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Abstract— The Reference Information Model (RIM) of 

Health Level Seven (HL7) standard is a conceptual 

information model for health care. Data of HL7 RIM 

Observation class are sparse, high dimensional, and require 

frequent schema change. Entity Attribute Value (EAV) is 

the widely used solution to handle these above challenges of 

medical data, but EAV is not search efficient for knowledge 

extraction. In this paper, we have proposed a search 

efficient data model:  Optimized Entity Attribute Value 

(OEAV) for physical representation of medical data as 

alternative of widely used EAV model. We have 

implemented EAV or OEAV individually to model RIM 

Observation class and used relational model for the 

remaining RIM classes. We have shown that OEAV is 

dramatically search efficient   and occupy less storage space 

compared to EAV. 
Index Terms— EAV, OEAV, Open Schema, Sparse Data, 

Healthcare, HL7, RIM 

I.  INTRODUCTION 

  A number of   exciting research challenges posed by 

health care data are described in [1] [2]. These challenges 

make health care data different from the data in other 

industries. Data sparseness arises because doctors 

perform only a few different clinical lab tests among 

thousands of test attributes for a patient over his lifetime. 

It requires frequent schema change because healthcare 

data need to accommodate new laboratory tests, diseases 

being invented every day. For the above reasons, 

relational data representation requires too many columns 

and hence the data are high dimensional. Summing up 

continuous valued medical data does not yield any 

meaning. Many to many relationship between patient and 

diagnosis requires complex data modeling features. 

Query incurs a large performance penalty if the data 

records are very wide but only a few columns are used in 

the query [3].  

HL7 RIM [4] is independent of any implementation 

technologies, addresses unique challenges of medical 

data, and broadly covers all aspects of an organization’s 

clinical and administrative information in abstract 

manner. A RIM-based physical model is suitable as a 

model of clinical data warehouse. EAV is the widely used 

solution to handle the challenges of data representation of 

clinical data warehouse. However, EAV suffers from 

higher storage requirement and not search efficient. In 

this paper, we have proposed a search efficient open 

schema data model: OEAV to convert HL7 RIM abstract 

information model to physical model. The OEAV is also 

storage efficient compared to existing EAV model.  

Section 2 describes the related work. The overview of 

EAV and the details organizational structure and analysis 

of OEAV are given in section 3. A data transformation is 

required to adopt the existing data suitable for data 

warehouse representation for knowledge extraction. The 

transformation is elaborated in section 4. Physical 

Representation of HL7 RIM is elaborated in section 5. 

Analytical details of performance of the proposed model 

is given in section 6. Section 7 offers the result and 

discussion. Section 8 is the conclusion. 

II.  RELATED WORK 

The RIM’s act-centered view [5] of healthcare is based 

on the assumption that any profession or business 

including healthcare, consists primarily of a series of 

intentional actions. The Observation class of RIM 

captures most of the clinical related act including vital 

signs, lab test results, allergies, and diagnoses. Data 

captured by Observation class are sparse, high 

dimensional and need frequent schema change. For these 

characteristics of observation data, in [2] authors use 

EAV [6]  to make physical implementation of HL7 RIM 

Observation class. Moreover, in non-standard medical 

database designs, EAV is a widely used solution to 

handle the challenges of observation data, but EAV is not 

a search efficient data model for knowledge discovery. 

Moreover, using different data tables for different data 

types in observation table,  instead of using data 

transformation to make a unified view of data for several 

data types, they complicates the further knowledge 

discovery operations. The EAV model for phenotype data 

management has been given in [7]. Use of EAV for 

medical observation data is also found in [8] [9] [10]. 

None of these works is based on HL7 RIM. The 

suitability of HL7 RIM to represent medical information 
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in data warehouse is described in [11]. In [12], authors 

have built a centralized index of heterogeneous clinical 

data according to the act-centered view of healthcare 

from HL7 RIM. The Entity-Relationship Model is 

proposed in [13]. Agarwal et al. [14] describe a number 

of different methods for the efficient computation of 

multidimensional aggregates. In [15] authors propose a 

relational aggregation operator named data cube 

generalizing group-by, crosstab, and subtotals. 

