 
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9.  Forgery: A outputs (m*, ID*, PKID*, σ*) such 
that the following conditions hold: 

• (ID*, m*) was never appeared in the 
Complete-Sign queries. 

• Verifying (params, )=1. **, *, , *IDm ID PK S
• If it is Type I, ID * has not been submitted to 

SEM-Key Extraction Queries.  Moreover, 
(ID*, m*) has not been submitted to both 
SEM-Sign Queries and Complete-Sign 
Queries. 

•  If it is Type II, ID* has not been submitted to   
Private Key Extraction Queries. Moreover, 
(ID*, m*) has not been submitted to both 
User-Sign Queries and Complete-Sign 
Queries. 

We define A’s advantage as the probability of winning 
this game. 

IV. CONSTRUCTION of OUR SCHEME 

In this section, we propose a security mediated 
certificateless signature scheme which is built on 
quadratic residue. The merit of this approach is that no 
pairing computation is needed at all. Our scheme is 
motivated from those in [2] and [3]. 

1.  Setup: Given the security parameter (k, l), the 
KGC performs the following. 

•   Generate two random primes p1, q1, such that   
 with being 

primes too, satisfying 2
1 12 1p p′= + , ,

1

1 12 1q q′= + 1 1,p q′ ′
k-1≤(p1−1)(q1−1) and 

p1q1<2k, then compute N1= p1q1. 
•  Select such that Jacobi symbol  

(a/N
1

* ,R Na Z∈

1)= −1. 
•  Compute d=(N1−p1−q1+5)/8. 
•  Select four one-way hash function h0, h1, h2, h3,           

satisfying and h
   

1

*
1 :{0,1}* Nh Z→ 0, h2, h3: {0, 

1}*→ {0, 1}l. 
The master key of KGC is set to be 

 and the public parameter 
of KGC are params=( N

1 1 1 1( , , , , )msk p q p q d′ ′=
1, h0(), h1(), h2(), h3(), a, l ). 

2.  KeyGen: The user performs the following. 
•  Generate two random primes p2, q2, such that 

2 2 2 22 1, 2p p q q′ ′= + = + witt  being 
primes too, satisfying 2

2 2,p q′ ′
k-1≤(p2−1)(q2−1) and 

p2q2<2k, then compute N2= p2 q2
. . 

•  Randomly select 
2

* ,ID Nx Z∈  set    

2 2 2 2( , , , , )ID IDsk p q p q x′ ′=  as the user private 
key. 

•  Compute 2
2mod ,

l

ID IDP x= N

−

, .

 set PKID=(N2, PID)   
as the user public key. 

3.   Register: Now the user ID wants to register a  
public key, the KGC performs the following: 

•   Authenticate and register (ID, PKID).  

• Compute . 1 1
1

1 1

0 ( ( ) / ) 1
1 ( ( ) / ) 1

h ID N
c

h ID N
=⎧

= ⎨ = −⎩
• Compute  and 1

1( )ch a h ID=

1 1
2

1 1

0 ( / ) ( / ) 1
1 ( / ) ( / ) 1

h p h q
c

h p h q
= =⎧

= ⎨ = =⎩
. 

Let then2 1
1( ) ( 1) ( )c cH ID a h ID= −

1
( ) NH ID Q∈   

• Compute SID as a 2lth root of H(ID),    
 1( ) mod

ld
IDS H ID N= .

Note  2
1( ) mod

l

ID
S H ID N=

• Send the SEM private key SID, two tags (c1, c2) 
and the (ID, PKID) to the SEM over a 
confidential and authentic channel. 

4.  Signing: Suppose the user ID wants to get the 
signature of message m, the SEM checks 
whether ID is revoked; if not, the interaction 
between the signer and the SEM is as follows: 

• SEM-Sign(I): Chooses 
1

* ,s R Nr Z∈ computes  
2

1mod ,
l

s sR r= N   sends cs=h0(Rs) to the user. 

• User-Sign(I): Chooses computes     
2

* ,u R Nr Z∈
2

2mod ,
l

u uR r N=  sends Ru to the SEM. 
• SEM-Sign(II):  Computes R mod N1N2 by    

using the Chinese Remainder Theorem such that 
R=Rs mod N1, R=Ru mod N2, then computes 
hs=h2(ID, PKID, R, m||0),  
and sends back (R

1modsh
s s IDt r S N=

s, ts) to the user. 
• User-Sign(II):  Checks if cs=h0(Rs); if they are 

equal, computes R mod N1N2 by using the 
Chinese Remainder Theorem such that R=Rs 
mod N1, R=Ru mod N2, then computes hu=h3(ID, 
PKID, R, m||1), , finally 
computes  t mod N

2moduh
u u IDt r x N=

1N2 by using the Chinese 
Remainder Theorem such that  t=ts mod N1, 
t=tu mod N2. 
The final signature is σ=(R, t, c1, c2). 

