
Security Mediated Certificateless Signatures
Without Pairing

Zhongmei Wan

College of Science, Hohai University, Nanjing, 210098, P.R. China
zmeiwan@gmail.com

Jian Weng

Department of Computer Science, Jinan University, Guangzhou 510632, P.R. China
cryptjweng@gmail.com

Jiguo Li

College of Computer and Information Engineering, Hohai University, Nanjing, 210098, P.R. China
lijiguo@hhu.edu.cn

Abstract—Security-mediated certificateless (SMC) signature
provides a method for immediate revocation of security
capabilities in certificateless signature (CLS). In addition,
SMC signauture maintains the merits in CLS: implicit
certification without key escrow. Unfortunately, most of the
existing schemes for CLS and SMC signature are based on
bilinear pairing. There are schemes without bilinear pairing
such as [1] and [2] which is based on discrete logarithm
problem. In this paper, based on the schemes in [2] and [3],
we propose another SMC signature scheme without bilinear
pairing. Our scheme is existential unforgeable in the
random oracle model based on the intractability of the
factoring problem. In addition, it is also efficient in signing
and verifying.

Index Terms—security mediated, SMC cryptography,
ID-based cryptography, certificateless signature, factoring

I. INTRODUCTION

In 1984, Shamir [4] introduced the concept of
ID-based cryptography (IBC) where any strings such as
email addresses, server names or phone numbers, can be
used as public keys. This simplifies certificate
management procedures of public key infrastructure (PKI)
in traditional public key cryptography. However, an
inherent problem of ID-based cryptography is the key
escrow problem. To handle this problem, Al-Riyami and
Paterson [5] introduced the concept of certificateless
public key cryptography (CLPKC) in which the Key
Generation Center (KGC) generates a user’s partial
private key from the master secret key. The user also
independently generates a secret value and the
corresponding public key, and a user’s full private key is

solved. To provide a method for immediate revocation of

a combination of his partial private key and his secret
value, in such a way that the key escrow problem can be
security capabilities in CLPKC, Chow, Boyd and
González Neito [6] introduced in PKC 2006 the notion of
SMC cryptography which maintains the merits in CLPKC:
implicit certification without key escrow. The notion of
SMC cryptography is a generalization of the notion of
plain CLPKC.

Since Al-Riyami and Paterson [5] presented the first
concrete construction of the certificateless signature (CLS)
scheme, a lot of CLS schemes [7-15] based on bilinear
pairing [16] have been proposed. Recently, there are CLS
schemes without pairing such as [1] and [2] which are
pretty efficient. The schemes of [1] and [2] are based on
the intractability of the discrete logarithm problem. To
avoid putting all our eggs in the same basket, it is
common practice in cryptography to try to find
alternative constructions of a primitive based on different
intractability assumptions. Therefore it is desirable to
design a proven secure SMC signature scheme based on
factoring.

Our contribution. Based on the schemes in [2] and [3],
we present another provable secure SMC signature
scheme without bilinear pairing. It is existential
unforgeable in the random oracle model. In addition, our
scheme is very efficient computationally. Since signing
requires only four exponentiations in *

NZ and verifying

requires only three exponentiations in *
NZ . To the best

of our knowledge, this is the first SMC signature scheme
based on the intractability of the factoring problem.

The rest of the paper is organized as follows. In section
II, we give a brief review of some basic concepts and
theorems used in our scheme. In section III we review the
formal definition and security model for SMC signature.
In section IV, we present our concrete scheme. In section
V, we describe the security proof. A conclusion is drawn
in section VI.

This paper was partially supported by the National Natural Science
Foundation of China (No. 60903178), the Fundamental Research Funds
for the Central Universities (No.2010B09614) and the Foundation of
HoHai University (2084/409265).

1862 JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010

© 2010 ACADEMY PUBLISHER
doi:10.4304/jcp.5.12.1862-1869

II. PRELIMINARIES

A. Quadratic Residue
For positive integer N, an integer a is called a quadratic

residue modulo N if GCD(a,N) = 1 and x2=a mod N for
some integer a, where x is called a square root of a
modulo N.

Let N = p q be a composite modulus, where p and q are
two large prime numbers, satisfying p=2p′+1, q=2q′+1,
with themselves primes. Let N denote the subgroup of
squares in *

NZ . Then, it is well known that QN is a cyclic
group with order φ(N)/4 = (p−1)(q−1)/4 [17].

Remark: Following the theorems introduced in [3], a
2lth root s of a could be efficiently computed as ,

lds a=
where dl is computed over modulo p′q′. Note,
factorization of N must be known, otherwise it is
computationally infeasible to calculate the 2lth root.