For storing clinical and genetic data, in [16] authors 

have proposed bioinformatics system known as the 

BiolAD-DB system. This Informatics System is publicly 

available for download and use. To model medical 

observation data, this system has used EAV to handle 

challenges posed by health care data. XML based HL7 

RIM message is used to communicate with each other by  

various healthcare systems. In [17], authors have 

introduced the problem of keyword based information 

discovery in XML based HL7 RIM message. This paper 

addresses neither physical representation of observation 

data nor keyword based information discovery in physical 

representation of observation data. In [18], authors have 

proposed a HL7 ontology based framework for medical 

data transmission in a decentralized environment. This 

system is a medical multi-agent system. It does not 

concern how medical observation data are represented 

physically in secondary storage. In [19], authors have 

proposed an agent based framework for interoperability 

among heterogeneous electronic health record systems 

using Hl7 message. The framework uses HL7 RIM based 

messages for medical data transmission from one 

heterogeneous EHR system to another heterogeneous 

EHR system. This paper does not elaborate either 

physical or logical representation of heterogeneous 

electronic health records in secondary storage. 

III.  OPEN SCHEMA DATA MODELS 

We require an open schema data model for HL7 RIM 

observation class to support dynamic schema change, 

sparse data, and high dimensionality of observation data. 

In open schema data models, logical model of data is 

stored as data rather than as schema, so changes to the 

logical model can be made without changing the schema.  

A.   Entity-Attribute-Value (EAV) 

EAV is   an open schema data model, which is suitable 

for high dimensional and sparse data like medical data. In 

EAV, every fact is conceptually stored in a table, with 

three sets of columns:  entity, an attribute, and a value for 

that attribute. In this design, one row actually stores a 

single fact. It eliminates sparse data to reduce database 

size and allows changing set of attributes. Moreover, 

EAV can represent high dimensional data, which cannot 

be modeled by relational model because existing RDBMS 

only support a limited number of columns. EAV gives us 

extreme flexibility but it is not search efficient as it keeps 

attribute name as data in attribute column and has no 

tracking of how data are stored. 

  

Figure 1. Transformation of EAV model to Optimized EAV (OEAV) model. 
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B.  Optimized Entity Attribute Value (OEAV) 

To remove the search inefficiency problem of EAV 

whilst preserving its efficiency of representing high 

dimensional and sparse data, we have developed a search 

efficient open schema data model OEAV. This model 

keeps data in a search efficient way. 

 This approach is a read-optimized representation 

whereas the EAV approach is write-optimized. Most of 

the data warehouse systems write once and read many 

times, so the proposed approach can serve the practical 

requirement of data warehouse. Figure 1 shows the step 

by step approach of transformation of an EAV data 

representation to an equivalent OEAV data 

representation. In step 1, this model constructs an 

attribute dictionary where there is an integer code for 

each attribute. 

Attribute name of each fact is mapped to an integer 

code using the attribute dictionary. All types of values are 

treated as integer using a data transformation as discussed 

in the following section. In step2, a compact single 

integer Attribute Value (AV) is created by concatenating 

binary representation of attribute code and value. In 

OEAV, every fact is conceptually stored in a table with 

two columns: the entity and the AV. It maps attribute 

code and value to p bit and q bit integer and concatenate 

them to n bit integer AV. For example,    an attribute 

value pair (A3, 51), the code of attribute A3 is 3, will be 

converted in the following ways: (A3, 51) → (3, 51) → 

(0000000000000011, 0000000000110011) → 

00000000000000110000000000110011 = 196659.  

In step 3, the records of optimized EAV are stored as 

sorted order of AV field. As data are stored in sorted 

order of AV and the first p bits of AV are for attribute 

code, the records of an attribute in OEAV table remains 

consecutively. In step 4, an index structure, which is a 

part of OEAV representation, is created to contain the 

starting record number (Pointer) of each attribute in 

OEAV table. This makes the data partitioned attribute 

wise, which is expected by most analytical program. In 

sorted AV field, the values of an attribute also remain in 

sorted order and binary search can be applied on it. This 

model constructs a modified B+ tree index on entity field 

of OEAV to make entity wise search efficient. Here each 

leaf of the modified B+ tree keeps the block address of 

attribute values for each entity. These Search efficiencies 

of OEAV are absent in conventional EAV representation. 

