
LUC Model : A Timestamp Ordering based
View Consistency Model for Distributed Shared

Memory
Rubaiyat Islam Rafat, Kazi Sakib

Institute of Information Technology, University of Dhaka,Dhaka, Bangladesh
Email: rafat.mit.806@gmail.com, sakib@univdhaka.edu

Abstract— Excessive locking and cumulative updates in
Distributed Shared Memory (DSM) not only reduces the
parallelism for block access but also causes a serious
degradation in response time for a dense network. This
paper proposes a new consistency model in DSM named
Last Update Consistency (LUC) model, where the model
uses logical clock counter to keep the DSM consistent.
The logical clock always increases never decreases. So the
increasing order of the logical clock value is used to provide
the request to the DSM. In this model, multiple nodes
can perform READ operations over the same block at a
time. For WRITE operation over the same block, only
the last modification will exist and the earlier WRITE
operations will be treated as obsolete WRITE and should be
discarded. The experimental and analytical analysis showed
that the proposed model effectively reduces the unnecessary
network traffic and cumulative block updates that exist in
the Sequential Consistency Model and Release Consistency
Model.

Index Terms— View Consistency Model, Timestamp Order-
ing Protocol, Distributed Shared Memory.

I. I NTRODUCTION

Increasing network density invokes the scalability issue
for DSM. When large number of nodes exists in the
distributed system, regular broadcast of block modifi-
cation not only degrades the performance of DSM but
also abuse the network traffic of the system. Cumulative
block modification is another factor that degrades the
performance of DSM and becomes a threat for the existing
limited storage structure [6].

When a DSM model provides more concentration on
sequential ordering, parallelism is reduced as a trade off.
For maintaining consistency, one phase locking and two
phase locking (SHARED and EXCLUSIVE) protocol [9]
have been used by Release Consistency (RC) and Entry
Consistency (EC) models. But both of these models are
highly infected with cumulative modification of block
updates and degrades throughput of the system. Although
the ancient Sequential Consistency (SC) model is free
from cumulative updates, it is not free from broadcasting
block updates to the irrelevant nodes in the DSM [14].

This paper is based on “Logical Clock based Last Update Consistency
model for Distributed Shared Memory” by Rubaiyat Islam Rafat and
Kazi Sakib, which appeared in the 12th International Conference on
Computer and Information Technology (ICCIT), Dhaka, Bangladesh,
December 2009.c© 2009 IEEE.

If a DSM model uses different techniques for main-
taining SC rather than locking mechanism, the higher
response time issue in DSM might be minimized. Such a
technique should be Timestamp Ordering (TO) Protocol.
The proposed Last Update Consistency (LUC) model uses
TO or logical clock counter to maintain SC, because TO
is easy to implement and always ensures SC [3].

If the view level of data is considered, we can see that
the user always get the last updated view of the data, no
matter how and who has modified the data. Under this
phenomenon, the cumulative updates of data are useless
for the view layer of the user. If we want to ensure view
consistency [12] and optimize our storage structure, we
need to clean up the cumulative updates and keep the last
modified data in the DSM. The proposed LUC model
ensures view consistency [14] by storing only the last
updated data [1].

The experimental result shows that the bytes transferred
and response time for both WRITE and initial WRITE
(UPLOAD) operation for different models considerably
differs from each other. RC model shows better perfor-
mance in bytes transferred for UPLOAD operation, while
scores worst on response time for WRITE operation. SC
model scores well in response time for WRITE operation
but stuck on bytes transferred for UPLOAD. On the other
hand, the proposed LUC model performs better for both
the cases compared to existing consistency models. In
response time comparison, LUC model minimizes 24%
(average) over SC model and 32.5% (average) over RC
model. In network traffic comparison, LUC model mini-
mizes 22% (average) over SC model and 44% (average)
over RC model. Moreover, the simulation result has
supported LUC model which has minimized throughput
to 24% and jitter to 40% than existing RC model.

The rest of the paper is organized as follows; section 2
elaborates the motivation of this research work. Section 3
describes the proposed model, its architecture and in gen-
eral how it maintain consistency. Section 4 elaborates im-
portant and widely used consistency models for DSM and
necessary background study for developing LUC model.
The next section focuses on how this model operates in
DSM and underlying algorithms of LUC model. Section
6 introduces some analytical information and comparative
study between LUC model and other existing consistency
models. The next section illustrates performance analysis

1828 JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010

© 2010 ACADEMY PUBLISHER
doi:10.4304/jcp.5.12.1828-1838

of LUC model and other existing consistency models in
real world scenerio and simulation environment. The next
section provides improvement discussion of LUC model
for network traffic, response time, throughput and jitter
factors and finally a summary of this paper and future
scope of this model is discussed in the Conclusion section.

II. M OTIVATION

The consistency model of a DSM system specifies
the ordering constraints on concurrent memory accesses
by multiple processors. So, it occupies a fundamental
impact on DSM systems programming convenience and
implementation efficiency [7]. The Sequential Consis-
tency (SC) model has been recognized as the most natural
and user friendly DSM consistency model. The SC model
guarantees that the result of any execution is the same as
if the operations of all processors were executed in some
sequential order and the operations of each individual
processor appear in this sequence in the order specified
by its own program. This implementation is correct but it
suffers from serious performance degradation [6].

To improve the performance of the strict SC model, a
number of weaker SC models have been proposed [9],
[13], [14]. However, none of them can achieve data
selection without programmer annotation [2]. Usually
consistency models should not impose any extra burden
on programmers, such as annotation of lock-data asso-
ciation and scope-data association in Scope Consistency
(ScC) [16].