B. the Hardness Assumption of Factoring
Informally, the factoring problem is stated as follows:

given a k-bit composite N, which is a multiple of two
large primes p and q, to output p or q. The factoring
problem is always assumed to be (t, ε)-hard, in the sense
that there is no algorithm that can output p or q with
probability over ε in polynomial time t (with respect to
some security parameter k).

Ⅲ. FRAMEWORK of SECURITY MEDIATED
CERTIFICATELESS SIGNATURE

In this section we review the formal definition and
security model for security mediated certificateless
signature [2].

A. Synatax
Definition 1. A security mediated certificateless

signature scheme consists of five tuples of polynomial
time algorithms as follows:

1. Setup: is a probabilistic polynomial time (PPT)
algorithm, run by a Key Generation Center (KGC),
given a security parameter 1k as input, outputs a
randomly chosen master key s and a list of public
parameters params.

2. KeyGen: is a PPT algorithm, run by the user,
given a list of public parameters params as input,
outputs a private key skID and a public key PKID.

3. Register: is a PPT algorithm that takes as input a
list of public parameters params, the master key s,
a user identity ID and a public key PKID. It returns
the SEM private signing key SID.

4. Signing: is an interactive probabilistic protocol
between the user and the SEM. Their common
inputs include a list of public parameters params,
a message m, and a user identity ID. The SEM has
an additional input of SID to run the sub-algorithm
SEM-Sign; while the user has an additional input
of skID to run the sub-algorithm User-Sign. The
protocol finishes with either a signature σ or ⊥
when the SEM refuses to give a valid partial

signature, for example in the case where the user’s
signing capability has been revoked.

5. Verifying: is a deterministic algorithm that takes
as input a list of public parameters params, a
message m, a user identity ID, a user public key
PKID and a signature σ. It returns true or false.

B. Security Model
 As introduced in [5], we discuss the security notions
for a SMC signature scheme according to two kinds of
adversaries: a type I adversary AI and a type II adversary
AII . AI acts as a dishonest user. AI does not have access
to the master key but can replace any users public keys at
will. AII acts as a malicious KGC. AII has access to the
master key but cannot replace any user’s public key. We
introduce the model in [2] which is extended based on
[5].

 Definition 2 A SMC signature scheme is secure
against the existential forgery on adaptive chosen
message and identity attacks (EUF-CMIA) against
adversary A=(AI, AII) if no polynomial time algorithm A
has a non-negligible advantage against a challenger C in
the following game:

1. Setup: C takes as input 1k, runs the Setup
algorithm, and gives A the resulting params. The
master key is given to A if it is a Type II
adversary.
A makes the following requests or queries
adaptively:

2. SEM-Key Extraction Queries: On input an
identity ID, the adversary is returned with SID
held by SEM for doing the partial signing on
behalf of the user. (Note that it is only useful to
Type I adversary)

3. Public Key Extraction Queries: On input an
identity ID, the adversary obtains user ID’s
public key PKID.

4. Private Key Extraction Queries: On input an
identity ID, the adversary gets the user’s private
key skID. This query is reasonably disallowed if
the public key of user ID has already been
replaced by the adversary. (In the case of Type I
adversary).

5. Public Key Replacement Queries: (For Type I
adversary only) On input an identity ID and a
valid public key, the public key of user ID is
replaced by this new one.

 6. SEM-Sign Queries: On input a message m
and an identity ID, the adversary is returned with
the partial signing result by using SID.

7. User-Sign Queries: On input a message m
and a public key PKID, the adversary is returned
with the partial signing result by using skID, even
if the public key PKID is previously replaced by
the (Type I) adversary.

 8. Complete-Sign Queries: On input a message
m and a public key PKID, the adversary is
returned with the complete signing result by
using skID and SID, even if the user public key
PKID is previously replaced by the (Type I)
adversary.

JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010 1863

© 2010 ACADEMY PUBLISHER

9. Forgery: A outputs (m*, ID*, PKID*, σ*) such
that the following conditions hold:

• (ID*, m*) was never appeared in the
Complete-Sign queries.

• Verifying (params,)=1. **, *, , *IDm ID PK S
• If it is Type I, ID * has not been submitted to

SEM-Key Extraction Queries. Moreover,
(ID*, m*) has not been submitted to both
SEM-Sign Queries and Complete-Sign
Queries.

• If it is Type II, ID* has not been submitted to
Private Key Extraction Queries. Moreover,
(ID*, m*) has not been submitted to both
User-Sign Queries and Complete-Sign
Queries.

We define A’s advantage as the probability of winning
this game.

IV. CONSTRUCTION of OUR SCHEME

In this section, we propose a security mediated
certificateless signature scheme which is built on
quadratic residue. The merit of this approach is that no
pairing computation is needed at all. Our scheme is
motivated from those in [2] and [3].