IV.  DATA TRANSFORMATION USING DOMAIN 

DICTIONARY AND RULE BASE   

For knowledge discovery, the medical data have to be 

transformed into a suitable transaction format to discover 

knowledge. We have addressed the problem of mapping 

complex medical data to items using domain dictionary 

and rule base. The medical data of diagnoses, laboratory 

results, allergies, vital signs, and etc are types of 

categorical, continuous numerical data, Boolean, interval, 

percentage, fraction and ratio. Medical domain expert 

have the knowledge of how to map ranges of numerical 

data for each attribute to a series of items. For example, 

there are certain conventions to consider a person is 

young, adult, or elder with respect to age. A set of rules is 

created for each continuous numerical attribute using the 

knowledge of medical domain experts. A rule engine is 

used to map continuous numerical data to items using 

these developed rules.  

Data, for which medical domain expert knowledge is 

not applicable, we have used domain dictionary approach 

to transform these data to numerical forms. As cardinality 

of attributes except continuous numeric data are not high 

in medical domain, these attribute values are mapped 

integer values using medical domain dictionaries. Here 

the mapping process as shown in Figure 2 is divided in 

two phases. Phase 1:  a rule base is constructed based on 

the knowledge of medical domain experts and 

dictionaries are constructed for attributes where domain 

expert knowledge is not applicable, Phase 2:  attribute 

values are mapped to integer values using the 

corresponding rule base and the dictionaries. 

 
 

Figure 2. Data Transformation of Medical Data. 
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V.  PHYSICAL REPRESENTATION OF HL7 RIM 

All latest HL7 RIM specifications are in a form 

independent from specific representation and 

implementation technologies. To make physical 

representation of HL7 RIM from its abstract model, we 

need to make the physical implementation of following 

things: data types, classes, aggregations, inheritance 

structures, and associations. 

A.  Implementing Data Type 

HL7 has abstract semantic data type specification for 

its openness towards representation and implementation 

technologies [20]. HL7 RIM has a number of data types 

as shown in table I, which need to be implemented in 

physical database context. We have mapped primitive 

data types to standard database types. To implement 

coded data types [21], we have made a separate table for 

each coded type and have kept a    foreign key named 

codeID   in class table, which refer to the primary key of 

coded type table. For example, to implement CD data 

type, a separate table is created with the following 

column: (codeID BIGINT, code ST, codeSystem UUID, 

displayName ST). Code system table holds all the 

information regarding coding system. To implement each 

compound data type, we have kept multiple columns in 

the class table, where each column is for each part of 

compound data type. These columns are used as part of 

the class table. For example, Encapsulated Data (ED) is 

implemented with two columns:  Media Type CS, DATA 

CLOB.  

Each complex type has been implemented according to 

each one’s structure. For example, entity name type 

specializes LIST<ENXP>. Entity Name is implemented 

as separate table with following columns: (ID, Valid-

Time, and Formatted). For entity name parts, 

LIST<ENXP> is implemented as a separate table where 

each row contains name part info and a foreign key refers 

to the row, for which this name part info belongs to, of 

Entity Name table. Name Part info  includes  the 

following columns: ReferenceID   INT, Namepart  ST,  

PartType  CS , Qualifier  Comma separated  string.  

To implement collection data type, we have created a 

separate table per RIM class for each collection data type 

where each row contains a value from multi values and a 

foreign key to the row, for which this value belongs to, of 

parent table. For example, IVL<int> in class ACT for   

attribute Repeat Number is implemented in the following 

way: we have created a new table named ACT-IVL-

Repeat-Number for class ACT   where each row contains 

an integer value and a foreign key, which refers to the 

corresponding row of table ACT. 

B.  Modeling   RIM Classes   

    As data captured by Observation class is sparse, 

high dimensional and need schema change, we have 

modeled Observation class using EAV and OEAV data 

models individually to see what performs better. All the 

remaining RIM classes have been implemented using 

relational model. We have made physical representation 

of each RIM base class using a relation that includes all 

the attributes of the base class.  

 
TABLE I. 

