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Abstract— The paper presents an efficient algorithm to 

compute base-10 logarithm of a decimal number. The 

algorithm uses a 64-bit floating-point arithmetic, and is 

based on a digit-by-digit iterative computation that does not 

require look-up tables, curve fitting, decimal-binary 

conversion, or division operations. It is the first FPGA 

prototype of its kind that uses a 64-bit (decimal 16-digit) 

precision. Two numerical examples have been presented for 

the purpose of illustration. The algorithm produces very 

accurate result with a maximum absolute error of 3.53x10-

14. The architecture is pipelined and implemented on to the 

Xilinx Virtex2p FPGA. It costs 6,752 logic cells, outputs at a 

minimum rate of 51 mega-samples/sec, and consumes 125.7 

mW of power. The scheme is very suitable for timing and 

accuracy critical applications and compliant with the 

IEEE754-2008 standard (decimal64 format). 

Index Terms— Decimal logarithm converter, floating-point 

arithmetic, iterative computation, IEEE754-2008 

I. INTRODUCTION

Elementary functions such as the logarithm and the 

exponential operations have become very useful in many 

applications such as, financial analysis, tax calculation, 

internet based applications, and ecommerce [1], where 

these operations are used to avoid hardware-expensive 

multiplication and division operations. In the past, several 

hardware-efficient methods have been proposed for 

computing the base-2 logarithm of binary numbers 

[4][5][11]-[16]. However, after the inclusion of decimal 

floating-point (FP) operation in the latest IEEE754-2008 

standard [6], more researchers have devoted their effort in 

developing decimal FP algorithms and architectures to 

efficiently compute logarithms [7][17], exponentiation 

[28], trigonometric operations, etc. 

A study has shown that 55% of the numbers stored in 

the database of 50 big organizations is decimal [21]. 

There are several software packages available to 

customer to compute decimal numbers using decimal 

arithmetic to minimize error [23], but the software-

implemented decimal arithmetic requires much longer 

time to execute than the hardware version [1], which led 

momentum to its implementation in hardware. IBM has 

recently implemented decimal FP architecture in their 

POWER6 [3][19], z9 [29], and z10 microprocessors [20]. 

Several decimal architecture of multi-operand carry-save 

adder [24][25], carry look-ahead adder [26], parallel BCD 

adder [27], signed-digit adder [18], etc. have been 

proposed.  

There are several applications which require the direct 

computation of decimal (or radix-10) logarithm, such as, 

to measure the pH in chemistry, the earthquake intensity 

in Richter scale, the optical density in spectrometry and 

optics, the brightness of stars in astronomy, etc. [2]. 

Moreover, the radix-10 logarithm is widely used in 

computing the ratio of voltage and power levels (called 

bel) in telecommunications, electronics and acoustics. In 

most base-10 logarithmic converters, the decimal input is 

first converted to binary followed by base-2 logarithm 

computation; after the completion, the result is converted 

back to decimal radix – these back and forth conversions 

of bases introduce errors on the system. A generalized 

iterative algorithm to compute base-k logarithm has been 

presented in [8]; however, the division operation in that 

work limits the performance by incurring erroneous 

computation. Moreover, the use of lookup tables and the 

lack of user control on the number of iteration make this 

algorithm very inefficient for hardware implementation. 

We have recently presented a 32-bit decimal logarithm 

(in short, log) converter [22]. While the decimal32

format, as defined in the IEEE754-2008 standard [6], is 

only used for storage, the decimal64 and decimal128 are 

used for more accurate decimal computation. Being 

motivated by the fact, in this paper, we extend the 

algorithm to compute the radix-10 log using decimal64

precision, which is the first FPGA prototype of its kind. 

The algorithm is based on a digit-by-digit iterative 

computation that does not require error correction 

circuitry, look-up tables, curve fitting, or division 

operations. The number of iterations of the log converter 

depends on the user defined precision. The previous 32-

bit design [22] suffers from high latency (e.g. 40 clock 

cycles) due to an inefficient power-10 algorithm and un-

pipelined operation. Here, we present a very efficient 

power-10 module with a pipelined architecture that may 

take only 4 clock cycles to produce the log result with a 

high process throughput of 51 mega-samples/sec. The 

error analysis shows that the proposed scheme produces 

very accurate result. The architecture is developed based 

Manuscript received January 1, 2009; revised June 1, 2009; accepted 

July 1, 2009. 