5.  Verifying: Given a signature σ=(R, t, c1, c2) on a 
message m, any party could verify the validity 
by the following operations: 

• Compute h2 1
1( ) ( 1) ( )c cH ID a h ID= − , s=h2(ID, 

PKID, R, m||0), hu=h3(ID, PKID, R, m||1). 
• Compute 2

1( ) mod ,
l

sh
sR t H ID N−′ =  and 

2
2( ) mod ,

l
uh

uR t H ID N−′ =  compute R’ mod 
N1N2 by using the Chinese Remainder Theorem 
such that 1 2' mod , ' mods u .R R N R R N′ ′= =  

• Check whether R=R′ mod N1N2 holds or not. If  
the equation holds, output “valid’’, otherwise, 
output  “invalid”.  

The correctness of the proposed scheme can be easily 
verified as follows. 
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22 2 2
1' ( ) mo

ll l l
s sh h

s s ID s sR R t H ID t S r R R N− −′= = = = = = d

d
 

 

22 2 2
2' ( ) mo

ll l l
u uh h

u u ID u uR R t H ID t S r R R N− −′= = = = = =

V. SECURITY ANALYSIS 

Theorem 1. If the factoring problem is (t’, ε’)-hard, 
then our scheme is (t, ε)-existential unforgeable against 
Type I adversary,satisfying 

1 2

2
2 31 ( 2 ), (

2 1
l

h h

t t O k l k
q q

ε −Δ′ ′≥ − Δ = +
+

),+

2

 

where 

0 2

0

3 6

2 6 2

( )2 ( )2

( 1) 2 / 2 ,

k k
s h s s h s

k l
s h s

q q q q q q

q q q

ε − −

−

Δ = − + − +

− + + −
 

(k, l) are security parameters introduced in section 4, qs 
denotes the number of queries made to the SEM-Sign 
oracle and User-Sign oracle altogether, qk denotes the 
number of queries made to the oracle public key 
extraction and private key extraction altogether, 

denote the number of queries made to the 
oracle h

0 1 2 3
, , ,h h h hq q q q

0, h1, h2, and h3  respectively. 

Proof: Here we follow the idea from the schemes in [2] 
and [3]. Assume there exists a Type I adversary AI . We 
start by describing how an adversary AI can be used by a 
probabilistic polynomial time algorithm B to solve the 
factoring problem with probability at least ε′ and in time 
at most t′.  

Now, we will show how to build an algorithm B that 
on input of a given instance of factoring problem N1= p1 
q1 for some unknown p1 and q1, outputs p1or q1 with non 
negligible probability. 

Firstly B chooses satisfying Jacobi symbol (a/ 
N

1

*
Na Z∈

1)= −1, chooses a secure parameter l≥160, and sends 
( N1, a, l ) to AI as public parameters. B picks an identity 
ID* at random as the challenged ID in this game. Then, B 
responds to AI ’s queries as follows: 

h0-Queries: When AI queries h0, B checks the 
corresponding h0-list and outputs c if such query has 
already been made. Otherwise, B picks c∈{0, 1}l at 
random, updates the h0-list and outputs c as answer. 

h1-Queries: When AI  queries h1 on input ID, B checks 
the corresponding h1-list and outputs h1 if such value is 
defined. Otherwise, B chooses a random number 

1

*
Ns Z∈  and two random bits (c1, c2)∈{0, 1}2, and 

returns 
2 1

2

1 mod
( 1)

l

c c
sh

a
=

− 1N

*

as the answer, then adds 

the entry (ID, h1, s, c1, c2) to the h1-list. 
h2-Queries:  When AI  queries h2 on input (ID, PKID, 

R, m||0), B checks the corresponding h2-list and outputs hs 

if such value is defined. Otherwise, B picks a random 
hs∈{0, 1}l, returns hs as the answer, then adds the entry  
(ID, PKID, R, m||0, hs) to the h2-list. 

h3-Queries: When  AI  queries h3 on input (ID, PKID, 
R, m||1), B checks the corresponding h3-list and outputs hu 
if such value is defined. Otherwise, B picks a random hu 
∈{0, 1}l, returns hu as the answer, then adds the entry (ID, 
PKID , R, m||1, hu) to the h3-list. 

