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Abstract—Data mining algorithms generally assume that 
data will be clean and consistent. However, in practice, this 
is not always the case, and for this reason the detection and 
elimination of duplicate records is an important part of data 
cleaning. The presence of similar-duplicate records causes 
over-representation of data. If the database contains 
different representations of the same data, the results 
obtained from the data mining algorithm will be erroneous. 
The detection of similar-duplicate records is a difficult task, 
especially when the records are domain-independent. In this 
paper, we propose a novel domain-independent technique 
for better reconciling the similar-duplicate records. We also 
introduce new ideas for making similar-duplicate detection 
algorithms faster and more efficient. In addition, a 
significant modification of the transitivity rule is also 
proposed. Finally, we propose an algorithm that 
incorporates all these techniques for similar-duplicate 
detection into a domain-independent environment. The 
performance of the proposed method has been compared to 
other methods and the superiority of the proposed method 
has been confirmed by the experimental results. 
 
Index Terms—Data cleaning, similar-duplicate, domain-
independent, transitivity rule, approximate duplicate.  
 

I.  INTRODUCTION 

Data mining [1] is a knowledge discovery process used 
to extract hidden patterns from data. There are several 
steps involved in data mining as shown in Fig. 1 [2]. One 
of the major steps is data preparation; data cleaning (also 
known as data cleansing or scrubbing) is one of the sub-
steps of data preparation. The intent of the process is to 
detect and remove errors and inconsistencies from data 
and improves their quality. Duplicate record detection 
and elimination is a challenge of data cleaning. Data 
cleaning is applicable, for example, for textual databases, 
image databases, and web mining. The main focus of this 
paper is to improve the methodologies used for detecting 
duplicate records in textual databases. 

The importance of databases in today’s information 
technology (IT) sector is overwhelming. The success rate 
of knowledge discovery operations performed on 
databases is highly dependent on the quality of data. For 

several reasons, the data quality may fall below the 
expected level. Data duplication is one such reason. A 
decrease in quality of stored data puts the knowledge 
discovered from such data into question. It is not too 
difficult to detect exact duplicates, but the situation 
becomes complex when an entity in the database contains 
similar-duplicates. Linguistically, similar means like but 
not exactly the same, and duplicate means the same in 
every detail. In similar-duplicates, entities are not 
identical in a bit-by-bit comparison because of errors, but 
in the absence of errors, they would actually be 
identical/duplicate. Here the term similar-duplicate is 
used to indicate strings that are not textual duplicates but 
are similar, and from measurement of their similarity, we 
can decide whether they are actually identical or not. 
Some researchers refer to similar-duplicates as 
approximate duplicates [3]. Records can be similar-
duplicates for several reasons, including typing errors, 
abbreviations, extra words, missing values, word 
transpositions, illegal values, and similar mistakes. For 
example, “Mother” and “Mother” are identical, but 
“Mother” and “Mather” are not. However, the terms are 
similar if one considers the mismatch in characters 
between the two strings. Either “o” or “a” might be a 
typing error. Now, if one uses a string-matching 
algorithm which measures the similarity between 
“Mother” and “Mather,” then from the resultant 
similarity, one can decide whether “Mother” and 
“Mather” are identical or not. 

Over the years, a great deal of attention has been paid 
to resolving the problem of duplicate detection. Yet, most 
of the research conducted in this field has addressed 
domain-specific problems. Unfortunately, domain 
knowledge is not always available. Moreover, domain-
specific methodologies apply only for some particular 
domains, and the rules developed for one domain often 
do not hold for different domains. Nevertheless, currently 
so many different domains exist that the need for domain-
independent research is undeniable. Although dealing 
with domain-independent techniques for similar-duplicate 
record detection in database has received attention over 
the last few years, to our knowledge these approaches are 
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Figure 1. Data mining process [2]. 

still limited, and dominated by pure or advanced 
transitivity rule for domain-specific techniques [4]. As far 
as we know, there is no solution for domain-independent 
cases. 