View Consistency (VC) model is relatively new in the
area of consistency models of DSM. Compared to other
DSM consistency models, this model can achieve data
selection without user annotation and reduce more false
sharing effect by only updating data objects in the view
of a processor [12]. Like some other weak Sequential
Consistency models, the VC model can guarantee the
same execution result as the SC model [4]. VC model
allows an entity to only access later versions of data than
what the entity had previously accessed. A data version
is considered as older one if it is the same as or newer
than the latest version accessed by any of the components
of the entity. The optimistically replicated behavior of
VC model provides highly available data even when
communication between data replicas is unreliable or
unavailable [5]. The advantages of the view-consistency
model are two folds closely cooperating clients observe
mutually consistent data, and distant clients do not pay
the instantaneous cost of maintaining consistency (dur-
ing accesses). Therefore view consistency enables useful
collaboration in many large scale environments [2].

The high availability of replicas might create inconsis-
tent accesses of data in VC model of DSM [4]. For en-
suring synchronization, accesses of data can be regulated
using locks before and after accessing a shared memory
segment. Under lock-based concurrency control, an oper-
ation can obtain a lock only if another operation does not
hold a conflicting lock on the same data item. When a lock
is set, other operations that need to be set a conflicting

lock are blocked until the lock is released, usually when
the operation is completed. The more operations that
are running concurrently, the greater the probability that
operations will be blocked. These Excessive locking lead
to reduce throughput and increase response times [6]. The
resource costs involved in lock maintenance are consider-
able and these costs dramatically escalate as the number
and complexity of concurrent operations increases. Uses
of Timestamp Ordering (TO) protocol might be a good
solution to avoid unnecessary locking [3]. TO does not
attempt to maintain SC by mutual exclusion so that it
should not cause deadlock. Moreover, TO ensures SC
without degrading throughput [3].

In this paper, we propose a View-based Consistency
model where Timestamp based ordering is used, namely
Last Update Consitency (LUC) model which, utilizes VC
model ensuring consistency by TO.

III. B ACKGROUND AND RELATED WORK

In this section, we briefly describe the necessary
Thomas Write Rule for maintaining consistency in TO
protocol. We also discuss other related work in the arena
of DSM consistency model.

A. Thomas Write Rule for Timestamp Ordering

While implementing the Timestamp based protocol one
major challenge was obsolete write operation. When a
later node executes a write operation over the same block
that was writing in previous by another node, the earlier
nodes’ write operation has been treated as an obsolete
write because only the latest modification will exist in
the system. To avoid such problem LUC model uses
Thomas Write Rule provided by R.H. Thomas [11] for
obsolete write operation. Thomas Write Rule states that
if Timestamp on a transactionT is TS(T) and Write
Timestamp on an objectO is WTS(O) and such a
situation occurs that,TS(T) < WTS(O), the current
write action has been made obsolete by the most recent
write of O, which follows the current write according
to Timestamp ordering. If we consider a non-conflict
serializable transaction scheduleS whereT1 andT2 trans-
actions can perform concurrently, Thomas Write Rule
relies on the fact thatT1’s write on objectA is never
seen by any transaction and postulates that the schedule
in Figure 1 is equivalent to the schedule in Figure 2, where
T2 occurs strictly afterT1, and that hence the write ofT1

can be ignored. This happens because the view level of
data only gets the last modification of the data and all
previous modifications are ignored.

B. Related Work

In the following sub section important research solu-
tions for improving efficiency of the existing DSM system
has been discussed.

Cristiana Amza in her paper describes Trademarks [8]
DSM system that implements Lazy Release Consistency
(LRC) model [13]. This model does not require the update

JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010 1829

© 2010 ACADEMY PUBLISHER

T1 T2

R(A)
W (A)

COMMIT

W (A)
COMMIT

Figure 1. A non conflicting serializable transaction schedule

T1 T2

R(A)
W (A)

COMMIT

W (A)
COMMIT

Figure 2. Equivalent non conflicting serializable transaction schedule

propagation at release time. Although, the Lazy Release
Consistency (LRC) model improves the Release Consis-
tency (RC) model [15] by performing time selection and
processor selection, the unnecessary update propagation
is further postponed and stored until another processor
has successfully executed an acquire phase.

Bershad, describes Midway [10], a DSM that intro-
duces a new consistency Model - The Entry Consistency
(EC) model [9] that tried to remove the propagation of
useless updates in LRC by requiring the programmer
to annotate association between ordinary data objects
and synchronization data objects (e.g. locks). Although
the useless updates are prohibited in the model, the
cumulative updates still remain in this system.

L. Iftode et al. describe another new consistency model
namely, The Scope Consistency (ScC) model [16]. This
model is very similar to EC, except it can partially au-
tomate the association between ordinary data objects and
synchronization data objects by introducing the concept
of consistency scope. The major disadvantage of this
technique is, scopes have to be explicitly annotated by the
programmer for non-critical regions. If the annotation is
not correct, ScC cannot guarantee Sequential Consistency
for the program.

Z. Huang et al. introduce view based consistency model
and how it should be implemented [12]. They defined
view as a set of ordinary data objects that a processor
has the right to access in shared memory if it has gained
exclusive access to the data object or the data object is
read-only. Views have been classified as Critical Region
Views (CRV) and Non-critical Region Views (NRV) [4].
A processor’s CRV is its view while it executes inside
a critical region. A processor’s NRV is its view while it
executes inside a non-critical region. VC model is free
from user annotation for data selection. But VC needs to
maintain strict SC because of high availability of data [5].