SEM-Key Extraction Queries:  For queries on input 
ID, if ID= ID*, B aborts. Otherwise, B acts as follows: 

if ID already exists on the h1-list in the tuple (ID, h1, s, 
c1, c2), B returns SID=s, as well as ( c1, c2) as the answer. 
Otherwise, B adds a new tuple containing ID in the same 
way as handling h1-query, then returns s and ( c1, c2) as 
the answer. 

Public Key Extraction Queries:  B keeps the list 
List of user public/private key. It first puts the public 
key * 2( , )ID IDPK N P=  of the identity ID* into List. 
Upon receiving a public key extraction query on ID. B 
looks up its list List to find out the corresponding entry.  
If it does not exist, B runs KeyGen to generate a private 
and public key pair. It stores the key pair in the list List 
and returns the public key as the query output. 

Private Key Extraction Queries:  For queries on 
input ID, if ID=ID*, B aborts. Otherwise, B looks up the 
list List to find out the corresponding entry. If it does not 
exist, B runs KeyGen to generate a private and public key 
pair. It stores the key pair in the list List and returns the 
private key as the query output. 

Public Key Replacement Queries:  Upon receiving 
a public key replacement query on ID, B searches the list 
List to replace the corresponding entry. If it does not exist, 
B creates a new entry for this identity. 

SEM-Sign Queries: Upon receiving a query for a 
SEM signature of (m, ID, PKID). if ID≠ID*, B can extract 
the SEM private key and run the algorithm SEM-Sign. 
Otherwise, B acts as follows: 
• Recover the tuple (ID*, h1, s, c1, c2) from the list 

h1-list. 
• Compute . 2 1

1( *) ( 1)c cH ID a h= −

• Pick
1

* ,s Nt Z∈ hs∈{0,1}l and compute       
2

( *)

l

s

s
s h

tR
H ID

=   

• Execute h0 oracle simulation, get c = h0(Rs) and send 
it to AI. 

• After getting Ru from AI,  compute R mod N1N2, 
where R=Rs mod N1, R=Ru mod N2, set h2(ID*, PKID*, 
R, m||0)=hs. 

• Send ( Rs, ts, c1, c2) to AI. 
User-Sign Queries: Upon receiving a query for a user 

signature of (m, ID, PKID). if ID≠ID*, B can extract the 
user private key and run the algorithm User-Sign. 
Otherwise, B acts as follows: 
• An l-bit commitment c is obtained from the 

adversary, which models the first message that SEM 
should be sent to initiate the User-Sign process. 
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• Parse , pick  h* 2 *( , )ID IDPK N P=
2

* ,u Nt Z∈ u∈{0, 

1}l, and compute
2

*

l

u

u
u h

ID

tR
P

= . 

• After obtained (Rs, ts, c1, c2), compute R mod N1N2, 
where R=Rs mod N1, R=Ru mod N2. 

• Search for h0-list to find sR′ such that 0 ( )sh R c′ = . 
• If found, set h3(ID*, PKID*, R, m||1)=hu. 
• If h0(Rs)=c, but no sR′ can be found or s sR R′≠ , stop 

User-Sign. 
• Otherwise, compute t mod N1N2, where t=ts mod N1, 

t=tu mod N2, return ( R, t, c1, c2) as an answer. 
Complete-Sign Queries: If both the SEM private key 

and the user private key are available, signing is trivial. If 
either one of them is unavailable, this request can be 
simulated faithfully as a combination of the above two 
simulation. 

Forgery: The next step of the simulation is to apply 
the general forking lemma in [18]: Let  
be a forgery of a signature on a message m* with respect 
to (ID*, PK

* *
1 2( *, *, , )t R c c

ID*) that is output by AI at the end of the attack. 
If AI does not output ID* as a part of the forgery then B 
aborts. 

B then replays AI with the same random tape but 
different h2 after the point (ID*, PKID*, R*, m*||0). 
Suppose h2 outputs hs and sh′  in the first round and the 
second round respectively, where s sh h′≠ . So we get 

another valid forgery , i.e. * *
1 2( , *, , )t R c c′

2
1

2
1

* * ( *) mod

* ( *) mod

l
s

l
s

h

h

t R H ID N

t R H ID N′

=

′ =

;

.