1. Setup: Given the security parameter (k, l), the
KGC performs the following.

• Generate two random primes p1, q1, such that
 with being

primes too, satisfying 2
1 12 1p p′= + , ,

1

1 12 1q q′= + 1 1,p q′ ′
k-1≤(p1−1)(q1−1) and

p1q1<2k, then compute N1= p1q1.
• Select such that Jacobi symbol

(a/N
1

* ,R Na Z∈

1)= −1.
• Compute d=(N1−p1−q1+5)/8.
• Select four one-way hash function h0, h1, h2, h3,

satisfying and h

1

*
1 :{0,1}* Nh Z→ 0, h2, h3: {0,

1}*→ {0, 1}l.
The master key of KGC is set to be

 and the public parameter
of KGC are params=(N

1 1 1 1(, , , ,)msk p q p q d′ ′=
1, h0(), h1(), h2(), h3(), a, l).

2. KeyGen: The user performs the following.
• Generate two random primes p2, q2, such that

2 2 2 22 1, 2p p q q′ ′= + = + witt being
primes too, satisfying 2

2 2,p q′ ′
k-1≤(p2−1)(q2−1) and

p2q2<2k, then compute N2= p2 q2
. .

• Randomly select
2

* ,ID Nx Z∈ set

2 2 2 2(, , , ,)ID IDsk p q p q x′ ′= as the user private
key.

• Compute 2
2mod ,

l

ID IDP x= N

−

, .

 set PKID=(N2, PID)
as the user public key.

3. Register: Now the user ID wants to register a
public key, the KGC performs the following:

• Authenticate and register (ID, PKID).

• Compute . 1 1
1

1 1

0 (() /) 1
1 (() /) 1

h ID N
c

h ID N
=⎧

= ⎨ = −⎩
• Compute and 1

1()ch a h ID=

1 1
2

1 1

0 (/) (/) 1
1 (/) (/) 1

h p h q
c

h p h q
= =⎧

= ⎨ = =⎩
.

Let then2 1
1() (1) ()c cH ID a h ID= −

1
() NH ID Q∈

• Compute SID as a 2lth root of H(ID),
 1() mod

ld
IDS H ID N= .

Note 2
1() mod

l

ID
S H ID N=

• Send the SEM private key SID, two tags (c1, c2)
and the (ID, PKID) to the SEM over a
confidential and authentic channel.

4. Signing: Suppose the user ID wants to get the
signature of message m, the SEM checks
whether ID is revoked; if not, the interaction
between the signer and the SEM is as follows:

• SEM-Sign(I): Chooses
1

* ,s R Nr Z∈ computes
2

1mod ,
l

s sR r= N sends cs=h0(Rs) to the user.

• User-Sign(I): Chooses computes
2

* ,u R Nr Z∈
2

2mod ,
l

u uR r N= sends Ru to the SEM.
• SEM-Sign(II): Computes R mod N1N2 by

using the Chinese Remainder Theorem such that
R=Rs mod N1, R=Ru mod N2, then computes
hs=h2(ID, PKID, R, m||0),
and sends back (R

1modsh
s s IDt r S N=

s, ts) to the user.
• User-Sign(II): Checks if cs=h0(Rs); if they are

equal, computes R mod N1N2 by using the
Chinese Remainder Theorem such that R=Rs
mod N1, R=Ru mod N2, then computes hu=h3(ID,
PKID, R, m||1), , finally
computes t mod N

2moduh
u u IDt r x N=

1N2 by using the Chinese
Remainder Theorem such that t=ts mod N1,
t=tu mod N2.
The final signature is σ=(R, t, c1, c2).

5. Verifying: Given a signature σ=(R, t, c1, c2) on a
message m, any party could verify the validity
by the following operations:

• Compute h2 1
1() (1) ()c cH ID a h ID= − , s=h2(ID,

PKID, R, m||0), hu=h3(ID, PKID, R, m||1).
• Compute 2

1() mod ,
l

sh
sR t H ID N−′ = and

2
2() mod ,

l
uh

uR t H ID N−′ = compute R’ mod
N1N2 by using the Chinese Remainder Theorem
such that 1 2' mod , ' mods u .R R N R R N′ ′= =

• Check whether R=R′ mod N1N2 holds or not. If
the equation holds, output “valid’’, otherwise,
output “invalid”.

The correctness of the proposed scheme can be easily
verified as follows.