Usually, most of the database table contains unique or 
primary key fields, and these fields play a major role in 
restricting data from being duplicated during different 
update/retrieval processes. However, errors during entry 
in these fields, which contain mostly unique data, are a 
common source of inaccuracy in databases. On the one 
hand, if the unique data is entered manually, then the 
chance of error is very high. On the other hand, to reduce 
this type of error, these data are typically entered using 
drop-down or combo boxes. Sometimes, they are 
uniquely auto generated during the data entry process. 
This reduces the chance of errors in fields with unique 
values. However, it only guarantees that no two instances 
will have the same primary/unique key value; it does not 
guarantee that the same instance will not hold for two 
different primary key values. For example, a university 
staffer might want to enter student details into a database. 
During the data entry process, the staffer can select 
different student IDs from the drop-down/combo box or 
from a uniquely auto generated ID. Although this 
guarantees that no two students will have the same IDs, it 
never guarantees that in the database the same student 
will not be assigned two different IDs. The same problem 
holds true for the fields with common values. Still, there 
is no suitable solution to these types of problems. 
Similar-duplicate detection is the only method to handle 
them to date. As mentioned earlier, very few research 
works discuss the issue of better reconciling similar-
duplicate records (bringing similar-duplicate records 
nearer), and the existing de-duplication techniques for 
doing so are not efficient enough for such types of 
problems [3, 5-7]. 

This paper presents a domain-independent technique 
for sorting similar records and a modification to the 

transitivity rule to apply into domain-independent cases. 
It also considers time for performing the de-duplication 
on real-world data and proposes a new idea for making 
the duplicate detection algorithms faster for real-world 
data. In addition, modification has been proposed to an 
existing similar-string matching algorithm [8] for 
improving efficiency. Finally, an algorithm implements 
all these techniques together. Experimental results show 
that the proposed schemes perform better than the 
existing domain-independent similar-string matching 
schemes. The rest of the paper is organized as follows. 
Section II contains literature review. Section III presents 
the background of the proposed methods. Section IV 
describes proposed methods and algorithms in details. To 
demonstrate the performance of the proposed approach, 
experimental results are presented and analyzed in 
Section V. Section VI contains some limitations and 
points to future works, followed by the conclusions in the 
final section.  

II.  LITERATURE REVIEW 

The standard method for detecting exact duplicates is 
to sort the dataset and then to perform an exact matching 
with the neighbor records to determine whether two 
records are duplicates or not. Different authors have 
extended this approach for detecting the 
similar/approximate duplicate records in databases [9-
13]. These approaches vary by the amount of domain 
knowledge supplied by the user. Some of these 
approaches are domain-specific and/or assumes that the 
user for each application domain will supply the domain 
knowledge. Lee et al. proposed a framework for data 
cleaning [4]. They addressed the problem of transitivity 
rule in the field of similar-duplicate detection, and 
proposed a method for avoiding this problem. Still, their 
proposed method is domain-dependent and requires some 
rules and certainty factor (c.f.). To specify these rules, 
domain knowledge is necessary. It also requires user 
involvement for defining the c.f. Wang et al. proposed 
another rule based duplicate detection methodology [10]. 
They used experts’ knowledge to create rules and key 
from a set of attributes when the global key is absent. 
Some authors also proposed to create production rules 
based on domain-specific knowledge. However, creating 
rules is often time consuming. Certainly, duplicate 
detection systems should use as less domain knowledge 
as possible [14]. In addition, the result must be acceptable 
enough for keeping the time duration in a tolerable range. 
The reason is that usually data mining processes are 
applied on databases, which contain huge amount of data. 

Hernandez and Stolfo proposed some of the earlier 
works for similar-duplicate detection [5, 7]. All these 
works are almost similar and based on Merge/Purge 
technique. However, their proposed Merge/Purge 
technique gives solution only for domain-specific 
problems. The authors used a window-based system to 
limit the number of comparisons required for a record 
with its neighbor records. It utilized equational theory 
that needs to be changed for each domain and also 
requires domain knowledge. In addition, it used a sorting 
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technique based on keys selected by user. This technique 
fails, if the user makes a poor choice to sort the data. To 
increase the efficiency of the data cleaning method, Lee 
et al. proposed a token-based technique for data 
preprocessing [6]. This technique requires external source 
files, which contain useful information to remove typical 
errors from the dataset. Unfortunately, it can be used only 
for some particular domain-specific problems, and for 
most cases, it is not possible to get such an external 
source file. For sorting the dataset, they proposed a 
method similar to the method proposed in [5]. Their 
sorting method involved three stages. In the first stage, 
the data in each field of the selected attribute are 
tokenized, next the tokens are internally sorted and then 
they are used for sorting the dataset. This method fails, if 
the record contains errors in the selected attribute. Monge 
and Elkan proposed a completely domain-independent 
work [3]. Their proposed sorting method treats each 
record as one long string and sorts them lexicographically 
reading from left to right in one pass and right to left in 
another pass. The authors also proposed a priority queue 
based technique for limiting the number of comparisons. 
To group similar records they used pure transitivity rule, 
but they also mentioned some problems of using 
transitivity rule for detecting similar-duplicates. In [9], 
the authors presented a concept in which prediction is 
made by assigning weight proportional to the importance 
of information and using co-occurrence and textual 
similarity functions. However, this work is partially 
domain-independent and the memory and time 
requirement for performing the required operations is 
very high. Hylton proposed an algorithm for identifying 
and merging related bibliographic records, which are in 
different formats [11]. It was designed to work using 
authors’ names and titles. It works only for bibliographic 
records; hence, it is domain-specific. Winkler proposed a 
method, which can be applied for a limited range of very 
good quality lists that have known matching 
characteristics [12]. Weis et al. proposed an industry-
scale duplicate detection system [13], which is an 
extension of the domain-independent approach proposed 
for detecting duplicates in XML data [15]. However, the 
proposed industry-scale duplicate detection system is 
totally domain-dependent and requires rules and the 
knowledge of domain experts’. 