Copyright credit, project number, corresponding author, etc. 

JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010 1847

© 2010 ACADEMY PUBLISHER
doi:10.4304/jcp.5.12.1847-1855



on 64-bit binary coded decimal (BCD) representation and 

compliant with the IEEE decimal64 FP standard. 

The paper is organized as follows: Section II presents 

the background. In section III, the digit-by-digit 

algorithm is presented. The pseudo-code of the algorithm 

and two examples are also presented for illustration. A 

detailed hardware implementation is discussed in section 

IV, where the description of different internal modules is 

presented. Section V discusses the performance analysis 

with a comparison of hardware among related log 

converter designs. The paper is concluded in section VI. 

II. BACKGROUND

The general form of any positive number, L can be 

expressed as: 

2 1 0

2 1 0

1 2

1 2

...

...

i

i

i

L C R C R C R C R

C R C R

(1)

Where, R is the numerical base, and iC  is the 

coefficient for the 
thi power of that base, ranging from 0 

to 1R .  For a decimal base, R equals to 10. After 

taking the logarithm of any positive decimal number, P , 

(1) results in the following (2): 

1

10 1

1 0 1

1 0 1

2

2

... 10 10 ...

10 10 10

10 ..., 0

i i

i iL log P C C

C C C

C P

 (2) 

The coefficients in (2) can now be divided into two 

categories: integer (or “character”: 
1 1 0..., , ,..., ,i iC C C C )

and fraction (or “mantissa”: 1 2 3, , ,...C C C ). The 

procedure to compute these coefficients is described in 

the following section. 

III. ALGORITHM FOR DECIMAL64 LOG

A. Decimal64 format in IEEE754-2008 

The IEEE 754-2008 decimal FP arithmetic supports 

the decimal32, decimal64, and decimal128 computation 

and data interchange formats, and implements all the 

operations and conversions [6]. The basic decimal FP 

format is illustrated in Fig. 1. 

The Sign is a 1-bit field and indicates the sign of the 

number where S is 0 or 1. The combination field is a 

w+5-bits field that encodes two most significant bits 

(MSBs) of the exponent and the most significant digit 

(MSD) of the coefficient. The Not-a-Number (NaN) and 

Infinite number (Inf) are indicated in the Combination 

Field. The biased exponent is a w+2 bit quantity, where 

the value of the first two bits of the biased exponent taken 

together is 0, 1, or 2. The whole encoded exponent is an 

unsigned binary integer with the largest unsigned value. 

The value of the exponent is calculated by subtracting an 

exponent bias from the value of the encoded exponent, to 

be able to represent both negative and positive exponents.  

The Tailing Significand Field (3j x 10 bits) is formed 

by appending the decoded continuation digits (j-bit) as a 

suffix to the most significant digit (MSD) derived from 

the combination field. Each 10-bit group represents three 

decimal digits, using Densely Packed Decimal (DPD) 

encoding [30]. The format encodes a total of p=3j+1

decimal digits, where p = the number of digits in the 

significand (precision). For decimal64 format: w = 8; j =

5, exponent bias = 398, and p = 16. 

B. Proposed iterative algorithm 

The IEEE754-2008 standard [6] defines any non-

normalized unsigned decimal fraction as: 

0 1 2 3 15. ...d d d d d , where 0 9id . To be compatible 

with the standard, we extend our input decimal number, P

as follows: 

( 1) 10S a

cP P  (3) 

Where, S is the sign, a is the exponent, and cP  is the 

coefficient (in integer form). Taking a 64-bit log of (3) 

results in (4): 

10 10 10log ( ) log (10 ) log ( )a

cL P P   (4) 

Here, 000000000000001 999999999999999cP .

The computation of 10log ( )cP  follows the iterative 

algorithm. It starts with the computation of the upper 

limit of i, called maxi , which is the number of mantissa 

digits desired in the final converted answer. maxi  is set by 

the user and defines the number of iterations. 