1864 JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010

© 2010 ACADEMY PUBLISHER

22 2 2
1' () mo

ll l l
s sh h

s s ID s sR R t H ID t S r R R N− −′= = = = = = d

d

22 2 2
2' () mo

ll l l
u uh h

u u ID u uR R t H ID t S r R R N− −′= = = = = =

V. SECURITY ANALYSIS

Theorem 1. If the factoring problem is (t’, ε’)-hard,
then our scheme is (t, ε)-existential unforgeable against
Type I adversary,satisfying

1 2

2
2 31 (2), (

2 1
l

h h

t t O k l k
q q

ε −Δ′ ′≥ − Δ = +
+

),+

2

where

0 2

0

3 6

2 6 2

()2 ()2

(1) 2 / 2 ,

k k
s h s s h s

k l
s h s

q q q q q q

q q q

ε − −

−

Δ = − + − +

− + + −

(k, l) are security parameters introduced in section 4, qs
denotes the number of queries made to the SEM-Sign
oracle and User-Sign oracle altogether, qk denotes the
number of queries made to the oracle public key
extraction and private key extraction altogether,

denote the number of queries made to the
oracle h

0 1 2 3
, , ,h h h hq q q q

0, h1, h2, and h3 respectively.

Proof: Here we follow the idea from the schemes in [2]
and [3]. Assume there exists a Type I adversary AI . We
start by describing how an adversary AI can be used by a
probabilistic polynomial time algorithm B to solve the
factoring problem with probability at least ε′ and in time
at most t′.

Now, we will show how to build an algorithm B that
on input of a given instance of factoring problem N1= p1
q1 for some unknown p1 and q1, outputs p1or q1 with non
negligible probability.

Firstly B chooses satisfying Jacobi symbol (a/
N

1

*
Na Z∈

1)= −1, chooses a secure parameter l≥160, and sends
(N1, a, l) to AI as public parameters. B picks an identity
ID* at random as the challenged ID in this game. Then, B
responds to AI ’s queries as follows:

h0-Queries: When AI queries h0, B checks the
corresponding h0-list and outputs c if such query has
already been made. Otherwise, B picks c∈{0, 1}l at
random, updates the h0-list and outputs c as answer.

h1-Queries: When AI queries h1 on input ID, B checks
the corresponding h1-list and outputs h1 if such value is
defined. Otherwise, B chooses a random number

1

*
Ns Z∈ and two random bits (c1, c2)∈{0, 1}2, and

returns
2 1

2

1 mod
(1)

l

c c
sh

a
=

− 1N

*

as the answer, then adds

the entry (ID, h1, s, c1, c2) to the h1-list.
h2-Queries: When AI queries h2 on input (ID, PKID,

R, m||0), B checks the corresponding h2-list and outputs hs

if such value is defined. Otherwise, B picks a random
hs∈{0, 1}l, returns hs as the answer, then adds the entry
(ID, PKID, R, m||0, hs) to the h2-list.

h3-Queries: When AI queries h3 on input (ID, PKID,
R, m||1), B checks the corresponding h3-list and outputs hu
if such value is defined. Otherwise, B picks a random hu
∈{0, 1}l, returns hu as the answer, then adds the entry (ID,
PKID , R, m||1, hu) to the h3-list.

SEM-Key Extraction Queries: For queries on input
ID, if ID= ID*, B aborts. Otherwise, B acts as follows:

if ID already exists on the h1-list in the tuple (ID, h1, s,
c1, c2), B returns SID=s, as well as (c1, c2) as the answer.
Otherwise, B adds a new tuple containing ID in the same
way as handling h1-query, then returns s and (c1, c2) as
the answer.

Public Key Extraction Queries: B keeps the list
List of user public/private key. It first puts the public
key * 2(,)ID IDPK N P= of the identity ID* into List.
Upon receiving a public key extraction query on ID. B
looks up its list List to find out the corresponding entry.
If it does not exist, B runs KeyGen to generate a private
and public key pair. It stores the key pair in the list List
and returns the public key as the query output.

Private Key Extraction Queries: For queries on
input ID, if ID=ID*, B aborts. Otherwise, B looks up the
list List to find out the corresponding entry. If it does not
exist, B runs KeyGen to generate a private and public key
pair. It stores the key pair in the list List and returns the
private key as the query output.

Public Key Replacement Queries: Upon receiving
a public key replacement query on ID, B searches the list
List to replace the corresponding entry. If it does not exist,
B creates a new entry for this identity.

SEM-Sign Queries: Upon receiving a query for a
SEM signature of (m, ID, PKID). if ID≠ID*, B can extract
the SEM private key and run the algorithm SEM-Sign.
Otherwise, B acts as follows:
• Recover the tuple (ID*, h1, s, c1, c2) from the list

h1-list.
• Compute . 2 1

1(*) (1)c cH ID a h= −

• Pick
1

* ,s Nt Z∈ hs∈{0,1}l and compute
2

(*)

l

s

s
s h

tR
H ID

=

• Execute h0 oracle simulation, get c = h0(Rs) and send
it to AI.

• After getting Ru from AI, compute R mod N1N2,
where R=Rs mod N1, R=Ru mod N2, set h2(ID*, PKID*,
R, m||0)=hs.