HL7 Data Types 

 

Category of 

HL7 Data 

type 

HL7 data 

types of 

this category 

Description 

Primitive   BL, BN, ST, 

II, TN, INT, 

REAL,  and 

TS 

HL7 specification throws 

away all of the standard 

variable types  and 

invents its own (Gives 

new name) 

Coded   

 

CS, CV, CE, 

CO and  CD 

Coded types are the HL7 

Vocabulary Domains 

types, which exposed 

several enums in a 

number of domains by a 

variety of codes. 

Compound ED, SC, 

TEL, RTO, 

PQ, MO, 

UVP, and 

PPD 

 Compound data 

types allow a collection 

of data of different 

types to be grouped into a 

single object. 

Complex EN, AD, PN, 

ON, and 

NPPD 

A composite and 

derivative of other 

existing data types 

Collection BAG,  LIST,  

SET, IVL,  

and  HIST 

Collection Data Type is a 

multi values data type. It 

allows a collection 

of data of the same 

types to be grouped into a 

single object. 

Special PIVL, EIVL, 

and GTS 

These types required 

special processing logic. 

C.  Implementing HL7 RIM Inheritance 

The physical implementation of   RIM   inheritance 

can be made   in one of the following ways: a single table 

per entire class hierarchy, map each concrete class to its 

own table that contains inherited attributes, and map each 

class to its own table that does not contain inherited 

attributes. With the exception of the Observation class, 

which we discuss later, we have used the third strategy to 

model RIM inheritance structure. In this strategy, one 

table is created per class with one column per class 

attribute and necessary identification information.  

D.  Implementing Associations and Aggregation 

 We have mapped RIM associations using foreign 

keys. To implement a one-to-many association, we have 

implemented a foreign key from the ―one table‖ to the 

―many table‖. One-to-one relationship is implemented in 

the same way. To make physical representation of each 

association of type many to many, a table have been 
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created, which keeps the combination of the primary keys 

of the two tables, which are in many-to-many relationship 

with each other. In RIM, only aggregation is Act 

Relationship. It has been implemented as a separate table 

that includes primary key consists of two fields: ID of 

inbound act and ID of outbound act with the other Act 

Relationship object attributes in the table.  

E.  Physical Representation of Observation Class 

     Observation statements describe what was done, 

what was actually observed, and assertive statements. The 

data type of value attribute of Observation class is ANY, 

which means it can be any valid HL7 data type. To make 

observation data suitable for knowledge discovery, we 

have transformed value attribute using domain 

dictionaries and rule engine to make a unified view of 

data, integer representation, for several data types.  

 Observation class using EAV approach: We have   

implemented observation class using ―map each concrete 

class to a separate table that does not contain inherited 

attributes‖ approach with one exception that is Code 

attributes of Act class is implemented in observation 

table. To implement in this way, we have kept the 

following attributes: Value, Code, Interpretation Code, 

method code, TargetSiteCode and a key to keep the 

reference with the act entity in the observation table using 

EAV data model. Here, every type of code in HL7 RIM is 

varchar (64). Here ID, Value is the entity, value of EAV 

model and   Code represents attribute of EAV. ID refers 

to ID of ACT class of HL7 RIM. 

 
Figure 3. Physical representation of Observation Class 

using different data models. 

Observation class using OEAV approach: Here 

observation class has been implemented in the same way 

as EAV approach. The difference is that Value and Code 

attributes have been implemented as AV. Therefore, we 

have kept the attributes: AV, InterpretationCode, 

MethodCode, TargetSiteCode, and a key to keep the 

reference with the act entity in the observation table using 

OEAV data model. Here AV field is the combination of 

Observation Code and the Observation Value. A 

modified B+ tree has been created based on patient ID 

where leaf node of the tree contains the block address of 

each attribute value of the particular patient. In OEAV, 

InterpretationCode, MethodCode, and TargetSiteCode are 

converted into 16-bit integer using domain dictionaries. 

Each Code represent an attribute and is transformed into 

16-bit integer using attribute dictionary. Value is 

transformed into 16-bit integer using domain dictionaries 

and Rule base. The compact single integer Attribute 

Value (AV) is created by concatenating binary 

representation of 16-bit attribute code and 16-bit value. 

Here AV is 32-bit integer and ID refers to ID of ACT 

class of HL7 RIM. 