Object based DSM [7] is another type of DSM where
a document is considered as an object. The Parent Class

inherits the critical sections of the Child class, so false
sharing and network traffic is reduced in such a system.
LUC model is implemented on page based DSM not
based on object based DSM.

Different consistency models emphasizes on different
factors. SC model emphasizes more on sequential consis-
tency but highly infected with increasing network traffic
due to broadcasting updates [13]. RC model empha-
sizes more on locking mechanism but highly infected
with increasing network traffic and response time due
to cumulative updates and excessive locking [9]. LRC
model emphasizes more on propagation of network traffic
but highly infected with increasing volume of storage,
uses for cumulative updates [16]. EC model emphasizes
more on removing unnecessary locking mechanism but
highly infected with increasing volume of storage, uses
for cumulative updates [3]. ScC model emphasizes more
on scope annotation but highly infected to guarantee
sequential consistency, if the scope annotation is not cor-
rect [12]. So, the users of DSM demand such a model that
not only overcomes the above limitations of the existing
models but also ensures high degree of parallelism. The
proposed LUC model tries to overcome the limitations
of the existing models. It ensures sequential consistency,
reduces the network traffic and response time, free from
cumulative updates and also ensures view consistency that
increases the parallelism in DSM.

IV. OVERVIEW

Figure 3 gives an overview of our framework, which
consists of a set of distributed nodes having own mem-
ory and processing units, communication medium and
a software DSM (SDSM) Layer. SDSM systems pro-
vide programmers with a shared memory programming
environment across distributed memory architectures. In
contrast to the message passing programming environ-
ment, the SDSM can resolve data dependencies within
the application without the programmer having explicitly
specify communication [12].

For developing LUC Model, a page based DSM system
has been chosen like IVY [17]. The sequential consistency
is maintained by the incremental order of timestamp
or logical clock counter that only increases and never
decreases. LUC model uses strict Timestamp Ordering
(TO) [3] to synchronize concurrent accesses and guaran-
tee SC. To ensure sequential access, timestamps generated
at all nodes must be unique and totally ordered since a
timestamp assigned to a transaction initiated at one site
is also used to access a replica at another site. A global
timestamp at the LUC matrix is increased whenever there
is a new access, and a DSM manager is used to update
timestamp it receives in a message from the LUC matrix
to generate its local timestamps. In this model, all DSM
managers maintain a LUC matrix for tracking the request
and response of different nodes in DSM (Table I). When a
node wants to perform a READ or WRITE operation, the
DSM manager will provide that node a logical counter
value Ci. If the operation is a READ operation, the

1830 JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010

© 2010 ACADEMY PUBLISHER

Figure 3. Overview of LUC Architecture

TABLE I.
LAST UPDATE CONSISTENCYMATRIX

Request Counter Node ID Block ID Opertion
WRQ 1 P1 A Write
WRQ 2 P3 A Write
UURQ 3 P1 A Wait

UC 4 P3 A Updated
RRQ 5 P2 A Read

request type will be treated as Read Request (RRQ) (Table
1), if it is a WRITE operation, Write Request (WRQ)
(Table I) is considered. If a node find itself as a obsolete
block writer, it will discard its modification over that
block and send an Urgent Update Request (UURQ) (Table
1) to the later block writer informing the node to send
the updated block. After proper modification, the later
node finds that already an UURQ is waiting for updated
block, it will replicate and migrate the updated block to
the requestor node and sends an Update Complete (UC)
(Table I) message to the LUC matrix.

When any other node wants to perform READ op-
eration over the same block but does not contain the
replicated copy of the block, will search in the LUC
matrix for the last updated block owner and replicate
and migrate the block for READ. One of the main
features of LUC Model is, only the last updated block
will exist in the system and any obsolete write operations
will be discarded according to Thomas write rule [11].
This mechanism should relief us from the cumulative
updates problem. Moreover, the logical clock counter
not only ensures sequential consistency but also reduces
memory and time consumption from two phase locking
mechanism [3].

V. CASE STUDY

In this section, we focuses on how our framework can
be used. LUC is the main algorithm that ensures both the
view consistency and timestamp ordering. First of all the

generic VC algorithm has been discussed and then step
by step how LUC algorithm works is described.

A. How View Consistency Works

In VC model the view moderator uses a generic VC
algorithm to ensure consistency. Firstly, the replica and
view timestamp should be read from the corresponding
file by which a view entity is generated [Equation 1, 2].

viewTS, viewReplica ⇐ ReadV iewEntry(fId) (1)

viewEntry ⇐ viewTS, viewReplica (2)

If the view entity is empty which indicates the node
has no replica of the desired data, a new replica is created
from First available location using Replicate and Migrate
Block (RMB) approach [Equation 3].

newReplica ⇐ FastReplica(File, viewEntry) (3)

If the view entity is non empty, a new replica is created
from later replica which is actually the view of the next
file operation [Equation 4].

newReplica ⇐ LaterReplica(File, viewEntry) (4)

After completing the file operation the current times-
tamp is collected and being checked with the previous
view timestamp. If the current timestamp is the later one
which indicates the last modification of data, information
is written into the view entity [Equation 5].