• Send (Rs, ts, c1, c2) to AI.
User-Sign Queries: Upon receiving a query for a user

signature of (m, ID, PKID). if ID≠ID*, B can extract the
user private key and run the algorithm User-Sign.
Otherwise, B acts as follows:
• An l-bit commitment c is obtained from the

adversary, which models the first message that SEM
should be sent to initiate the User-Sign process.

JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010 1865

© 2010 ACADEMY PUBLISHER

• Parse , pick h* 2 *(,)ID IDPK N P=
2

* ,u Nt Z∈ u∈{0,

1}l, and compute
2

*

l

u

u
u h

ID

tR
P

= .

• After obtained (Rs, ts, c1, c2), compute R mod N1N2,
where R=Rs mod N1, R=Ru mod N2.

• Search for h0-list to find sR′ such that 0 ()sh R c′ = .
• If found, set h3(ID*, PKID*, R, m||1)=hu.
• If h0(Rs)=c, but no sR′ can be found or s sR R′≠ , stop

User-Sign.
• Otherwise, compute t mod N1N2, where t=ts mod N1,

t=tu mod N2, return (R, t, c1, c2) as an answer.
Complete-Sign Queries: If both the SEM private key

and the user private key are available, signing is trivial. If
either one of them is unavailable, this request can be
simulated faithfully as a combination of the above two
simulation.

Forgery: The next step of the simulation is to apply
the general forking lemma in [18]: Let
be a forgery of a signature on a message m* with respect
to (ID*, PK

* *
1 2(*, *, ,)t R c c

ID*) that is output by AI at the end of the attack.
If AI does not output ID* as a part of the forgery then B
aborts.

B then replays AI with the same random tape but
different h2 after the point (ID*, PKID*, R*, m*||0).
Suppose h2 outputs hs and sh′ in the first round and the
second round respectively, where s sh h′≠ . So we get

another valid forgery , i.e. * *
1 2(, *, ,)t R c c′

2
1

2
1

* * (*) mod

* (*) mod

l
s

l
s

h

h

t R H ID N

t R H ID N′

=

′ =

;

.

B thus gets Then B
can easily compute a square root s′ of H(ID*), setting
a=H(ID*), Now, B
searches in the h

2
1(*) (* /) mod .

l
s sh hH ID t t N′− ′=

2
1, (* / ') mod

l

s sw h h X t t N′= − =
1-list to find the entry <ID, h1, s, c1, c2>,

and if
12

1mod
l

s s
−

′ ≠ ± N , N1 could be factored.
Otherwise, B reports failure. Note, s was some random 2l
root of H(ID*) chosen by B, which is independent of AI’s
view. Thus, the probability that

12
1od

l

s s m N
−

′ ≠ ± is
1/2. Since B has to run AI twice, and takes some
additional operations to factor N1, such as
exponentiations over modulo N1, GCD operations for
division and factoring N1, the time B needs to factor N1 is
estimated as . 2 32 (t t O k l k′ = + +)

1
| .

Let ε' be the probability that N1 could be factored, ε be
the probability that AI forges a signature in the real
attack, and ε* be the probability that AI forges a
signature in a single run in our simulation.

In the simulation of SEM-Sign oracle, embedding hs as
the response of h2 is not possible if AI has queried the h2
value of (ID, PKID, R, m||0) beforehand. We consider the
case that h2 has previously queried and the case that it
was not. In the first case, AI probably knows Rs and may

have deliberately queried such value. However, since ts is
chosen randomly by B independent of AI’s view, the
probability that AI made such h0 query is at most

0
()/ |h s Nq q Q+ In the second case, the view of AI is
completely independent of Rs. The probability that R
appeared (by chance) in a previous query is against

at most
2hq

2 1
()/ |h s N Nq q Q

2
|+ .

The User-Sign query simulation fails if h0(Rs)=c, but
no sR′ can be found or s sR R′≠ . For the first case, the
probability that AI can predict h0(Rs)=c without asking the
random oracle is at most qs/2l. For the second case,
collision must have occurred and the probability for this
is at most We just assume A

0

2(1) / |h s Nq q Q+ +
1

| .

2

I
asked for h3(ID, PKID , R, m||1) if Rs was not found since
AI knew the value of Rs before B.