 

B thus gets  Then B 
can easily compute a square root s′ of H(ID*), setting 
a=H(ID*),  Now, B 
searches in the h

2
1( *) ( * / ) mod .

l
s sh hH ID t t N′− ′=

2
1, ( * / ') mod

l

s sw h h X t t N′= − =
1-list to find the entry <ID, h1, s, c1, c2>, 

and if 
12

1mod
l

s s
−

′ ≠ ± N , N1 could be factored. 
Otherwise, B reports failure. Note, s was some random 2l 
root of H(ID*) chosen by B, which is independent of AI’s 
view. Thus, the probability that 

12
1od

l

s s m N
−

′ ≠ ±  is 
1/2. Since B has to run AI twice, and takes some 
additional operations to factor N1, such as 
exponentiations over modulo N1, GCD operations for 
division and factoring N1, the time B needs to factor N1 is 
estimated as . 2 32 (t t O k l k′ = + + )

1
| .

Let ε' be the probability that N1 could be factored, ε be 
the probability that AI  forges a signature in the real 
attack, and ε* be the probability that AI  forges a 
signature in a single run in our simulation. 

In the simulation of SEM-Sign oracle, embedding hs as 
the response of h2 is not possible if AI has queried the h2 
value of (ID, PKID, R, m||0) beforehand. We consider the 
case that h2 has previously queried and the case that it 
was not. In the first case, AI probably knows Rs and may 

have deliberately queried such value. However, since ts is 
chosen randomly by B independent of AI’s view, the 
probability that AI made such h0 query is at most 

0
( )/ |h s Nq q Q+  In the second case, the view of AI is 
completely independent of Rs. The probability that R 
appeared (by chance) in a previous query is against 

at most 
2hq

2 1
( )/ |h s N Nq q Q

2
|+ . 

The User-Sign query simulation fails if h0(Rs)=c, but 
no sR′  can be found or s sR R′≠ . For the first case, the 
probability that AI can predict h0(Rs)=c without asking the 
random oracle is at most qs/2l. For the second case, 
collision must have occurred and the probability for this 
is at most  We just assume A

0

2( 1) / |h s Nq q Q+ +
1

| .

2

I 
asked for h3(ID, PKID , R, m||1) if Rs was not found since 
AI knew the value of Rs before B. 

So in our simulation, the probability of AI winning the 
game is reduced to 

0 2

0

3 6

2 6 2

* ( )2 ( )2

( 1) 2 / 2

k k
s h s s h s

k l
s h s

q q q q q q

q q q

ε ε − −

−

≥ − + − +

− + + −
 

Let ph be the probability that the forgery was based on 
the h-th h2-query in a single run. It could be easily 
calculated that  

2 1

1
*

hq

h
h

pε
+

=

= ∑  

Let ph,s be the probability that the forgery was based on 
the h-th h2-query in a single run, given a specific string s 
of length m, which determines the random tape of AI and 
responses to all the queries. Therefore, 

,
{0,1}

2
m

m
h h

s
sp p

∈

= ∑  

For a specific string s, the probability that a forgery 
was based on the h-th h2-query in both two runs is ph,s 
(ph,s-2l), since the answer of the h-th h2-query in the 
second run should be different from the first run. Let Ph 
be the probability that a forgery was based on the h-th 
h2-query in both two runs. Then 

,
{0,1}

2 2
, ,

{0,1} {0,1}

2 ( 2 )

2 ( 2 ) 2

m

m m

m l
h h s

s

m l
h s h s h h

s s

P p

lp p p p

− −

∈

− −

∈ ∈

= −

= − ≥ − −

∑

∑ ∑
 

Therefore, the probability that AI outputs two forgeries 
that are based on the same h2-queries in both runs is 
estimated as 

2 2 2

2

2

1 1 1 2
2

1 1 1

2

*2 2
1

2
1

h h hq q q
l l

h h h
h h h h

l

h

P p p
q

q

ε *ε
+ + +

− −

= = =

−

≥ − ≥ −
+

Δ
≥ − Δ

+

∑ ∑ ∑
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where 

0 2

0

3 6

2 6 2

( )2 ( )2

( 1) 2 / 2

k
s h s s h s

k l
s h s

q q q q q q

q q q

ε −

−

Δ = − + − +

− + + −

2k−

 