WriteV iewEntry(fId, fileTS, newReplica) (5)

JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010 1831

© 2010 ACADEMY PUBLISHER

Algorithm 1 View Consistency Algorithm
fId, replica ⇐ File

viewTS, viewReplica ⇐ ReadV iewEntry(fId)
viewEntry ⇐ viewTS, viewReplica

if viewEntry 6= NULL then
newReplica ⇐ LaterReplica(File, viewEntry)

else
newReplica ⇐ FastReplica(File, viewEntry)

end if
data, fileTS ⇐ FileOperation(fId, newReplica)
if fileTS > viewTS then

WriteV iewEntry(fId, fileTS, newReplica)
end if
return data

B. How LUC Algorithm Works

LUC algorithm utilizes both the VC algorithm and TO
alogorithm to maintain SC. LUC algorithm performs two
separate actions for READ and WRITE operations. In
WRITE operation Thomas Write rule is used for obsolete
WRITE.

Initially the LUC matrix remains empty [Equation 6].

LUCmatrix = φ (6)

and the counter initiates with 1 [Equation 7].

C(n) = 1 (7)

The incoming operations on DSM are categorized into 3
categories namely, READ, WRITE and UPLOAD(Initial
WRITE). If a READ operation occurs, READ algorithm
is performed. If a WRITE operation occurs, WRITE algo-
rithm is performed else the block is uploaded into DSM.
Finally the counter is incremented with 1 [Equation 8].

C(n) = C(n) + 1 (8)

Algorithm 2 LUC Algorithm
Require: LUCmatrix = empty

C(n) ⇐ 1
for all Operations do

if READ then
READ Algorithm

else if WRITE then
WRITE Algorithm

else
UploadBlock to DSM

end if
C(n) ⇐ C(n) + 1

end for

C. How READ Algorithm Works

First of all READ algorithm searches the LUC matrix
for any request type containing UC or Update Complete
[Equation 9].

RQtype = UC (9)

If no record exists, the requested node replicate and
migrate the block from the original uploaded node and
inserts a record containing request type RRQ or Read
Request in the LUC matrix [Equation 10].

LUCmatrix ⇐ RQtype(RRQ) (10)

If any record exists, the requested node search LUC
matrix for any request type containing WRQ or Write
Request [Equation 11].

RQtype(WRQ) (11)

If any record exists, that record indicates currently writing
over the block. So, the requested node inserts an UURQ
type request or Urgent Update Request in the LUC
matrix [Equation 12] and wait for updated block from
the modifying node.

LUCmatrix ⇐ RQtype(UURQ) (12)

Now if the last modified node is the requesting node itself,
it starts READ operation and inserts a entry containing
request type RRQ or Read Request in the LUC matrix
[Equation 13]. Otherwise, replicate and migrate the block
from the last modified node and insert a record containing
request type RRQ or Read Request in the LUC matrix.

LUCmatrix ⇐ RQtype(RRQ) (13)

Algorithm 3 READ Algorithm
repeat

BSearch(LUCmatrix)
until RQtype = UC

if Found then
if TS 6= (n − 1) then

repeat
BSearch(LUCmatrix)

until RQtype = WRQ

if Found then
LUCmatrix ⇐ RQtype(UURQ)
break

end if
end if
if Node = own then

LUCmatrix ⇐ RQtype(RRQ)
StartRead

else{Node = other}
RMB

LUCmatrix ⇐ RQtype(RRQ)
StartRead

end if
else

RMB from Initial Uploaded Node
LUCmatrix ⇐ RQtype(RRQ)
StartRead

end if

1832 JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010

© 2010 ACADEMY PUBLISHER

D. How WRITE Algorithm Works

First of all, WRITE algorithm searches the LUC matrix
for any request type containing UC or Update Complete
[Equation 14].

RQtype = UC (14)

If no record exists, the requested node replicates and
migrates the block for writing from the original uploaded
node and inserts a record containing request type WRQ
or Write Request in the LUC matrix [Equation 15].

LUCmatrix ⇐ RQtype(WRQ) (15)

If any record exists, the requested node search LUC
matrix for any request type containing WRQ or Write
Request [Equation 16].

RQtype(WRQ) (16)

If any record exists, that record indicates currently writing
over the block. So, the requested node inserts an UURQ
type request or Urgent Update Request in the LUC
matrix [Equation 17] and wait for updated block from
the modifying node.

LUCmatrix ⇐ RQtype(UURQ) (17)

Now if the last modified node is the requesting node itself,
it starts WRITE operation and inserts a entry containing
request type WRQ or Write Request in the LUC matrix.
Otherwise, replicate and migrate the block from the last
modified node and insert a record containing request type
WRQ or Write Request in the LUC matrix [Equation 18].

LUCmatrix ⇐ RQtype(WRQ) (18)

Now, WRITE algorithm search the LUC matrix again
for any request type containing UURQ or Urgent Update
Request [Equation 19].

RQtype(UURQ) (19)

If any record exists, the current node replicate and migrate
the block to the requested node submitting request type
UURQ or Urgent Update Request and inserts a entry for
UC or Update Complete request type [Equation 20].