So in our simulation, the probability of AI winning the
game is reduced to

0 2

0

3 6

2 6 2

* ()2 ()2

(1) 2 / 2

k k
s h s s h s

k l
s h s

q q q q q q

q q q

ε ε − −

−

≥ − + − +

− + + −

Let ph be the probability that the forgery was based on
the h-th h2-query in a single run. It could be easily
calculated that

2 1

1
*

hq

h
h

pε
+

=

= ∑

Let ph,s be the probability that the forgery was based on
the h-th h2-query in a single run, given a specific string s
of length m, which determines the random tape of AI and
responses to all the queries. Therefore,

,
{0,1}

2
m

m
h h

s
sp p

∈

= ∑

For a specific string s, the probability that a forgery
was based on the h-th h2-query in both two runs is ph,s
(ph,s-2l), since the answer of the h-th h2-query in the
second run should be different from the first run. Let Ph
be the probability that a forgery was based on the h-th
h2-query in both two runs. Then

,
{0,1}

2 2
, ,

{0,1} {0,1}

2 (2)

2 (2) 2

m

m m

m l
h h s

s

m l
h s h s h h

s s

P p

lp p p p

− −

∈

− −

∈ ∈

= −

= − ≥ − −

∑

∑ ∑

Therefore, the probability that AI outputs two forgeries
that are based on the same h2-queries in both runs is
estimated as

2 2 2

2

2

1 1 1 2
2

1 1 1

2

*2 2
1

2
1

h h hq q q
l l

h h h
h h h h

l

h

P p p
q

q

ε *ε
+ + +

− −

= = =

−

≥ − ≥ −
+

Δ
≥ − Δ

+

∑ ∑ ∑

1866 JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010

© 2010 ACADEMY PUBLISHER

where

0 2

0

3 6

2 6 2

()2 ()2

(1) 2 / 2

k
s h s s h s

k l
s h s

q q q q q q

q q q

ε −

−

Δ = − + − +

− + + −

2k−

Moreover, outputting two forgeries on the same
h2-queries means that B has a probability of 1/2 to factor
N1. In addition, B needs to guess which identity AI is
going to forge the signature. The probability of guessing

correctly is 1/ so we have
1
,hq

2

1

1

1
/ 2 .

hq

h h
h

P qε
+

=

′ ≥ ∑

Theorem 2. If the factoring problem is (t′, ε′)-hard,
then our scheme is (t, ε)-existential unforgeable against
Type II adversary,satisfying

3

2
2 31 (2), (

2 1
l

k h

t t O k l k
q q

ε −Δ′ ′≥ − Δ = +
+

),+

/ 2 ,

3

where

0

2 6 2(1) 2 k l
s h sq q qε −Δ = − + + −

(k, l) are security parameters introduced in section 4,

0 2
, , , ,s k h h hq q q q q have the same meaning as those in

Theorem 1.

Proof: Assume there exists a Type II adversary AII
against our scheme. We are going to construct another
PPT algorithm B that makes use of AII to solve the
factoring problem with probability at least ε' and in time
at most t'.
 Now, we will show how to build an algorithm B that
on input of a given instance of factoring problem N2=
p2q2 for some unknown p2 and q2, outputs p2 or q2 with
non negligible probability.
 Firstly, B generates two random primes p1, q1, such
that with being primes
too, satisfying 2

1 12 1, 1 12 1q q′= +p p′= + , 1 1,p q′ ′
k-1≤(p1−1)(q1−1) and p1q1<2k, then

computes N1= p1q1 and sets as the

KGC’s master-key, B chooses satisfying
Jacobi symbol (a/N

1 1 1 1(, , ,)p q p q′ ′

1

* ,R Na Z∈

1)=−1, chooses a secure parameter
l≥160, and sets (N1, a, l) as public parameters. Finally B
sends public parameters and master-key to AII. Since AII
has access to the master-key, he can do SEM-Extract and
SEM-Sign himself, thus the hash function h1() is not
modelled as a random oracle in this case.
 Suppose that AII can forge a valid signature on message
m* for identity ID* under public key PKID*. B picks a
random

2

*
* ,ID Nx Z∈ computes 2

* * mod
l

ID ID 2P x N= and
sets ID*’s public key as PKID*=(N2, PID*).

B responds to AII’s queries as follows:
h0-Qeries, h2-Queries, h3-Queries: Random oracles

for these queries are modeled the same as described in
Theorem 1.

Public Key Extraction Queries: Upon receiving a
query for a public key of an identity ID, if ID≠ID*, B
randomly picks two random primes p3, q3, such that

3 3 3 32 1, 2p p q q 1,′ ′= + = + with being primes too,
satisfying 2

3 3,p q′ ′
k-1≤(p3−1)(q3−1) and p3q3<2k, then compute

N3= p3q3, picks a random
3

* ,ID Nx Z∈ sets skID=(xID, p3, q3)

as ID’s private value, computes 2
3mod ,

l

ID IDP x N=
returns PKID=(N3, PID) as answer and adds the tuple (ID,
skID, PKID) to K-list which is initially empty. Otherwise,
returns PKID* .

Private Key Extraction Queries: Upon receiving a
query for a private key of an identity ID, if ID = ID*, B
aborts. Otherwise, B searches K-list for the entry (ID,
skID, PKID), generating a new key pair if this does not
exist, and returns skID .