In order to perform the initial range reduction, we 

extend (4) further as given below: 

10 10log ( ) log ( )L P a b k  (5) 

Where, (range: 1 15)b b is the characteristics of 

10log ( )P and is obtained by detecting leading zeros; k is 

a decimal fraction (range: 0.1 1k ). After separating 

a, and combining (2) and (5), we get the following (6): 

2
1

1
1010

10 10 10
i

ii
CCbP          (6)                            

The intermittent data is accumulated into a temporary 

variable, A , where 1 10A :

Figure 1.  Decimal floating-point number format in IEEE754-

2008
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2
1

1
1010

10 10
10

i
ii

CC

b

P
A  (7) 

This division (by 10) operation can be easily 

implemented by right shifting the input digits. In order to 

determine the fractional parts (e.g., 1 2 3, , ,...C C C  ), 

we take the power-10 of (7) as shown below: 

2
1

1

1

11

101010 10

10

(10 10 )

10 10

i
ii

i
ii

CC

CC

A
 (8) 

Now (8) has a structure similar to (7). The first 

mantissa coefficient, 1C , is computed by simply 

counting the number of integers in (8). The temporary 

value (stored in 
10A ) undergoes another power range 

reduction and is accumulated back into A. The process 

continues for the remaining mantissa coefficients until the 

number of iteration reaches maxi , set earlier by the user.  

For cases where the input lies between 0 and 1, the log 

produces negative result. Interestingly, the proposed 

algorithm is capable of handling such cases. For this 

purpose, we first adjust he decimal point as follows: 

10nP m , where 1, 0m n       (9) 

Taking the 64-bit radix-10 log in both sides of (9) 

leads to the following (10): 

10 10log | | logL P n m    (10) 

Now, the computation of 10log m  follows the 

procedure described in (5) – (8).  

C. Pseudocode of the algorithm 

The pseudo-code of the proposed algorithm 

summarized below and illustrated in Fig. 2: 

1. Read decimal input, P and the number of mantissa 

in the log result, i

2. Transfer P to A and perform initial range reduction 

3. Detect the number of integers in A

4. Start computing the mantissa coefficients, C
i

5. Compute power-10 of A, and perform power range 

reduction 

6. Decrease i by 1 

7. If i > 0, repeat steps 3-6 

D. Examples 

In order to better illustrate the algorithm, we present 

two examples in the following section:  

1) Determine the logarithm of decimal number, P = 

123456789.123456 up to three fractional digits. 

The computation steps are as follows: 

Here the user sets the number of fractional bits; so, 

max 3i ; hence, the computation process will 

continue up to the computation of 
3C , and the final 

answer will be in the format: 
0 1 2 3.C C C C

The number of integer in P: 9N ; hence, 

0 (9 1) 8C

Right shift the digits of P by eight 

digits: ( 8) 1.23456789123456A P

Compute power-10 of A and accumulate the result:  
10 10(1.23456789123456)

8.2252626737231264115782140871879

A A

Compute the number of integers in A: 1N ; hence, 

0)11(1C

Right shift the digits of A by zero digit: 
(8.2252626737231264115782140871879 0)

8.2252626737231264115782140871879

A

Compute power-10 of A and accumulate the result: 
10 10(8.2252626737231264115782140871879)

1417417401.8443859394911136893318

A A

Compute the number of integers in A: 10N ;

hence, 9)110(2C

Right shift the digits of A by nine digits: 
(1417417401.8443859394911136893318 9)

1.4174174018443859394911136893318

A

Compute power-10 of A and accumulate the result:  
10 10(1.4174174018443859394911136893318)

32.732381445138501594634638993872

A A

Once again, compute the number of integers in A:

2N ; hence, 
3 (2 1) 1C

The iteration stops, and the final answer is: 

8.091L

2) Determine the logarithm of decimal number, P = 

0.00000123456789 up to two fractional digits. 

The computation steps are as follows: 

Here the input is a fraction ( 0 1P ); so, 

max (2 1) 3i ; hence, the computation process will 

Figure 2.  Flow graph of the decimal log algorithm 
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continue up to the computation of 
3C , and the final 

answer will be in the format: 
0 1 2 3.C C C C

Adjust the decimal point: 61.23456789 10P  ; m 

= 1.23456789 , n = -6 

The number of integer in P: 1N ; hence, 

0 (1 1) 0C

Right shift the digits of P by zero 

digit: ( 0) 1.23456789A P

Compute power-10 of A and accumulate the result: 
10 10(1.23456789)

8.2252625914710257950476114366154

A A

Compute the number of integers in A: 1N ;

hence, 
1 (1 1) 0C

Right shift the digits of A by zero digit: 
(8.2252625914710257950476114366154 0)