Similar-string matching is one of the key requirements 
for similar-duplicate detection systems. Several works are 
available on similar/approximate string matching in the 
literature [16-19]. Unfortunately, most of them are 
designed to solve particular problems. The well-known 
Boyer and Moore’s algorithm [17] is very effective to 
find a pattern in a string, but it is a kind of exact matching 
algorithm and does not hold for similar-string matching. 
Du et al. proposed an approximate string matching 
algorithm to solve only dictionary problems [18]. Smith-
Waterman algorithm [19] is another well-known 
algorithm, which was originally developed to compare 
DNA or protein sequences. The most popular method for 
similar-string matching is based on edit-distance [20], 
which is the minimum number of unit operations (for 

example, add, delete, insert) needed to perform on 
individual characters to transform one string to the other 
[16, 21]. These types of functions are also called classical 
edit-distance functions, or textual similarity functions. 
Monge showed that recursive algorithm gives more 
accurate result for approximate string matching than 
previous classical algorithms [22]. Still, the complexity 
of the proposed algorithm is very high due to its recursive 
comparisons of sub-strings. On the other hand, 
Udechukwu et al. claimed that their proposed Positional 
algorithm improves the result of the recursive algorithm 
[8]. Conversely, experimental result shows that, for some 
cases, the original Positional algorithm fails to return an 
acceptable score. This situation arises when the shorter 
string is a sub-string of the longer string. However, we 
believe that with some modification, it can be made more 
efficient. In this paper, we presented a modified version 
of the Positional algorithm and the experimental results 
are satisfactory enough. 

III.  BACKGROUND OF THE PROPOSED METHOD  

The sorting method proposed in [6] is not completely 
domain-independent. In fact, it is partially domain-
independent, as it requires the user to select the most 
important fields for sorting the similar records. A 
completely domain-independent technique for sorting the 
records was proposed in [3]. However, this technique 
fails, if the database table contains most unique field in 
one side and less unique field in the other side. It also 
fails, if error either in the most unique field or another 
record is similarly duplicated for error in the first and last 
field. Whereas our proposed method works efficiently for 
solving the problem of error in unique field or when the 
error is in some other fields, which has a high uniqueness 
value compared to that of others.  

TABLE I.   
DATASET WITH ALL UNIQUE RECORDS 

 

 Field-1 Field-2 Field-3 
R1 A B C 
R2 D E F 
R3 G H I 
R4 J K L 

 
 
 

TABLE II. 
DATASET WITH SIMILAR-DUPLICATE RECORDS 

 Field-1 Field-2 Field-3 
R1 A B C 
R2 D E F 
R3 G H I 
R4 J B L 

 
 

TABLE III. 
DATASET WITH SIMILAR-DUPLICATE RECORDS 

 Field-1 Field-2 Field-3 
R1 A B C 
R4 J B L 
R2 D E F 
R3 G H I 
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Table I represents the dataset, where data in all records 
are unique or they become unique due to some errors. In 
this scenario, it is really hard to determine the sorting 
strategy. However in a real-world dataset, it is natural 
that some records will be similarly duplicates and we can 
assume that some of its values will be exactly duplicates 
as in Table II. In these cases, the uniqueness of the fields 
will be affected. 

For example, in Table I, uniqueness of Field-1, Field-2 
and Field-3 are 100%, but in Table II, uniqueness of 
Field-2 is 75%. In Table II records R1 and R4 may be 
similar or not. If we use the uniqueness information and 
sort the dataset using the less unique field, R1 and R4 
will be closer as in Table III. 

Similar-string matching algorithms are expensive [3]. 
They have to perform more computations than exact 
string matching algorithms. In a real-world dataset, the 
number of unique records will be many times higher than 
the number of duplicate records. Hence, performing an 
efficient similar-string matching algorithm is not required 
when the number of characters in a string is much lower 
than the number of characters in the second string or the 
characters in one string does not appear in a certain 
amount in the second string. Therefore, we decided to use 
a fast string matching algorithm that calls the efficient 
similar-string matching algorithm when the number of 
characters and the appearance of characters between two 
strings pass a threshold value. This will save a lot of 
computational efforts. 