User-Sign Queries: Note that at any time during the
simulation, equipped with those user private keys for any
ID≠ID*, AII is able to generate partial signatures on any
message m. For ID= ID*, the simulation is as follows.
• An l-bit commitment c is obtained from the

adversary, which models the first message that SEM
should be sent to initiate the User-Sign process.

• Pick h
2

* ,u Nt Z∈ u∈{0, 1}l, and compute
2

*

l

u

u
u h

ID

tR
P

= .

• After obtained (Rs, ts, c1, c2), compute R mod N1N2,
where R=Rs mod N1, R=Ru mod N2.

• Search for h0-list to find sR′ such that 0 ()sh R c′ = .
• If found, set h3(ID*, PKID*, R, m||1)=hu.
• If h0(Rs)=c, but no sR′ can be found or s sR R′≠ , stop

User-Sign.
• Otherwise, compute t mod N1N2, where t=ts mod N1,

t=tu mod N2, return (R, t, c1, c2) as an answer.
Complete-Sign Queries: If the user private key is

available, signing is trivial. Otherwise, this request can be
simulated faithfully similar to above.

Forgery: The next step of the simulation is to apply
the general forking lemma in [18]: Let
be a forgery of a signature on a message m* with respect
to (ID*, PK

* *
1 2(*, *, ,)t R c c

ID*) that is output by AII at the end of the
attack. If AII does not output ID* as a part of the forgery
then B aborts.

B then replays AII with the same random tape but
different h3 after the point (ID*, PKID*, R*, m*||1).
Suppose h3 outputs hu and in the first round and the
second round respectively, where . So we get

another valid forgery , i.e.

uh′

uh h′≠ u

;

* *
1 2(, *, ,)t R c c′

2
* 2

2
* 2

* * mod

* mod

l
u

l
u

h
ID

h
ID

t R P N

t R P N′

=

′ =

 B thus gets 2
* 2(* / ') mod .

l
u uh h

IDP t t N′− = By applying
Theorem 2, B can easily compute a square root s′ of PID* ,
a=PID*, uw h hu′= − and 2(* /) .

l

X t t′=

JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010 1867

© 2010 ACADEMY PUBLISHER

Let ε' be the probability that N2 could be factored, ε be
the probability that AII forges a signature in the real
attack, and ε* be the probability that AII forges a
signature in a single run in our simulation.

The User-Sign query simulation fails if h0(Rs)=c, but
no sR′ can be found or s sR R′≠ . For the first case, the
probability that AII can predict h0(Rs)=c without asking
the random oracle is at most qs/2l. For the second case,
collision must have occurred and the probability for this
is at most

0 1

2(1) / |h s Nq q Q+ + | .

2

So in our simulation, the probability of AII winning the
game is reduced to

0

2 6 2* (1) 2 /k l
s h sq q qε ε −≥ − + + −

Let ph be the probability that the forgery was based on
the h-th h3-query in a single run. It could be easily
calculated that

3
1

1
*

hq

h
h

pε
+

=

= ∑

Let ph,s be the probability that the forgery was based on
the h-th h3-query in a single run, given a specific string s
of length m, which determines the random tape of AII and
responses to all the queries. Therefore,

,
{0,1}

2
m

m
h h

s
sp p

∈

= ∑

For a specific string s, the probability that a forgery
was based on the h-th h3-query in both two runs is ph,s
(ph,s−2l), since the answer of the h-th h3-query in the
second run should be different from the first run. Let Ph
be the probability that a forgery was based on the h-th
h3-query in both two runs. Then

,
{0,1}

2
, ,

{0,1} {0,1}

2 (2)

2 (2) 2

m

m m

m l
h h s

s

m l
h s h s h h

s s

P p

2 lp p p p

− −

∈

− −

∈ ∈

= −

= − ≥ −

∑

∑ ∑ −

Therefore, the probability that AII outputs two forgeries
that are based on the same h3-queries in both runs is
estimated as

3 3 3

3

3

1 1 1 2
2

1 1 1

2

*2
1

2
1

h h hq q q
l

h h h
h h h h

l

h

P p p
q

q

ε 2 *lε
+ + +

− −

= = =

−

≥ − ≥ −
+

Δ
≥ − Δ

+

∑ ∑ ∑

where Moreover,
outputting two forgeries on the same h

0

2 6 2(1) 2 k
s h sq q qε −Δ = − + + − / 2 .l

3-queries means
that B has a probability of 1/2 to factor N2. In addition, B
needs to guess which identity AII is going to forge the
signature, and assign the problem instance element as the

public key of this identity. The probability of guessing

correctly is 1/qk, so we have
3 1

1
/ 2 .

hq

h k
h

P qε
+

=

′ ≥ ∑

Time complexity analysis is similar to the proof of
Type I Adversary.