8.2252625914710257950476114366154

A

Compute power-10 of A and accumulate the result: 
10 10(8.2252625914710257950476114366154)

1417417260.1035587702142524239761

A A

Compute the number of integers in A: 10N ;

hence, 
2 (10 1) 9C

Right shift the digits of A by nine digits: 
(1417417260.1035587702142524239761 9)

1.4174172601035587702142524239761

A

Compute power-10 of A and accumulate the result: 
10 10(1.4174172601035587702142524239761)

32.732348712982628176658128707107

A A

Once again, compute the number of integers in A: 

2N ; hence, 
3 (2 1) 1C

The iteration stops, and the final answer is: 
6 0.091 5.909L

Thus, it can be seen that the algorithm does not require 

any lookup tables, curve fitting, FP division operations, 

or error correction circuitry. The following section 

describes the hardware implementation of the proposed 

scheme. 

IV. HARDWARE IMPLEMENTATION

The architecture of the radix-10 log converter is shown 

in Fig. 3. It consists of two major units both connected to 

a controller: Synchronous register-Counter and Core unit. 

The converter accepts two inputs: a 16-digit decimal 

number (P, in BCD) including the decimal point (inputted 

as hex ‘10’) and the desired number of digits after the 

decimal radix point (i, in binary) in the final log result. 

Depending on i, a down counter is set which defines the 

number of iterations. The core unit performs the 

fundamental computation supervised by the Controller. 

The width of the data lines in all the following figures is 

in decimal digit, unless otherwise specified. 

The architecture of the core unit is shown in Fig. 4. It 

does not show the interaction with the controller. The 

core architecture is developed using unsigned BCD 

representation with an internal precision of 16 digits (64-

bit binary). The DPS (decimal-point separator) module 

detects and separates the DP, and then stores the unsigned 

magnitude to a temporary register. The DP follows a 

separate path (DP Accumulator – DP Update) that is 

parallel to the core computation. The ‘DP Update’ 

module tracks the position of the decimal-point and 

updates it after every computation step. 

The 16-digit unsigned input is passed to the ‘Zero 

Detector’ (ZD) module that determines the number of 

integers, which is the first digit (or coefficient) of the 

final log result. The coefficient is updated at the same 

time in the ‘Coefficient Update’ module. The right-shift 

(RS) operation to be performed on A is also achieved at 

the same clock cycle by simply updating the position of 

the DP in the ‘DP Update’ module. The intermittent data 

is passed into the ‘Power-10 Unit’ and fed back to ZD for 

further processing. The data flow to ZD is controlled by 

Figure 4. Architecture of the core unit 

Figure 3.  Block diagram of the entire system 
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the controller (lines not shown) through a 2:1 multiplexer. 

The process continues until the counter reaches to zero 

and the controller then stops the computation. The final 

result is accumulated in the ‘Result Update’ unit after 

combining the outputs of ‘Coefficient Update’ and ‘DP 

Update’.  

A. Power-10 architecture 

The Power-10 module is a key unit of the log converter 

and the accuracy of the final result greatly depends on its 

efficient implementation. Because of its complexity, we 

have explored several options based on “divide and 

conquer” algorithm to efficiently implement the unit 

which are shown in Fig 5. Considering the tradeoff 

between hardware cost and speed, we have chosen option 

3 for our implementation. The algorithm is based on a 

recursive powering that requires one parallel multiplier 

unit and 4 cc to complete. This is a significant 

improvement over the previous implementation [22] 

which had taken 40 cc for such computation. 

The overall architecture of the Power-10 unit is shown 

in Fig. 6(a) where the width of all data lines is 16-digit. It 

consists of a 16-digit combinational multiplier, an 

accumulator, and a few latches. The selection bit (Sel)

dictates the multiplication operation: 0 for A*A; 1 for 

A*B. A key step of the proposed algorithm is to count the 

number of integers before the decimal point to evaluate 

the coefficients, iC , which may take any value between 

0 and 9 (where, 0i ). Inside the multiplier, the most 

significant 16 digits are retained and accumulated for 

further processing. The data flow is controlled using a 2:1 

multiplexer by the controller (lines not shown). After the 

first multiplication stage, the output (i.e., X2) is stored in a 

temporary latch so that it can be used later at the fourth 

multiplication stage. The timing diagram for each clock 

pulse and the selection/control sequence are shown in Fig 

6(b) [here, n indicates the instance of the clock pulse at 

any given time, t]. 