LUCmatrix ⇐ RQtype(UC) (20)

E. How LUC Model Handles Obsolete Write Operation

According to Thomas Write Rule, If a later node com-
pletes the write operation before the earlier node, over the
same block but different view, an obsolete write operation
performs. From [Figure 4], the sequence of operation of
LUC model is discussed. DSM1 wants to perform a write
operation of a block that belongs to DSM2. So replica is
transfered to DSM1. In the meantime DSM3 wants to
perform write operation over the same block so a replica
is also been transfered to DSM3. timestamp of DSM1
for write operation is lower than DSM3, so it is expected
to complete the write operation for DSM1 before DSM3
does. If DSM3 completes the operation before DSM1

Algorithm 4 WRITE Algorithm
repeat

BSearch(LUCmatrix)
until RQtype = UC

if Found then
if TS 6= (n − 1) then

repeat
BSearch(LUCmatrix)

until RQtype = WRQ

if Found then
LUCmatrix ⇐ RQtype(UURQ)
break

end if
end if
if Node = own then

LUCmatrix ⇐ RQtype(WRQ)
StartWrite

else{Node = other}
RMB

LUCmatrix ⇐ RQtype(WRQ)
StartWrite

end if
repeat

BSearch(LUCmatrix)
until RQtype = UURQ

if Found then
C(n) ⇐ C(n) + 1
RMB to the Requested Nodes
LUCmatrix ⇐ RQtype(UC)

end if
else

RMB from Initial Uploaded Node
LUCmatrix ⇐ RQtype(WRQ)
StartWrite

end if

then an obsolete write performs and DSM1 is notified
about that. When DSM1 completes the operation DSM
manager send a request to DSM3 to send the updated
block to DSM1 because DSM1 performs an obsolete
write. Then DSM3 sends the updated replica to DSM1 and
both DSM1 and DSM3 hold the last updated view of data
without any conflict and increasing concurrency. Now if
DSM2 wants to perform a read operation over the same
block, it needs to get the updated view of the same block
that holds by DSM3. So again DSM3 can provide last
updated replica to DSM2 and only the last updated view
of data remains in the system. No cumulative updates
generated by any nodes.

VI. PERFORMANCEANALYSIS

It is difficult to provide a generic equation or a math-
ematical expression to measure the performance of any
consistency models, but in general for measuring the net-
work traffic or transferred bytes for any consistency model
a general mathematical expression can be expressed as
follows.

JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010 1833

© 2010 ACADEMY PUBLISHER

Figure 4. Sequence Diagram of LUC Model for READ and WRITE
Operation

A. Sequential Consistency Model

For READ operation, SC model transmits an ACK
message (M) to all existing nodes (n) in DSM and
transmit respective block size (B′) for read in network
traffic. So the equation for transferred bytes is

fr(x) =

n−1
∑

i=1

Mi + B′ (21)

For WRITE operation, SC model transmits both ACK
message (M) and respective block size (B) for write to all
existing nodes (n) in DSM. So the equation of transferred
bytes is

fw(x) =

n−1
∑

i=1

Mi +

n
∑

i=1

Bi (22)

B. Release Consistency Model

For READ operation, RC model transmits an ACK
message (M) to all relevant nodes (n′) in DSM and
transmits respective block size (B′) for read in network
traffic. In addition if any cumulative updates exist (p)

for any node, that also transmits. So the equation of
transferred bytes is

fr(x) =

n′
−1

∑

i=1

Mi + B′ +

p
∑

i=0

Bi (23)

For WRITE operation, RC model transmits ACK message
(M) to all relevant nodes (n′) in DSM and transmits
respective block size (B) for write in DSM. In addition
if any cumulative updates exist for any node, that also
transmits. So the equation of transferred bytes is

fw(x) =

n′
−1

∑

i=1

Mi +

p
∑

i=1

Bi (24)

C. Last Update Consistency Model

For READ operation, LUC model transmits an ACK
message (M) to all relevant nodes (n′) in DSM and
transmit respective block size (B′) for read in network
traffic. So the equation of transferred bytes is

fr(x) =

n′
−1

∑

i=1

Mi + B′ (25)

For WRITE operation, LUC model transmits both ACK
message (M) to all relevant nodes (n′) in DSM and
transmits respective block size (B) for write in DSM. So
the equation for transferred bytes is

fw(x) =

n′
−1

∑

i=1

Mi + B (26)

In the above equations, it is considered that the bytes
transfered for write operation is considerably greater than
the bytes transfered for read operation and bytes trans-
fered for read operation is considerably greater than the
bytes transfered to DSM manager for acknowledgement.

B ≫ B′ ≫ M

and also the total number of nodes is considerably greater
than the selective nodes of the network containing the
same block.

n ≫ n′

.

VII. E XPERIMENTAL RESULT ANALYSIS

For comparing the performance between two existing
consistency models and the LUC model, two major
factors have been chosen. These are Network Traffic
and Response Time for accomplishment of the opera-
tions [2]. Initially, Sequential Consistency (SC) model and
Release Consistency (RC) model have been developed
and then the proposed Last Update Consistency (LUC)
model has been developed. The Network Traffic Analysis
and Response Time Analysis depend on different fac-
tors, like in Response Time Analysis the nature of the
system (Homogenous/ Heterogeneous) affects more. So,
Homogenous system has been used where all nodes have
the same components.

1834 JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010

© 2010 ACADEMY PUBLISHER

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 3 3.5 4 4.5 5 5.5 6

R
e
s
p
o
n
s
e
 T

im
e
 (

S
e
c
.)

Number of Nodes

Response Time Analysis for WRITE

SC Model
RC Model

LUC Model

Figure 5. Response Time Performance Analysis for WRITE Operation

A. System Environment Description

A cluster of 6 identical 3.06 GHz Intel Xeon servers
running Linux version 2.6.25 and connected through a
gigabit switch have been used to evaluate our LUC
approach. Each node contained individual DSM manager
module for memory mapping. All nodes had identically
similar processing power and memory. For developing the
system a wired distributed network was chosen where
all nodes were connected by bus topology. The imple-
mentation is done at the user level, without modification
to the operating system kernel. Furthermore, this model
does not rely on any particular compiler. Instead, the
implementation relies on (user-level) memory manage-
ment techniques to detect accesses and updates to shared
data. In order to address the performance problems with
earlier DSM systems, the LUC implementation focuses
on reducing the amount of communication necessary to
keep the distributed memories consistent.