VI. ANALYSIS OF EAV & OEAV 

Let b be the total number of blocks of observation 

table and k is the total number of attributes of observation 

table. 

A.   Analysis of Storage Capacity of EAV 

 Let n = total number of facts, q  average length of   

attribute names, g  average length of values. In EAV, 

32 bits (4 bytes) is required to represent entity. Size of 

each fact in EAV in bytes is 

(1)………)4( gq   

Hence, the total size to hold all facts in bytes is  

(2)………)4( gqn   

B.  Space Complexity of Medical domain dictionaries and 

Rule Base         

Let iC  cardinality of ith attribute where domain 

expert knowledge is not applicable, iL  average length 

of ith attribute name, P = number of categorical 

attributes. Codes of attributes are not stored explicitly and 

the index of attribute is the code. Domain dictionary 

storage of ith attribute is ii LC   bytes. Total domain 

dictionaries storage (SD) in bytes is  

(3)………)(
1





p

i

ii LC    

If the size of rule base storage is R, the dictionary and 

rule base storage (SDR) in bytes is  

(4)………)(
1

RLC
p

i

ii 


  

C.  Analysis of Storage Capacity of OEAV 

 Let p  number of   attributes, q  average length 

of   attribute names. Total storage of   attribute dictionary 

is  qp   bytes. Let  S   size of each block address 

in byte. Total storage of index table is  

Spqp   bytes. In OEAV, 32 bits are required 

to represent entity and 16 bits are required for attribute 

and value individually. 64 bits = 8 bytes = size of each 

fact in OEAV. Let n = total number of facts, m = total 

number of facts in a block, w = word size (bytes). Total 

number of blocks is  

  (5)………/ mn  

Obsevation class 
using EAV

• ID BIGINT

• Code Varchar(64)

• Value Varchar(64)

• InterpretationCod
e Varchar(64)

• MethodCode 
VarChar(64)

• TargetSiteCode 
Varchar(64)

Obsevation class 
using OEAV

• ID BIGINT

• AV 32bit INT

• InterpretationCod
e 32bit INT

• MethodCode   
32bit INT

• TargetSiteCode 
32bit INT
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The number of words per fact    is 

  (6)………/64 w  

For block i where 1≤ i ≤  mn / , the number of words 

per block is  

   (7)………)/64( wm  

The size of a block in bytes is 

    (8)………)/64( wmw   

Hence the size to hold all facts in bytes is 

      (9)………)/64(/ wmwmnS 

 In OEAV, total size to hold all facts  in bytes =  storage 

for facts + storage for domain dictionaries and rule base + 

storage for attribute dictionary + storage for index table + 

storage for modified B+ tree  

      



p

i

ii LCwmwmn
1

)()/64(/

(10)………)()( BSpqpqpR 

 

D.  CUBE Operation  

Group by is basis of all OLAP operation. Multiple 

Group-by operations can form a CUBE operation and 

each group-by is called a cuboid. Each cube operation 

requires aggregation of measures at some level. For 

aggregate operation, we consider only max, min, average, 

and count. In EAV, for each aggregate operation, it has to 

scan all the blocks because it keeps attribute name as data 

in attribute column. In OEAV, a count operation can be 

computed on an attribute from index table without any 

block access. For max and min operation on a attribute it 

has to scan  only 1 block because it keeps each attribute 

data  separate and in sorted order. It has to scan   b/k 

blocks to compute average.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Bottom-Up approach of CUBE computation. 

 

As medical data is sparse, widely used top down 

approach of CUBE computation [15], is not a good 

choice. Because top down approach does not consider 

null data in cube computation, so computing each cuboid   

from a number of other parent cuboids does not yield the 

correct result all the time. Considering null data in cube 

computation can solve this problem but it will add huge 

complexity in cube computation with open schema data 

models. It is because that finding out for which entities a 

particular attribute value is null is time consuming and 

hard in these open schema data models.  

Here we build the CUBE using bottom-up algorithm as 

in figure 4. It starts building CUBE by computing 

cuboids on a single attribute, then cuboids on a pair of 

attributes, then cuboids on three attributes, and so on. 

Candidate of cuboids are generated from child cuboids. 