IV.  PROPOSED MODIFICATIONS AND ALGORITHMS 

A. Modification of the Positional Algorithm 
Most of the existing string matching algorithms do not 

handle abbreviations efficiently [23], and for many cases, 
they do not give acceptable measures of similarity. One 
of the efficient similar-string matching algorithms is 
Positional string matching algorithm [8]. It can handle 
abbreviations efficiently and is able to measure the 
similarity between two strings more efficiently than the 
classical string matching algorithms. However for some 
cases, it fails to return a good measure of similarity.  

For example, consider two strings: A=“John” and 
B=“Johnathon”. Using the original Positional algorithm, 
we get a match score of 1; whereas there are 5 characters 
mismatch between A and B. A match score of 1 usually 
means that the strings are exact duplicates. Therefore, the 
match score of 1 is not acceptable. In fact, the original 
Positional algorithm will return a match score of 1, 
irrespective of the number of characters exist in the left or 
right side of “John” of the second string. This is because 
during the match score calculation, the algorithm 
considers only the length of the shorter string ignoring 
the length of the other string. As was doing in the original 
Positional algorithm: 

match score = (total match score returned by the 
shorter string / total number of characters in the shorter 
string). 

Here only the shorter string returns the match score. 
However, it is reasonable to consider the longer string 

also. In fact, the size of both strings has its effect on the 
calculation of the final match score. In this work, we 
calculate the mach score as,  

match score = (total match score returned by the 
shorter string / average number of characters in both 
strings) 

Using the latest score for the above problem, we get a 
match score of 0.61, which is more acceptable. 

B. Domain-Independent Transitivity Rule for Similar-
Duplicate Detection 

Transitivity rule states that if A is equivalent to B and 
B is equivalent to C then A is equivalent to C. 
Transitivity rule is used for similar-duplicate detection. 
Ref. [4] describes the problem of using transitivity rule 
for similar-duplicate record detection using one character 
threshold so that two strings will be similar. If there is 
only one character mismatch then “Father” is similar-
duplicate of “Mather” and “Mather” is similar-duplicate 
of “Mother”. According to the transitivity rule, “Father” 
is similar-duplicate of “Mother”. Since there are two 
character mismatches between “Father” and “Mother”; 
they are not similar-duplicates according to our threshold. 
For these types of problems, a very high threshold is 
required to separate the values. However, a very high 
threshold will lower the value of Recall. A solution to the 
transitivity rule for detecting similar-duplicate records 
was proposed in [4] to obtain a high Recall without 
declaring these types of values as similar. However, all of 
their proposed solutions are rule based and it requires c.f.; 
which in turn requires the user involvement. Moreover, it 
was domain-specific. So far we know there is no solution 
for domain-independent cases to reduce the effect of the 
transitivity rule. Our proposed Domain-Independent 
Transitivity (DIT) algorithm (described in Algorithm-1) 
for similar-duplicate detection is totally domain-
independent, and it does not require any rule, c.f., or user 
involvement. In DIT algorithm, SIM stands for similarity 
and PR stands for power of a record. We call the latest 
record (the highest numbered record) in a window as the 
window creator. Input to the algorithm is two records: 
window creator and record to which the window creator 
declares similarity (i.e. passes a threshold value). It 
should be noted that if the window creator does not 
declare similarity with some records, then there is no 
need to invoke DIT. 

 
 

Algorithm 1: DIT 
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Consider a pre-defined threshold of 0.7 for declaring 
two records as duplicates. If the similarity between 
records R2 and R1 is � 0.7, then R1 is a duplicate of R2 
and a set {R2, R1 (this set is open because it still can 
grow), will be created. Then, we associate a value PR 
with each record in the set. This value is the measurement 
of the ability of a record to bring another similar record in 
the set to which it belongs. If R2 declares a match with 
R1 in the dataset, then PRR2 = 1 and PRR1 = (similarity 
between R2 and R1)*(PRR2). If PRR1 is above the 
threshold value then a set {(R2, 1), (R1, PRR1), will be 
created. Suppose, there is another record R which was 
similar to R1, then PRR = (similarity between R1 and 
R)*(PRR1), will be recalculated with respect to R1’s new 
PR in the new set and if the PR of R passes the threshold, 
then also it will be moved to the set where R1 has been 
moved. Otherwise R becomes the representative of the 
set. 