B. Simulation Environment Description

For simulating the proposed model NS-2 simulator has
been used. 2Mbps duplex links has been used between
the source and destination nodes. The number of nodes
was set to 50. Each node has used a DropTail queue, of
which the maximum size was 10. UDP was chosen as
agent and CBR for Application/Traffic. The duration for
simulation was 5 sec.

C. Response Time Analysis

The graph [Figure 5] shows that the RC model shows
the worst performance compare to other models, because
of its cumulative update nature. RC model’s performance
degradation is proportional to the network density. The
graph also shows that the LUC model performs better
in this experiment because of its lower resource using
strategy.

D. Network Traffic Analysis

The graph [Figure 6] shows that the RC model shows
the worst performance compare to other models, because

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 3 3.5 4 4.5 5 5.5 6

B
y
te

s
 T

ra
n

s
fe

re
d

Number of Nodes

Network Traffic Analysis for WRITE

LUC Model
SC Model
RC Model

Figure 6. Network Traffic Performance Analysis for WRITE Operation

of its cumulative update nature. RC model’s performance
degradation is proportional to the network density. The
graph also shows that the LUC model performs better
in this experiment because of its lower resource using
strategy.

E. Average Throughput Analysis

The throughput of the simulation increases because,
file transfer rate increase as the size of the file increase.
The higher throughput indicates higher data transmission
of the network and maximum utilization. From the Fig-
ure 7, we find that the average throughput increases for
both models linearly as the file size increases. Usually
the throughput fluctuates over period of time. But the
average throughput indicates the network traffic load over
a system. Initially when the file size was small the total
bytes transmitted by the system was low. When the block
size increases the transmitted bytes also increase. In RC
model the slope of the curve increased due to propagation
of the unnecessary cumulative updates. On the other hand,
in LUC model the gradient was lower than RC model
due to minimization of the network traffic. Comparatively,
LUC reduces the network traffic than RC model by not
propagating unnecessary updates to DSM. But in the both
cases throughput increase linearly with respect to block
size due to network saturation in Ethernet.

F. Average Delay Time Analysis

Average delay time is a vital indicator for performance
measuring between different DSMs. Although the average
delay time for different models were expected to be
different, the deviation in aveage delay time for different
models in simulation environment was almost nil. The
delay time of the simulation increases because of file
size increase. The average delay time should provide a
profound knowledge of time reduction of a system. From
the Figure 8, we find that the average delay time increase
for both models spontaneously as the file size increase
from 2048 to 4096. But the average delay time was not
increased significantly after that. The reason behind the

JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010 1835

© 2010 ACADEMY PUBLISHER

 50

 100

 150

 200

 250

 300

 350

 2000 3000 4000 5000 6000 7000

A
v
e
ra

g
e
 T

h
ro

u
g
h
p
u
t
(k

b
p
s
)

Size of File (Bits)

Average Throughput Analysis

LUC Model
RC Model

Figure 7. Average Throughput Analysis for LUC and RC Model in
Simulator Environment

curvature behavior of Average Delay Time is, initially
when the file size increased the number of replicas of
a specific block was limited. After sequence of operation
the number of replicas existed to almost all the nodes. So,
initially when the file size increased the Average Delay
Time was also increased. After several operations when
the replicas are available by most of the nodes only the
diffs or the modified portion of the block was transmitted
so the curve did not extend linearly although the file size
increased gradually. Although the average delay time for
all models are same, the average jitter curve should not
be same as average delay time.

G. Average Jitter Analysis

Jitter is the time variation of a periodic signal in
electronics and telecommunications. Jitter is used as a
measure of the variability over time of the packet la-
tency across a network. For measuring the performance
of a DSM jitter can be a good indicator. If jitter is
increased due to communication in DSM, the good-
put of the system drops. So, in LUC model that uses
timestamp ordering, might face challenges with respect
to consistency. In existing models the increment of jitter
not only hampers the concurrency but also increases
the probability of thrashing. From the Figure 9, initially
jitter increases spontaneously because average delay time
increases gradually. But subsequently the jitter degrades
when delay time failed to increase greatly. The major
improvement of LUC model over existing RC model
has been found in jitter analysis which was absent in
average delay time analysis. In average delay time the
improvement of LUC model was hidden due to excessive
computation for ensuring consistency by providing more
concurrency. But in jitter analysis LUC model scores
better than RC model because of its underlying timestamp
ordering, concurrent access and propagation of only the
updated information by ensuring view consistency.

 25

 30

 35

 40

 45

 50

 55

 60

 2000 3000 4000 5000 6000 7000

A
v
e
ra

g
e
 D

e
la

y
T

im
e
 (

S
e
c
.)

Size of File (Bits)

Average DelayTime Analysis

All Model

Figure 8. Average Delay Time Analysis for LUC and RC Model in
Simulator Environment

 0

 20

 40

 60

 80

 100

 120

 2000 3000 4000 5000 6000 7000

A
v
e
ra

g
e
 J

it
te

r
(S

e
c
.)