This is the reverse of widely used top down approach of 

CUBE computation. Here pruning is bases on data 

representation of open schema data models as open 

schema data models store sparse data, so the algorithm 

does not need to perform cube computation on sparse 

data. The algorithm   reduces disk read costs by 

computing all same-length cuboids in one scan of DB. 

The algorithm uses hashing technique [22] to compute a 

cuboid. In EAV, facts are not clustered attribute wise and 

have no entity index, so every search becomes full scan 

of all blocks. In OEAV, facts are clustered attribute wise 

and have   entity index, it requires scanning only 

necessary attribute partitions and values.  

VII.  RESULTS AND DISCUSSION 

The experiments were done using PC with core 2 duo 

processor with a clock rate of 1.8 GHz and 3GB of main 

memory. The operating system was Microsoft Vista and 

implementation language was c#. We have designed a 

data generator that generates all categories of random 

data: ratio, interval, decimal, integer, percentage etc. This 

data set is generated with 5000 attributes and 5-10 

attributes per transaction on average. We have used 

highly skewed attributes in all performance evaluations to 

measure the performance improvement of our proposed 

open schema data model in worst case. For all 

performance measurement except storage performance, 

we have used   1 million transactions. 

A.  Storage Performance    

Figure 5 shows the   storage space required by EAV 

and OEAV. The EAV occupies significantly higher 

amount of storage than OEAV. This is due to the data 

redundancy of EAV model.  

B.  Time Comparison of Projection Operations  

Figure 6 shows the performance of projection 

operations on various combinations of attributes. Almost 

same time is needed with different number of attributes in 

EAV, as it has to scan all the blocks whatever the number 

of attributes. In OEAV, it can be observed that the time 

requirement is proportional to the number of attributes 

projected. This is because that the query needs to scan 

more number of blocks as the number of attributes 

increases.  

C.  Time Comparison of Select Queries 

Figure 7 shows the performance of multiple predicates 

select queries on various combinations of attributes. 

all

A B C

AC BC

ABC ABD ACD BCD

AD BD CD

D

ABCD

AB
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Figure 7 shows almost same time is taken with different 

number of attributes in EAV as it has to scans   all the 

blocks twice whatever the number of attributes in 

predicate. The graph shows how time is varied in OEAV 

with different number of attributes as it scans number of 

attribute partitions proportional to number of attributes in 

select quires. This experiment shows EAV has   taken 

much higher time compared to OEAV. It is because it has 

no tracking of how data are stored, so it has to scans all 

the blocks once  to select  entities and has to scan all the 

blocks one more time to retrieve the attribute values for 

the selected entities. OEAV has taken the lower time as it 

does not need to read unused attributes to select entities 

and can retrieve attribute values of these entity without 

reading any unused attribute value using entity indexing .  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Storage performance.  
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    Figure 8. Time comparison of aggregate operations. 

 

Figure 7. Time comparison of   select queries. 

 

Q1: Select Ai  from observation; 

Q2: Select Ai , Aj ,Ak  from observation. 

Q3: Select Ai, Aj,  Ak, Al, Am  from observation. 
Q4:  Select * from observation where Ai=’XXX’. 

Q5: Select * from observation where Ai=’XXX’ AND Aj=’YYY’. 

Q6: Select * from observation where Ai=’XXX’ AND Aj=’YYY’ AND Ak=’ZZZ’. 
Q7: Select AVG (Ai) from observation. 

Q8: Select Max (Ai) from observation. 

Q9: Select Min (Ai) from observation. 

Q10: Select   Count (Ai) from observation. 
Q11: Select Median (Ai) from observation. 

Q12: Select Mode (Ai) from observation. 

Q13: Select   Standard Deviation (Ai) from observation. 

Q14: Select Ai, Aj, Max (Am) from observation  CUBE-BY (Ai, Aj ) 
Q15: Select Ai, Aj, AK, Max (Am) from observation CUBE-BY (Ai, Aj, Ak) 
Q16: Select Ai, Aj, AK, Am, Max (An) from observation  CUBE-BY (Ai, Aj, Ak, Am) 
 

    Figure 6. Time comparison of projection operations. 
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   Figure 10. Time comparison of CUBE operations. 