VI. CONCLUSION

 SMC cryptography solves the instantaneous key
revocation problem in CLPKC while eliminating key
escrow problem inherited in IBC. SMC signature is one
of the most important security primitives in SMC
cryptography. In this paper, we propose a provable secure
SMC signature scheme without bilinear pairing. It is
provable secure in the random oracle model based on the
intractability of the factoring problem. Our scheme is
efficient in the sense that no bilinear pairing is involved.

REFERENCES

[1] L. Harn, J. Ren, C. Lin. Design of DL-based

certificateless digital signatures. Journal of Systems
and Software(2009). pp.789-793.

[2] W. S. Yap, S. S.M. Chow, S. H. Heng, and B.M. Goi.
Security Mediated Certificateless Signatures. ACNS
2007, LNCS 4521, pp. 459-477, 2007.

[3] Z. C. Cai, Z. F. Cao, and X. L. Dong. Identity-based
signature scheme based on quadratic residues. Science in
China Series F: Information Sciences. Springer-Verlag,
2007. 50:373-380

[4] A. Shamir. Identity-Based Cryptosystems and Signature
Schemes, In Proc. of Crypto1984, LNCS 196, pp. 47-53,
Springer-Verlag, 1984.

[5] S. S. Al-Riyami and K. G. Paterson. Certificateless
Public Key Cryptography. Advances in Cryptology
CAsiaCrypt, LNCS, vol. 2894. Springer-Verlag, pp.
452-473.

[6] S. Chow, C. Boyd, and J. Gonz´alez. Security-mediated
certificateless cryptography. In PKC 2006, volume 3958
of LNCS, pages 508-524. Springer-Verlag, 2006.

[7] H. Du, Q. Wen. Efficient and provably-secure
certificateless short signature scheme from bilinear
pairings. Computer Standards and Interfaces 31 (2),
390-394, 2009.

[8] M. Gorantla, R. Gangishetti, M. Das, and A. Saxena. An
effective certificateless signature scheme based on
bilinear pairings. In WOSIS 2005, pages 31-39.
INSTICC Press, 2005.

[9] X. Huang, W. Susilo, Y. Mu, and F. Zhang. On the
security of certificateless signature schemes from
Asiacrypt 2003. In CANS 2005, pages 13-25.
Springer-Verlag, 2005. LNCS No. 3810.

[10] X. Huang, W. Susilo, Y. Mu, and F. Zhang .
Certificateless designated verifier signature schemes. In
AINA 2006, pages 15-19. IEEE Computer Society, 2006.

[11] X. Hu, Z.G. Qin, F.G. Li, An improved certificateless
signature scheme secure in the standard model.
Fundamenta Informaticae(2008) 193-206.

[12] H. S. Ju, D. Y. Kim, D. H. Lee, J. Lim, and K. Chun.
Efficient Revocation of Security Capability in
Certificateless Public Key Cryptography. In
Knowledge-Based Intelligent Information and
Engineering Systems 2005, LNAI 3682, pp. 453-459.

1868 JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010

© 2010 ACADEMY PUBLISHER

[13] J. K. Liu, M. H. Au, and W. Susilo. Self-Generated
-Certificate Public Key Cryptography and Certificateless
Signature / Encryption Scheme in the Standard Model. In
Proceedings of ASIACCS 2007.

[14] Z. F. Zhang, D. S. Wong, J. Xu, and D. G. Feng.
Certificateless Public-Key Signature: Security Model and
Efficient Construction. In Proceedings of ACNS 2006,
LNCS 3989, pp. 293-308. Journal version appeared in
Designs, Codes and Cryptography, 42/2, pp. 109-126,
2007.

[15] D. H. Yum and P. J. Lee. Generic construction of
certificateless signature. In ACISP 04, pages 200-211.
Springer-Verlag, 2004. LNCS No. 3108.

[16] D. Boneh and M. Franklin. Identity-based encryption
from the Weil Pairing. Advances in
Cryptology-CRYPTO 2001, Lecture Notes in Computer
Science. Berlin: Springer-Verlag, 2001, 2193: 213-229

[17] V. Shoup. A Computational Introduction to Number
Theory and Algebra, Cambridge University Press, 2005.
534

[18] M. Bellare and G. Neven. Multi-Signatures in the Plain
Public-Key Model and a General Forking Lemma In
Proceedings of ACM-CCS 2006, pp. 390-399.

Zhongmei Wan was born in Jiangsu Province, China, on May 4,
1973. She received her Bachelor degree from Yancheng Normal
University, China in 1994. She received her Master degree from
Zhejiang University, China in 2001. She is currently lecturer at
the College of Science, Hohai University, Nanjing, China. Her
major interests are cryptography theory and technology,
cryptography protocol , network and information security.

JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010 1869

© 2010 ACADEMY PUBLISHER