Size of File (Bits)

Average Jitter Analysis

LUC Model
RC Model

Figure 9. Average Jitter Analysis for LUC and RC Model in Simulator
Environment

H. Improvement Analysis

From the Figure 10, the improvement of LUC model
over SC model in Response Time shows an exponential
curve having the increamental improvement of 21.73% ,
24.11% , 24.82% and 25.11% with respect to scalability
issue. The average improvement is 23.9525% .

From the Figure 11, the improvement of LUC model
over RC model in Response Time shows an exponential
curve having the increamental improvement of 30.47% ,
32.59% , 33.35% and 33.68% with respect to scalability
issue. The average improvement is 32.5264% .

From the Figure 12, the improvement of LUC model
over SC model in Network Traffic shows a linear curve
having the increamental improvement of 19.11% , 21.89%
, 22.92% and 23.56% with respect to scalability issue. The
average improvement is 21.8690% .

From the Figure 13, the improvement of LUC model
over RC model in Network Traffic also shows a linear
curve having the increamental improvement of 37.79% ,
44.01% , 46.77% and 47.56% with respect to scalability
issue. The average improvement is 44.0314% .

1836 JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010

© 2010 ACADEMY PUBLISHER

 21.5

 22

 22.5

 23

 23.5

 24

 24.5

 25

 25.5

 3 3.5 4 4.5 5 5.5 6

P
e
rc

e
n
ta

g
e
 I
m

p
ro

v
e
m

e
n

t

Number of Nodes

Improvement Analysis for Response Time

SC Model
Average

Figure 10. Improvement of LUC model compare to SC model in
Response Time for WRITE Operation

 30

 30.5

 31

 31.5

 32

 32.5

 33

 33.5

 34

 3 3.5 4 4.5 5 5.5 6

P
e

rc
e

n
ta

g
e

 I
m

p
ro

v
e

m
e

n
t

Number of Nodes

Improvement Analysis for Response Time

RC Model
Average

Figure 11. Improvement of LUC model compare to RC model in
Response Time for WRITE Operation

VIII. D ISCUSSION

In this section the improvement of LUC model over
RC and SC model in different factors is discussed.

The improvement of LUC model over SC model
in Response Time shows an average improvement of
23.9525%. Secondly, the improvement of LUC model
over RC model in Response Time shows an average
improvement of 32.5264% . So, LUC model increases
improvement of 8.5739% over RC model than SC model.
RC model decreases its performance in response time for
excessive locking mechanism(both READ and WRITE)
and cumulative update propagation. SC model is free
from cumulative update propagation so it scores better
than RC model. Thirdly, the improvement of LUC model
over SC model in Network Traffic shows an average
improvement of 21.8690% . Finally, the improvement of
LUC model over RC model in Network Traffic shows
an average improvement of 44.0314% . So, LUC model
increases improvement of 22.1624% over RC model than
SC model. RC model decreases its performance in net-
work traffic for cumulative update propagation. SC model
is free from cumulative update propagation so it scores
better than RC model. LUC model has neither cumulative

 19

 19.5

 20

 20.5

 21

 21.5

 22

 22.5

 23

 23.5

 24

 3 3.5 4 4.5 5 5.5 6

P
e

rc
e

n
ta

g
e

 I
m

p
ro

v
e

m
e

n
t

Number of Nodes

Improvement Analysis for Network Traffic

SC Model
Average

Figure 12. Improvement of LUC model compare to SC model in
Network Traffic for WRITE Operation

 38

 40

 42

 44

 46

 48

 3 3.5 4 4.5 5 5.5 6

P
e

rc
e

n
ta

g
e

 I
m

p
ro

v
e

m
e

n
t

Number of Nodes

Improvement Analysis for Network Traffic

RC Model
Average

Figure 13. Improvement of LUC model compare to RC model in
Network Traffic for WRITE Operation

updates nor excessive locking mechanisms and shows the
best result in both response time analysis and network
traffic analysis. In simulation environment, LUC model
showed its strength by improving throughput to around
24% and jitter to around 40% over RC model. The reason
behind the improvement of LUC model in simulation
study was free from cumulative updates and excessive
locking. Table II showed the performance improvements
of LUC model in different aspects over different models
in a compact form.

IX. CONCLUSION AND FUTURE WORK

The major contribution of this paper over the con-
cept DSM is to provide a new view consistency model
named as LUC model that not only reduces the network
traffic but also reduces the response time and excessive
locks. LUC model successfully shows its improvements
on different aspects, such as network traffic, throughput,
delay time and jitter. LUC model decreases about 22%
and 44% of Network traffic compared to those of SC
and RCmodelrespectively. Moreover, LUC model takes
24% and 32.5%lesserin Response time than that of SC
and RCmodelrespectively. Although the response time

JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010 1837

© 2010 ACADEMY PUBLISHER

TABLE II.
SUMMARY OF PERFORMANCEIMPROVEMENTS OFLUC MODEL

Model Response Time Network Traffic
SC 23.9525% 21.8690%
RC 32.5264% 44.0314%

and bytes transferred have been mitigated by this model,
the programmers annotation and the code complexity of
the LUC model increased notably. This is the trade off
for LUC that the network traffic and response time has
been optimized but the difficulty to implement and uses
of local memory increases notably. However, the Network
Traffic and Response time are two of the most important
issues in Distributed Systems,where LUC model proves
its superiority overothers [2]. The improvement of LUC
model should open a new applicable entity in software
engineering. LUC model can be adopted by software
development firms for CVS(Concurrent Version System).
The view consistency, high degree of concurrency and
optimized resource utilization should make it usable as a
substitute of existing CVSs. For using this model as CVS,
each project in real world should be treated as an object
or an entity of the DSM.