Moreover, outputting two forgeries on the same 
h2-queries means that B has a probability of 1/2 to factor 
N1. In addition, B needs to guess which identity AI is 
going to forge the signature. The probability of guessing 

correctly is 1/  so we have  
1
,hq

2

1

1

1
/ 2 .

hq

h h
h

P qε
+

=

′ ≥ ∑

Theorem 2. If the factoring problem is (t′, ε′)-hard, 
then our scheme is (t, ε)-existential unforgeable against 
Type II adversary,satisfying 

3

2
2 31 ( 2 ), (

2 1
l

k h

t t O k l k
q q

ε −Δ′ ′≥ − Δ = +
+

),+

/ 2 ,

3

 

where 

0

2 6 2( 1) 2 k l
s h sq q qε −Δ = − + + −  

(k, l) are security parameters introduced in section 4, 

0 2
, , , ,s k h h hq q q q q have the same meaning as those in 

Theorem 1. 

Proof: Assume there exists a Type II adversary AII 
against our scheme. We are going to construct another 
PPT algorithm B that makes use of AII to solve the 
factoring problem with probability at least ε' and in time 
at most t'. 
  Now, we will show how to build an algorithm B that 
on input of a given instance of factoring problem N2= 
p2q2 for some unknown p2 and q2, outputs p2 or q2 with 
non negligible probability. 
  Firstly, B generates two random primes p1, q1, such 
that with being primes 
too, satisfying 2

1 12 1, 1 12 1q q′= +p p′= + , 1 1,p q′ ′
k-1≤(p1−1)(q1−1) and p1q1<2k, then 

computes N1= p1q1 and sets  as the 

KGC’s master-key, B chooses satisfying 
Jacobi symbol (a/N

1 1 1 1( , , , )p q p q′ ′

1

* ,R Na Z∈

1)=−1, chooses a secure parameter 
l≥160, and sets (N1, a, l) as public parameters. Finally B 
sends public parameters and master-key to AII. Since AII 
has access to the master-key, he can do SEM-Extract and 
SEM-Sign himself, thus the hash function h1() is not 
modelled as a random oracle in this case. 
  Suppose that AII can forge a valid signature on message 
m* for identity ID* under public key PKID*. B picks a 
random 

2

*
* ,ID Nx Z∈ computes 2

* * mod
l

ID ID 2P x N= and 
sets ID*’s public key as PKID*=(N2, PID*). 

B responds to AII’s queries as follows: 
h0-Qeries, h2-Queries, h3-Queries:  Random oracles 

for these queries are modeled the same as described in 
Theorem 1. 

Public Key Extraction Queries: Upon receiving a 
query for a public key of an identity ID, if ID≠ID*, B 
randomly picks two random primes p3, q3, such that 

3 3 3 32 1, 2p p q q 1,′ ′= + = +  with being primes too, 
satisfying  2

3 3,p q′ ′
k-1≤(p3−1)(q3−1) and p3q3<2k, then compute 

N3= p3q3, picks a random
3

* ,ID Nx Z∈  sets skID=(xID, p3, q3) 

as ID’s private value, computes 2
3mod ,

l

ID IDP x N=  
returns PKID=(N3, PID) as answer and adds the tuple (ID, 
skID, PKID) to K-list which is initially empty. Otherwise, 
returns PKID* . 

Private Key Extraction Queries: Upon receiving a 
query for a private key of an identity ID, if ID = ID*, B 
aborts. Otherwise, B searches K-list for the entry ( ID, 
skID, PKID), generating a new key pair if this does not 
exist, and returns skID . 

User-Sign Queries: Note that at any time during the 
simulation, equipped with those user private keys for any 
ID≠ID*, AII is able to generate partial signatures on any 
message m. For ID= ID*, the simulation is as follows. 
• An l-bit commitment c is obtained from the 

adversary, which models the first message that SEM 
should be sent to initiate the User-Sign process. 

• Pick  h
2

* ,u Nt Z∈ u∈{0, 1}l, and compute
2

*

l

u

u
u h

ID

tR
P

= . 

• After obtained (Rs, ts, c1, c2), compute R mod N1N2, 
where R=Rs mod N1, R=Ru mod N2. 

• Search for h0-list to find sR′ such that 0 ( )sh R c′ = . 
• If found, set h3(ID*, PKID*, R, m||1)=hu. 
• If h0(Rs)=c, but no sR′ can be found or s sR R′≠ , stop 

User-Sign. 
• Otherwise, compute t mod N1N2, where t=ts mod N1, 

t=tu mod N2, return ( R, t, c1, c2) as an answer. 
Complete-Sign Queries: If the user private key is 

available, signing is trivial. Otherwise, this request can be 
simulated faithfully similar to above. 