B. 16-digit decimal multiplier 

Several efficient methods for decimal multiplication 

have been proposed in the past [9][10]. Here, we have 

used a general purpose 16-digit combinational 

multiplication algorithm which is a modified version of 

[9]. This is another improvement over the previous 32-bit 

design [22] where a sequential multiplier was used. The 

multiplier architecture (as shown in Fig. 7) is optimized 

to reach the desired throughput. The multiplier input is 

recoded and the partial products are first kept in a 

redundant format and then accumulated by a tree of 

redundant adders. Finally the 32-digit product is obtained 

by converting the carry-save tree’s outputs into BCD 

format. The presented combinational architecture results 

in low latency and that is why it is chosen for the log 

converter.  

The product, p is given below, where A and B are the 

signed multiplier and the multiplicand respectively: 

1

0

. 10 , [0,9]
n

i

i

i

p A B A B B  (11) 

In order to make computation simple, iB  is recorded 

into two groups  {0,5,10}hB  and 

{ 2,1, 0,1, 2}lB  , where 
i h lB B B . Negative 

numbers are represented in radix-10 complement and are 

implemented by performing the 9’s complement of the 

BCD digit and adding a ‘1’ with the least significant 

digit. In order to compute ‘2X’ (two times input), we first 

duplicate each digit of the input and record it using 5 bits 

Decimal

Mult

A

B

Output

Latch

Sel

X

X10

0

1

Temp Latch

En

Acc.

(a) 

 (b) 

Figure 6. (a) Architecture of the Power-10 unit; (b) Timing 

diagram 

(a) Option 1 

(b) Option 2 

Mult unit 1

X X2 X4 X8 X10

Latency - 4 cc

(c) Option 3 

Figure 5. Power-10 algorithms and the cost of implementation 
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– one carry (1 bit) and one digit (4-bits). For a 16-digit 

input, it generates 16 digits and 16 carry bits. In the 

second step, the carry bits are added; the carry is not 

propagated to the next digit. The generation of 5X (five 

times input) is performed by first computing 10X (ten 

times input) and a simple division operation. The overall 

architecture of the partial product generator (PPG) is 

shown in Fig 8.  

The partial products are added using adder tree and 

converted to BCD. For this conversion, we have used an 

efficient signed-digit decimal adder [18] which has the 

benefit of carry-free addition; however a carry-

propagation adder (CPA) must be used to transform the 

signed-digit sum into an unsigned sum. The operation is 

shown in Fig. 9 and described as follows by (12):  

110 iiii ccuS    (12) 

where    

otherwise

u

u

if

if

c i

i

i 1

1

0

1

1
.

V. PERFORMANCE EVALUATION

The architecture of the 64-bit log converter has been 

prototyped using Verilog and synthesized onto Xilinx 

Virtex2p FPGA (xc2vp30ff1152-7). The breakdown of 

the cost of different units is shown in Table I. It can be 

seen that the Power-10 unit (including a combinational 

decimal multiplier) consumes the most resources of the 

entire system.  

A. Error analysis 

For the targeted 64-bit decimal FP applications, the 

proposed log converter must be able to achieve the 

minimum accuracy (i.e., 32-bit binary precision as 

defined in [31]) to guarantee correct operation. In order to 

compute the maximum error of the converted log result, 

we have performed an error analysis, where a long test 

vector comprising of 100 16-digit positive decimal 

numbers (ranging from 0000000000000000 to 

5
:1

 M
U

X

3
:1

 M
U

X

R
a
d
ix

-1
0
 A

d
d
e
r

Figure 8. Block diagram of the partial product generator (PPG) 

iU

1iC

iSiC

Figure 9. Final conversion to BCD using signed-digit adder 

TABLE I. HARDWARE COST OF THE PROPOSED 64-BIT DECIMAL LOG 

CONVERTER

Module Sub-

module 

Bit 

length 

Reg. Logic cells 

Others 64 269 213 Core Unit 

(inc. 