If R1 is exact duplicate of R2, then SIMR2,R1 = 1 and 
PRR2 = 1. As a result, PRR1 = SIMR2,R1*PRR2 = (1)*(1) = 
1. PRR1 > 0.7, so, R1 will be accepted as a duplicate of 
R2. 

If R1 is similar to R2 by half, then SIMR2,R1 = 0.5 and 
PRR2 = 1. Hence, PRR1 = SIMR2,R1*PRR2 = (0.5)*(1) = 0.5. 
PRR1 < 0.7, so, R1 will not be accepted as a duplicate. 

If SIMR2,R1 = 0.9 and PRR2 = 1, then PRR1 = 
SIMR2,R1*PRR2 = (0.9)*(1) = 0.9. Since PRR1 > 0.7, R1 
will be accepted as duplicate. Now if R is exact duplicate 
to R1, then PRR = SIMR1,R*PRR1 = (1)*(0.9) = 0.9 = PRR1. 
So, in case of exact duplicate, PR is preserved. 

However, if SIMR2,R1 = 0.9 and PRR2 = 1, then PRR1 = 
SIMR2,R1*PRR2 = (0.9)*(1) = 0.9. PRR1 > 0.7, so, R1 will 
be accepted as duplicate of R2. If, now SIMR1,R = 0.8, 
then PRR = SIMR1,R*PRR1 = (0.8)*(0.9) = 0.72. Since PRR 

> 0.7, R will be accepted as duplicate in the set where R2 
and R1 both exist. 

Whereas, If SIMR2,R1 = 0.8 and PRR2 = 1, then PRR1 = 
SIMR2,R1*PRR2 = 0.8. PRR1 > 0.7, so, R1 will be accepted 
as duplicate of R2. If now, SIMR1,R = 0.8, then PRR = 
SIMR1,R*PRR1 = 0.64. PRR < 0.7, so, R will not be 
accepted as a duplicate in the set where R2 exists. In 
order to be duplicate, SIMR1,R must be greater than 0.87. 

Here the achievement is that, as R1 is diverging from 
R2, R is needed to be more similar to R1 in order to 
become the member of the set where R2 exists. From our 
experimental result, we found that although this method 
does not compare R2 and R directly, we get the 
approximate value of matching R2 and R straight away. 

If there is no similarity at all between R2 and R, then we 
get a value which is approximately zero or negligible. 

C. Domain-Independent Duplicate Detection Algorithm 
(DIDD) 

Our proposed Algorithm-2, Domain-Independent 
Duplicate Detection Algorithm (DIDD), is totally 
domain-independent. All the proposals made in this 
paper, can be used together using the DIDD algorithm. 
Moreover, with some simple modifications in the existing 
system, any part of the proposal made in this paper is also 
applicable with existing similar-duplicate detection 
system. 
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As in Fig. 2, after getting the initial input dataset, the 
DIDD algorithm attempts to sort it to bring the similar-
duplicate records nearer. After that, it utilizes window-
based system to limit the number of comparisons. The 
purpose of this step is to determine the neighbor records 
with which each record will be directly compared. At this 
stage, the DIDD algorithm uses two different string-
matching algorithms to reduce the use of expensive but 
efficient similar-string matching algorithm for every pair 
of tuples found. The first string-matching algorithm 
measures the similarity between the two selected records  
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Figure 2.  Flowchart of the proposed DIDD algorithm.

 
very quickly to estimate the chance of these two records 
to be identical. Comparing the similarity with a pre-
defined threshold value serves this purpose. If it finds any 
reasonable chance, the second string-matching algorithm 
is invoked with the selected records; otherwise the DIDD 
algorithm checks the dataset for other records. In that 
case, the second string-matching algorithm calculates the 
similarity between the received records very efficiently. It 
is very important to get an efficient matching score 
because these similarity scores will be used again to 
apply the modified transitivity rule among the members 
of similar group. If the similarity measured by the second 
string-matching algorithm passes a threshold value, then 
the modified transitivity rule is applied for grouping the 
similar records. If there remain more records to be 
checked, then the process of measuring the similarity 
between two records are repeated. Otherwise the DIDD 
algorithm calls up any existing cleaning system to clean 
the selected duplicates and then finishes. 

V.  EXPERIMENTAL RESULTS 

A. Observation of the working process of DIT 

Example-1 
Input: FATHER, MATHER, MOTHER 
Window length: 2 
Threshold for fast comparison: 0.7 
Threshold for word matching in positional comparison: 

0.7 
Threshold for row matching in positional comparison: 

0.7 
Data_table =  
     

 
    'FATHER' 
    'MATHER' 
    'MOTHER' 
After duplicate detection and cleaning output: 

FATHER, MOTHER. 
In the first step, comparing “MATHER” and 

“FATHER”, we get a similarity value of 0.8. Our 
threshold is 0.7, so “MATHER” and “FATHER” are 
duplicates according to our threshold. They create a set 
{(MATHER, 1), (FATHER, 0.8)}. Since there is only 
one character mismatch in “MATHER” and “FATHER”, 
any matching algorithm will declare them as duplicates. 