 

D.  Time Comparison of Aggregate Operations 

Aggregate operations compute a single value by taking 

a collection of values as input. Figure 6 shows the 

performance of various aggregate operations on a single 

attribute. Time is not varied significantly from one 

aggregate operation to another as different aggregate 

operations need  same number of data block access for 

most of the cases. Figure 8 shows EAV has taken much 

higher time than OEAV as it has to scan all the blocks to 

compute each operation. OEAV has taken negligible time 

for max, min, count operations on a single attribute as to 

find max and min it has to scan only 1 block and count 

result is computed from its index table. For average 

operation on an attribute, it has taken considerable time, 

as it has to scan all the blocks of that attribute. 

E.  Time Comparison of Statistical Operations 

  Figure 9 shows the performance of various statistical 

operations on a single attribute. Time is   varied 
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significantly from one statistical operation to another as 

different statistical operations need different sorts of 

processing. This experiment shows EAV has   taken 

much higher time compared to OEAV. It is because it has 

no tracking of how data are stored, so it has to scan all the 

blocks to compute each operation. We can see from this 

figure OEAV has taken negligible time for median 

operation as it has to scan 1 or 2 blocks for this operation. 

For mode and standard deviation, it has to scan all   data 

blocks of the attribute for which particular operation is 

executing once, twice respectively.  

F.  Time Comparison of CUBE Operations 

The CUBE operation is the n-dimensional 

generalization of group-by operator. The cube operator   

unifies several common and popular concepts: 

aggregates, group by, roll-ups and drill-downs and, cross 

tabs. Here no pre-computation is done for aggregates at 

various levels and on various combinations of attributes. 

Figure 10 shows the performance of CUBE operations on 

various combinations of attributes. It can be observed that 

the number of attributes in cube operations leads to the 

time taken as CUBE operation computes group-bys 

corresponding to all possible combinations of CUBE 

attributes. The experiment results show that EAV has 

taken much higher time compared to OEAV as it does not 

partition data attribute wise and it has no entity index. 

The next data set of interest is the Zoo Data Set [23] 

from UCI Machine Learning Repository, which has the 

similar characteristics like medical data. It contains 101 

instances each described by 18 attributes (included 16 

discrete and 2 numerical attributes).We have repeated this 

dataset 100 times to get 10100 instances for performance 

evaluation. We have taken an average value from 10 

trials for each of the test result. We have achieved a query 

performance faster in the range of 15 to 70 compared to 

existing EAV model for this dataset. We have achieved a 

storage performance of 1.25 times better compared to 

existing EAV. The results for Zoo data set are almost 

identical to the result for the synthetic dataset. 
TABLE II. 

HOW MANY TIMES OEAV IS CHEAPER AND FASTER COMPARED TO 

EAV 

 

Operation           OEAV  

Storage  

 

1.26  

 Projection  15.15  

Selection  56.3  

Aggregate   69.54  

Statistical  50.45  

CUBE  45.95 

VIII.  CONCLUSION 

Search efficient representation of Healthcare data is 

important for knowledge discovery. Once this knowledge 

is discovered, the results of such analysis can be used to 

define new guidelines for improving medical care and 

treatment. The Observation class of HL7 RIM represents 

most of the clinical related act like diagnoses, laboratory 

results, allergies, vital signs etc. Therefore, most of the 

knowledge discovery operations will be performed on 

observation data. Observation class is sparse, high 

dimensional and need frequent schema change and EAV 

is a widely used solution to handle these challenges. 

However, EAV is not a search efficient data model for 

knowledge discovery. We have proposed a search 

efficient open schema data model OEAV to handle these 

challenges as alternative of EAV. Table 2 summarizes 

how many times OEAV is cheaper and faster compared 

to EAV. The experiment results show our proposed open 

schema data model is dramatically efficient in knowledge 

discovery operation and occupy less storage compared to 

EAV. 

We have proposed the conversion of HL7 RIM 

abstract information model to physical model, which 

includes HL7 RIM abstract data type conversion, 

modeling RIM classes, inheritance, association and 

aggregation. The solution to address the problem of 

mapping complex medical data to items has also been 

proposed here. As our solution is based on industry 

standard, this approach is widely applicable. 
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