Power-10) 
Decimal 

mult 

64 0 6,403 

Controller and others 16 73 136 

Total 64 342 6,752 

Figure 7. 16-digit general purpose BCD multiplier 
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9999999999999999 with arbitrary position of decimal 

point) is used. The error is computed taking a precision of 

22-digit (written in Matlab) as reference. Fig. 10 shows 

the normalized error plot (in log scale) for only five 

arbitrary samples for different internal digit precision. In 

the x-axis, the number of decimal digits retained after one 

power-10 iteration is shown. It can be seen from the plot 

that the algorithm produces less error if higher number of 

digits is retained. The proposed architecture is based on a 

64-bit binary precision, and thus can only handle up to 

16-decimal digits. As a result, the error, as seen in the 

plot, is fixed after 16 digits. The maximum normalized 

error at this precision is estimated to be 
143.53 10 .

B. Hardware comparisons 

Table II compares the results of the proposed log 

converter with other similar designs. In the cases, where 

the information of logic cells is not available, we have 

computed it from the count of slices (e.g., one slice is 

equivalent to two logic cells). The latency indicates the 

minimum number of clock cycles required to produce 

decimal 1-digit output. In all cases, similar Xilinx FPGA 

technology is used and the maximum absolute error along 

with the number of digit accuracy is presented. 

We start with two binary designs [12][13] which give 

us a rough estimate about the relative comparison 

between binary and radix-10 designs. Note that, the 

results presented in [12] and [13] are based on the 

synthesis of HDL code that was originally generated 

automatically by C++ program. 

The work in [7] is based on a curve fitting (linear 

approximation) algorithm. Due to the use of look-up-

table (i.e., ROM mapping), the design takes only 1 cc to 

produce the output, but the crude approximation 

algorithm results in large error (e.g. maximum absolute 

error is 0.09 with only 3 digit accuracy). There are 16 

partition regions used to achieve such accuracy and a 

complex error-correction circuitry is required at the end. 

The work in [17] is based on a digital recurrence 

algorithm. With the use of large look-up-tables and 

complex mapping, the error is largely minimized, but at 

the expense of low operational frequency and reduced 

throughput (e.g. latency is 18 cc), which makes the 

scheme unsuitable for time critical applications. The 

decimal digit accuracy is 14, which is still lower than the 

proposed algorithm. [17] also discusses briefly the 

extension to 64-bit design, but the cost of actual FPGA 

implementation is not reported. As a result, we have 

estimated the cost from the 7-digit core. In [22], the 

authors have presented an iterative scheme with a 

sequential multiplier unit that results in consuming 

relatively low recourses; however the sequential nature of 

the architecture and the un-pipelined operation limit the 

performance by yielding a very large latency and low 

throughput. 

Compared to all existing designs, the proposed scheme 

has much lesser computation error and higher digit 

accuracy (very naturally as it uses higher precision), 

lesser hardware cost, and higher frequency of operation. 

Compared to [22], the hardware cost of the proposed 64-

bit scheme is higher (and so is the estimated power 

consumption) because of the two following reasons: (1) 

use of a combinational multiplier; (2) use of a much 

higher digit precision. However, the (minimum) latency 

is 4 cc which makes the proposed scheme very suitable 

for time and accuracy critical applications. The 

computation algorithm is generalized and scalable, which 

means that the architecture can be extended for 

decimal128 format without causing large increase in the 

complexity and hardware cost – this is another advantage 

of the proposed scheme. As an example, for compliance 

with the IEEE754-2008 decimal64 format, [17] requires a 

significant increase in two LUTs from 14-digit to 34-

digit, and moderate increase in other processing blocks 

with a large increase in latency by at least two times. 

VI. CONCLUSION

The paper presents a fast algorithm and efficient 

implementation for computing decimal logarithm using 

64-bit floating-point arithmetic that complies with the 

IEEE754-2008 standard. The algorithm is based on a 

digit-by-digit iterative computation that does not require 

look-up tables, curve fitting, decimal-binary conversion, 

or division algorithms. The final logarithmic output is 

very accurate with a maximum absolute error of 3.53x10-

14; no correction or rounding circuitry is required that 

makes the scheme suitable for timing and accuracy 

critical applications. The architecture is generalized and 

scalable – can be extended for decimal128 format. Future 

research is directed towards such extension, as well as the 

VLSI implementation of the algorithm. 

4 6 8 10 12 14 16 18 20 22
10
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Figure 10. Normalized error of log converter for different precision 
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