In the second step, comparing “MOTHER” and 
“MATHER”, we get a similarity value of 0.8. Since the 
threshold is 0.7, “MOTHER” and “MATHER” are 
duplicates according to our threshold value. They create a 
set {(MOTHER, 1), (MATHER, 0.8)}. Since there is 
only one character mismatch in “MOTHER” and 
“MATHER”, any matching algorithm will declare them 
as duplicates. 

In this stage, according to our modified rule 
“MATHER” will check the set it created earlier for any 
value which has a PR >= threshold with respect to 
MATHER’s new PR. If such one exists, “MATHER” will 
bring it to the set where it has joined now. “MATHER” 
will find “FATHER” but FATHER’s PR with respect to 
MATHER’s new PR is 0.8*0.8 = 0.64 < threshold (0.7). 
As a result, “FATHER” will not come in the set where 
“MOTHER” exists. “MATHER” will leave all those 
values whose PR is less than the threshold with respect to 
MATHER’s new PR in the previous set. In this stage 
(MOTHER, MATHER) and (FATHER) are creating two 
different sets. 
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In the third step “MOTHER” will do a direct match 
with “FATHER” and will get a value of 0.66 < threshold 
(0.7). So, it will not be declared as duplicate with 
“FATHER”. 

From the direct match result and our threshold value, 
we can conclude that “MOTHER” is not duplicate of 
“FATHER” and the same result was obtained by our 
algorithm even when we did not compare “MOTHER” 
and “FATHER” directly. On the other hand, in the second 
step when “MATHER” was trying to take “FATHER” in 
the set where “MOTHER” exists, it will found that 
FATHER’s PR = 0.64 in the set where “MOTHER” 
exists which is � 0.66. This is the direct match result of 
“MOTHER” and “FATHER”. 

If we use the traditional transitivity rule, then we will 
get only one element instead of two. Because, 
“MATHER” is duplicate of “FATHER”. “MOTHER” is 
a duplicate of “MATHER”, so “FATHER” is a duplicate 
of “MOTHER”. 

Example -2 
Input: CSE, COMPUTER SCIENCE AND 

ENGINEERING, COMPUTER SCIENCE AND 
TECHNOLOGY, CHITTAGONG STOCK EXCHANGE 

Window length: 3 
Threshold for fast comparison: 0.75 
Threshold for word matching in positional comparison: 

0.8 
Threshold for row matching in positional comparison: 

0.75 
Data_table =  
    'CSE' 
    'COMPUTER SCIENCE AND ENGINEERING' 
    'COMPUTER SCIENCE AND TECHNOLOGY' 
    'CHITTAGONG STOCK EXCHANGE' 
After sorting the Data_table =  
    'CHITTAGONG STOCK EXCHANGE' 
    'COMPUTER SCIENCE AND ENGINEERING' 
    'COMPUTER SCIENCE AND TECHNOLOGY' 
    'CSE' 
After duplicate detection and cleaning output: 

COMPUTER SCIENCE AND TECHNOLOGY, CSE. 
After comparing “CHITTAGONG STOCK 

EXCHANGE” and “COMPUTER SCIENCE AND 
ENGINEERING”, fast match result is 0.5, so no need to 
compare it further. After comparing “COMPUTER 
SCIENCE AND ENGINEERING” and “COMPUTER 
SCIENCE AND TECHNOLOGY”, we find a similarity 
value of 0.75. 

After comparing “CHITTAGONG STOCK 
EXCHANG”' and “COMPUTER SCIENCE AND 
TECHNOLOGY”, fast match result is 0.7167, so no need 
to compare it further. After comparing “COMPUTER 
SCIENCE AND TECHNOLOGY” and “CSE”, fast 
match result is 0.6667; again no need to compare it 
further. 

After comparing “COMPUTER SCIENCE AND 
ENGINEERING” and “CSE”, we find a similarity value 

of 1, using the matching rule for abbreviation. Previously 
“COMPUTER SCIENCE AND ENGINEERING” was a 
member of the set started by “COMPUTER SCIENCE 
AND TECHNOLOGY”, but in that set, it had a PR = 
0.75. If it moves to the set started by “CSE”, then PR = 1. 
As a result, it moves to the set started by CSE. After 
comparing “CHITTAGONG STOCK EXCHANGE” and 
“CSE”, we also find a similarity value of 1. 