In this research,only the page based DSM is consid-
ered, but thereis a room to improve the LUCmodel by
using Object based DSM [7]. We will use the modified
critical segment transmission into the DSM like Trade-
Marks [8], which should improve the proposed model
further. Moreover the behavior of the LUC model over
grid and cloud computing environment will be observed
where the scalability issue of DSM should be proven for
LUC model. Avoidance of thrashing can be achieved by
reducing false sharing. So in future, we should emphasize
more on achieving stability by reducing false sharing and
enhancing scalability of LUC model. The future of this
research has been directed to those particular areas.

ACKNOWLEDGMENT

We thank Maruf Hasan for numerous discussions con-
cerning this work and the reviewers for their detailed
comments.

REFERENCES

[1] Z. Huang, M. Purvis, P. Werstein, “View-Oriented Update
Protocol with Integrated Diff for View-based Consistency,”
5th International Symposium on Cluster Computing and the
Grid, IEEE Computer Society, vol. 33, pp. 873-880, 2005

[2] Z. Huang, M. Purvis and P. Werstein, “Performance Eval-
uation of View-Oriented Parallel Programming,”34th Inter-
national Conference on Parallel Processing, IEEE Computer
Society, vol. 33, pp. 251-258, 2005.

[3] Quazi Ehsanul Kabir and Mamun Hidenori Nakazato,
“Timestamp Based Optimistic Concurrency Control,”IEEE
Region 10 TENCON, pp. 1-5, 2005.

[4] Z. Huang, C. Sun, M. Purvis and S. Cranefieldt, “View-
based Consistency and False Sharing Effect in Distributed
Shared Memory,”Operating Systems Review, vol. 35, no. 2,
pp. 51-60, 2001.

[5] Ashvin Goel, Calton Pu and Gerald J. Popeky, “View Con-
sistency for Optimistic Replication,”17th IEEE Symposium
on Reliable Distributed Systems, vol. 33, pp. 36-42, 1998.

[6] John P Ryan and Brian A. Coghlan, “Distributed Shared
Memory in a Grid Environment,”John Von Neumann Institute
for Computing. NIC Series, vol. 33, pp. 129-136, 2006.

[7] Deo Prakash Vidyarthi and Kirti Rani, “Distributed Shared
Memory for Object Allocation in DCS,”International Jour-
nal of Information Technology and Management, pp. 87-91,
2006.

[8] C. Amza, “TreadMarks: Shared memory computing on
networks of workstations,”IEEE Computer, vol. 29, no. 2,
pp. 18-28, Feb. 1996.

[9] B.N. Bershad, “Shared Memory Parallel Programming with
Entry Consistency for Distributed Memory Multiprocessors,”
CMU Technical Report, CMU-CS-91-170, Sep. 1991.

[10] B.N. Bershad, “The Midway Distributed Shared Memory
System,” Proc. of IEEE COMPCON Conference, pp. 528-
537, 1993.

[11] R. H. Thomas, “A Majority Consensus Approach to Con-
currency Control,”ACM Transactions on Database Systems,
vol. 4, no. 2, pp. 180-219, 1979.

[12] Z. Huang, C. Sun, M. Purvis, and S. Cranefield, “View-
based Consistency and Its Implementation,”Proc. of the First
IEEE/ACM Symposium on Cluster Computing and the Grid,
pp. 74-81, IEEE Computer Society, 2001.

[13] P. Keleher, “Lazy Release Consistency for Distributed
Shared Memory,”Ph.D. Thesis, Dept of Computer Science,
Rice University, 1995.

[14] C. Sun, Z. Huang, W. J. Lei, and A. Sattar, “To-
wards Transparent Selective Sequential Consistency in Dis-
tributed Shared Memory Systems,”Proc. of the 18th IEEE
International Conference on Distributed Computing Sys-
tems,pp. 572-581, Amsterdam, May 1998.

[15] K. Gharachorloo, D. Lenoski, J. Laudon, “Memory consis-
tency and event ordering in scalable shared memory multipro-
cessors,”Proc. of the 17th Annual International Symposium
on Computer Architecture, pp. 15-26, May 1990.

[16] L. Iftode, J.P. Singh and K. Li, “Scope Consistency: A
Bridge between Release Consistency and Entry Consistency,”
Proc. of the 8th Annual ACM Symposium on Parallel Algo-
rithms and Architectures, 1996.

[17] K. Li, P. Hudak, “Memory Coherence in Shared Virtual
Memory Systems,”ACM Trans. on Computer Systems, vol. 7,
pp. 321-359, Nov. 1989.

Rubaiyat Islam Rafat is currently a researcher at University of
Dhaka, Bangladesh. He received his MS degree in information
technology from Institute of Information Technology, University
of Dhaka, Bangladesh, in 2009 and BS degree in computer
science and engineering from Ahsaullah University of Science
and Technology, Bangladesh, in 2005.

His research interest includes security and cryptography,
distributed systems and data mining.

Kazi Sakib is currently a Post Doctorate fellow at University of
Bradford, UK. He received his Ph.D. degree in computer science
from the RMIT University, Melbourne, Australia in 2008, his
MS and BS degree in computer science from the University of
Dhaka in 2001 and 1999 respectively.

He is currently an Assistant Professor of Institute of Informa-
tion Technology, University of Dhaka, Bangladesh. His current
research interest includes sensor networks, the performance,
availability, and security of distributed systems.

1838 JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010

© 2010 ACADEMY PUBLISHER