Forgery: The next step of the simulation is to apply 
the general forking lemma in [18]: Let  
be a forgery of a signature on a message m* with respect 
to (ID*, PK

* *
1 2( *, *, , )t R c c

ID*) that is output by AII at the end of the 
attack. If AII does not output ID* as a part of the forgery 
then B aborts. 

B then replays AII with the same random tape but 
different h3 after the point (ID*, PKID*, R*, m*||1). 
Suppose h3 outputs hu and  in the first round and the 
second round respectively, where . So we get 

another valid forgery , i.e. 

uh′

uh h′≠ u

;

* *
1 2( , *, , )t R c c′

2
* 2

2
* 2

* * mod

* mod

l
u

l
u

h
ID

h
ID

t R P N

t R P N′

=

′ =
 

  B thus gets 2
* 2( * / ') mod .

l
u uh h

IDP t t N′− =  By applying 
Theorem 2, B can easily compute a square root s′ of PID* ,  
a=PID*, uw h hu′= −  and 2( * / ) .

l

X t t′=  
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Let ε' be the probability that N2 could be factored, ε be 
the probability that AII  forges a signature in the real 
attack, and ε* be the probability that AII  forges a 
signature in a single run in our simulation. 

The User-Sign query simulation fails if h0(Rs)=c, but 
no sR′  can be found or s sR R′≠ . For the first case, the 
probability that AII can predict h0(Rs)=c without asking 
the random oracle is at most qs/2l. For the second case, 
collision must have occurred and the probability for this 
is at most  

0 1

2( 1) / |h s Nq q Q+ + | .

2

So in our simulation, the probability of AII winning the 
game is reduced to 

0

2 6 2* ( 1) 2 /k l
s h sq q qε ε −≥ − + + −  

Let ph be the probability that the forgery was based on 
the h-th h3-query in a single run. It could be easily 
calculated that  

3
1

1
*

hq

h
h

pε
+

=

= ∑  

Let ph,s be the probability that the forgery was based on 
the h-th h3-query in a single run, given a specific string s 
of length m, which determines the random tape of AII and 
responses to all the queries. Therefore, 

,
{0,1}

2
m

m
h h

s
sp p

∈

= ∑  

For a specific string s, the probability that a forgery 
was based on the h-th h3-query in both two runs is ph,s 
(ph,s−2l), since the answer of the h-th h3-query in the 
second run should be different from the first run. Let Ph 
be the probability that a forgery was based on the h-th 
h3-query in both two runs. Then 

,
{0,1}

2
, ,

{0,1} {0,1}

2 ( 2 )

2 ( 2 ) 2

m

m m

m l
h h s

s

m l
h s h s h h

s s

P p

2 lp p p p

− −

∈

− −

∈ ∈

= −

= − ≥ −

∑
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Therefore, the probability that AII outputs two forgeries 
that are based on the same h3-queries in both runs is 
estimated as 

3 3 3

3

3

1 1 1 2
2

1 1 1

2

*2
1

2
1

h h hq q q
l

h h h
h h h h

l

h

P p p
q

q

ε 2 *lε
+ + +

− −

= = =

−

≥ − ≥ −
+

Δ
≥ − Δ

+
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where Moreover, 
outputting two forgeries on the same h

0

2 6 2( 1) 2 k
s h sq q qε −Δ = − + + − / 2 .l

3-queries means 
that B has a probability of 1/2 to factor N2. In addition, B 
needs to guess which identity AII is going to forge the 
signature, and assign the problem instance element as the 

public key of this identity. The probability of guessing 

correctly is 1/qk, so we have  
3 1

1
/ 2 .

hq

h k
h

P qε
+

=

′ ≥ ∑

Time complexity analysis is similar to the proof of 
Type I Adversary. 

VI. CONCLUSION 

   SMC cryptography solves the instantaneous key 
revocation problem in CLPKC while eliminating key 
escrow problem inherited in IBC. SMC signature is one 
of the most important security primitives in SMC 
cryptography. In this paper, we propose a provable secure 
SMC signature scheme without bilinear pairing. It is 
provable secure in the random oracle model based on the 
intractability of the factoring problem. Our scheme is 
efficient in the sense that no bilinear pairing is involved. 
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