At the end, we find that the set started by “CSE” has 
two values: “COMPUTER SCIENCE AND 
ENGINEERING” and “CHITTAGONG STOCK 
EXCHANGE”, as a result “CSE” is kept as unique and 
the remaining two are deleted as duplicates. And the set 
started by “COMPUTER SCIENCE AND 
TECHNOLOGY” has no duplicate value, so it is also 
kept as unique. 

B. Experiment with large datasets 
The experiment was performed using 7 tests to 

compare the time requirement for the proposed algorithm 
with two existing domain-independent algorithms: 
Scheme-1 [8] and Scheme-2 [3]. We used desktop 
computer with Intel Pentium-IV processor, 512 MB 
RAM, windows XP operating system and Matlab-
R2007b. The dataset was created by collecting data from 
the Internet [24-26] and merging them to a database table. 
Since, the proposed method is domain-independent; we 
are not concerned about the attributes’ name. There are 
total 8 attributes and some attributes contain more than 40 
characters data. Table IV contains the description of the 
datasets. 

TABLE  IV  
DESCRIPTION OF THE DATASET 

Test No. Description of the dataset 

test-1 No duplicates 

test-2 800 unique records and 5 exact duplicates per record 

test-3 400 unique records and 10 exact duplicates per record 

test-4 200 unique records and 20 exact duplicates per record 

test-5 100 unique records and 40 exact duplicates per record 

test-6 80 unique records and 50 exact duplicates per record 

test-7 40 unique records and 100 exact duplicates per record  

TABLE  V 
 REQUIRED TIME WITH VARYING THE NUMBER OF DUPLICATES 

Test No. Proposed algorithm 
(sec) 

Scheme-1 
(sec) 

Scheme-2 
(sec) 

test-1 50 490 522 
test-2 300 460 472 
test-3 450 450 470 
test-4 480 435 464 
test-5 530 440 460 
test-6 550 450 450 
test-7 670 470 440  
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TABLE  VI 
RECALL AND PRECISION FOR THE ALGORITHMS 

Proposed algorithm Scheme-1 Scheme-2 
Thresh

old R P F1 R P F1 R P F1 

0.1 1 0.15 .26 1 0.11 .2 1 0.11 .2 
0.2 1 0.15 .26 1 0.11 .2 1 0.11 .2 
0.3 1 0.15 .26 1 0.12 .21 1 0.11 .2 
0.4 0.95 0.59 .73 1 0.36 .53 1 0.25 .4 
0.5 0.9 1 .95 0.71 1 .83 0.77 1 .87 
0.6 0.9 1 .95 0.52 1 .68 0.52 1 .68 
0.7 0.89 1 .94 0.51 1 .67 0.51 1 .67 
0.8 0.84 1 .91 0.51 1 .67 0.49 1 .66 
0.9 0.67 1 .8 0.49 1 .66 0.4 1 .57 
1 0.67 1 .8 0.46 1 .63 0.33 1 .5 

 
 
Table V contains the required time. From Table V, it 

can be observed that the performance of our proposed 
algorithm is better than that of the other two algorithms 
when the number of duplicates per record is realistic, 
whereas the other two algorithms require more time when 
the number of duplicates per records is fewer. The reason 
is that they use a priority queue. In a priority queue, when 
the number of unique records is more, additional 
comparisons per records are required to find a match. If 
we also make the similar assumption like [3], there will 
be a maximum of 20 duplicate records per unique 
records. In that case, the test category falls from test-1 to 
test-4. In test-4, we require slightly more time. This is 
because, to improve the efficiency, we are using a 
modified form of the transitivity rule, which requires 
additional work than the simple transitivity rule. 

It is usual that in a real-world dataset the scenario after 
test-4 will rarely occur. On the other-hand, in a real-world 
dataset, it is unlikely that every record will have a fixed 
number of duplicate records. When two records are the 
exact duplicates, our proposed algorithm needs to 
perform maximum number of operations. Hence, we used 
exact duplicates for time comparison. 

Table VI shows the values of Recall (R), Precision (P) 
and F1 metric for the proposed method and the other two 
methods. It should be mentioned that, R = (number of 
true duplicates detected / the number of total duplicates in 
the dataset), P = (number of true duplicates detected / the 
total number of duplicates detected). F1 Metric [27] gives 
equal weight to both of them and is computed as  

           F1= (2*R*P)/ (R+P) 
For comparing the Recall and Precision, we use a 

dataset, which contains 3900 unique records with a 
known number of duplicate records. From table VI, we 
can find that if the threshold is between 0.1 and 0.4, our 
Precision is better, whereas if the threshold is between 0.5 
and 1, our Recall is better than the other two algorithms. 
For better understanding of the readers, these 
comparisons are also visually presented separately in Fig. 
3, Fig. 4 and Fig. 5. This claim can also be justified by 
the values of F1 metric presented in Fig. 6. 
  

 
Figure 3.  Recall and precision for the proposed algorithm. 

 
Figure 4.  Recall and Precision for Scheme-1(Independent de-

duplication in data cleaning). 

 
Figure 5.  Recall and Precision for Scheme-2 (An efficient domain 

independent algorithm for detecting approximately duplicate database 
records). 
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Figure 6.  Performance using F1 metric

Efficiency of duplicate detection algorithms depends 
on the efficiency of the sorting method, as well as the 
efficiency of the similar-string matching algorithm. From 
the experimental results, it is clear that the proposed 
sorting method and the similar-string matching algorithm 
are more efficient than the other two algorithms for 
detecting similar-duplicates. 

The values in the Table VI also justify this. From the 
table, it can be found that when Precision is the same, our 
sorting method and the modified string-matching 
algorithm is able to detect more duplicates than the other 
algorithms. At the threshold value of 0.4, our Recall is 
slightly lower than the other two algorithms. However, 
when Recall is the same, our Precision is always better 
than the other two algorithms.  Considering both Recall 
and Precision, the overall efficiency of our algorithm is 
better. In short, our proposed DIT algorithm plays an 
important role for making the precision better than the 
other algorithms. Also, it reduces the number of false 
positives. 

VI.  LIMITATIONS AND FUTURE WORKS 

Near-duplicates are those entities, which are identical 
from their sense/meanings, but not from their 
appearances. For example, “Master” and “Teacher” are 
neither identical nor similar in a character-by-character 
sense, but they are near-duplicates considering the fact 
that their meanings are almost the same in some cases. 
The string-matching algorithm we proposed in this paper, 
is not capable of detecting such near-duplicates. To detect 
such type of near-duplicates, the meanings of the related 
strings should be considered. Detection of near-duplicates 
can be simply achieved by replacing the string-matching 
algorithm with the one which is capable of detecting such 
type of duplicates. It will not bring any change in the 
proposed DIT or DIDD algorithm. Some authors use 
near-duplicate to mean similar/approximate duplicate, but 
because of the difference between the words near and 
similar, we do not agree to use near and similar 
synonymously. 

In the proposed algorithms, threshold is the amount of 
similarity that determines the difference between two 
strings in order to be declared as duplicates. It can be any 
value in the range between 0 and 1.0. In a particular 
domain, the users can use threshold value of 0.5 (for 
example) to declare two strings as duplicates, when their 
resultant similarity is equal to or above 50%. For the 
same domain, if the users consider that the error is 
relatively low, they can use threshold value of 0.95 (for 
example) to declare two strings as duplicates, when their 
resultant similarity is equal to or above 95%. On the other 
hand, for two different domains, the users are free to use 
the same threshold 0.9 (for example), if they want to 
declare two strings as duplicates; where their resultant 
similarity is equal to or above 90%. It is possible to use 
different thresholds for the same domain or the same 
threshold for different domains depending on the range of 
errors in data. So the determination of threshold does not 
depend on domain, it depends on the users. 

We used a window-based system for limiting the 
number of comparisons made with the nearby records, 
but a priority queue based system or other methods can 
also be used to test whether any further improvement can 
be made using all/any of the proposed techniques.  

In this paper, we did not consider the problem of 
missing values or limiting the number of attributes, 
because these are usually handled before the duplicate 
detection phase. We also gave the same importance for 
each attribute during the calculation of similarity between 
records. In future, we hope to improve the sorting method 
to bring the similar-records closer and to set the field 
weights in some automatic way. 

 VII.  CONCLUSIONS 

This paper presents a domain-independent similar-
duplicate detection algorithm for data cleaning in data 
mining. The efficiency of any duplicate detection 
algorithm depends heavily on the efficiency of sorting 
methods. The sorting method proposed in this paper is a 
novel technique for bringing the similar-records closer 
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and it can sort the records efficiently. The proposed 
algorithm also explores the idea to make the duplicate 
detection algorithms faster and more efficient for real-life 
data. A domain-independent transitivity rule is also 
proposed to reduce the negative aspect of the transitivity 
rule for domain-independent cases. This paper also 
outlines an algorithm to implement all the proposed 
methods together. All the techniques, we have proposed 
in this paper can be applied individually or with other 
existing methods. 
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