
A Domain-Independent Data Cleaning Algorithm
for Detecting Similar-Duplicates

Kazi Shah Nawaz Ripon

Department of Informatics, University of Oslo, Norway
 Computer Science and Engineering Discipline, Khulna University, Bangladesh

Email: ripon_cseku@yahoo.com

Ashiqur Rahman and G.M. Atiqur Rahaman

Computer Science and Engineering Discipline, Khulna University, Bangladesh
Email: {2ashiqur, gmatiqur}@gmail.com

Abstract—Data mining algorithms generally assume that
data will be clean and consistent. However, in practice, this
is not always the case, and for this reason the detection and
elimination of duplicate records is an important part of data
cleaning. The presence of similar-duplicate records causes
over-representation of data. If the database contains
different representations of the same data, the results
obtained from the data mining algorithm will be erroneous.
The detection of similar-duplicate records is a difficult task,
especially when the records are domain-independent. In this
paper, we propose a novel domain-independent technique
for better reconciling the similar-duplicate records. We also
introduce new ideas for making similar-duplicate detection
algorithms faster and more efficient. In addition, a
significant modification of the transitivity rule is also
proposed. Finally, we propose an algorithm that
incorporates all these techniques for similar-duplicate
detection into a domain-independent environment. The
performance of the proposed method has been compared to
other methods and the superiority of the proposed method
has been confirmed by the experimental results.

Index Terms—Data cleaning, similar-duplicate, domain-
independent, transitivity rule, approximate duplicate.

I. INTRODUCTION

Data mining [1] is a knowledge discovery process used
to extract hidden patterns from data. There are several
steps involved in data mining as shown in Fig. 1 [2]. One
of the major steps is data preparation; data cleaning (also
known as data cleansing or scrubbing) is one of the sub-
steps of data preparation. The intent of the process is to
detect and remove errors and inconsistencies from data
and improves their quality. Duplicate record detection
and elimination is a challenge of data cleaning. Data
cleaning is applicable, for example, for textual databases,
image databases, and web mining. The main focus of this
paper is to improve the methodologies used for detecting
duplicate records in textual databases.

The importance of databases in today’s information
technology (IT) sector is overwhelming. The success rate
of knowledge discovery operations performed on
databases is highly dependent on the quality of data. For

several reasons, the data quality may fall below the
expected level. Data duplication is one such reason. A
decrease in quality of stored data puts the knowledge
discovered from such data into question. It is not too
difficult to detect exact duplicates, but the situation
becomes complex when an entity in the database contains
similar-duplicates. Linguistically, similar means like but
not exactly the same, and duplicate means the same in
every detail. In similar-duplicates, entities are not
identical in a bit-by-bit comparison because of errors, but
in the absence of errors, they would actually be
identical/duplicate. Here the term similar-duplicate is
used to indicate strings that are not textual duplicates but
are similar, and from measurement of their similarity, we
can decide whether they are actually identical or not.
Some researchers refer to similar-duplicates as
approximate duplicates [3]. Records can be similar-
duplicates for several reasons, including typing errors,
abbreviations, extra words, missing values, word
transpositions, illegal values, and similar mistakes. For
example, “Mother” and “Mother” are identical, but
“Mother” and “Mather” are not. However, the terms are
similar if one considers the mismatch in characters
between the two strings. Either “o” or “a” might be a
typing error. Now, if one uses a string-matching
algorithm which measures the similarity between
“Mother” and “Mather,” then from the resultant
similarity, one can decide whether “Mother” and
“Mather” are identical or not.

Over the years, a great deal of attention has been paid
to resolving the problem of duplicate detection. Yet, most
of the research conducted in this field has addressed
domain-specific problems. Unfortunately, domain
knowledge is not always available. Moreover, domain-
specific methodologies apply only for some particular
domains, and the rules developed for one domain often
do not hold for different domains. Nevertheless, currently
so many different domains exist that the need for domain-
independent research is undeniable. Although dealing
with domain-independent techniques for similar-duplicate
record detection in database has received attention over
the last few years, to our knowledge these approaches are

1800 JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010

© 2010 ACADEMY PUBLISHER
doi:10.4304/jcp.5.12.1800-1809

��������

	
�����
��
��

����

	
�����
��
��

����

���������
�

��������
�

��������
�

� �����
��

����

Figure 1. Data mining process [2].

still limited, and dominated by pure or advanced
transitivity rule for domain-specific techniques [4]. As far
as we know, there is no solution for domain-independent
cases.

Usually, most of the database table contains unique or
primary key fields, and these fields play a major role in
restricting data from being duplicated during different
update/retrieval processes. However, errors during entry
in these fields, which contain mostly unique data, are a
common source of inaccuracy in databases. On the one
hand, if the unique data is entered manually, then the
chance of error is very high. On the other hand, to reduce
this type of error, these data are typically entered using
drop-down or combo boxes. Sometimes, they are
uniquely auto generated during the data entry process.
This reduces the chance of errors in fields with unique
values. However, it only guarantees that no two instances
will have the same primary/unique key value; it does not
guarantee that the same instance will not hold for two
different primary key values. For example, a university
staffer might want to enter student details into a database.
During the data entry process, the staffer can select
different student IDs from the drop-down/combo box or
from a uniquely auto generated ID. Although this
guarantees that no two students will have the same IDs, it
never guarantees that in the database the same student
will not be assigned two different IDs. The same problem
holds true for the fields with common values. Still, there
is no suitable solution to these types of problems.
Similar-duplicate detection is the only method to handle
them to date. As mentioned earlier, very few research
works discuss the issue of better reconciling similar-
duplicate records (bringing similar-duplicate records
nearer), and the existing de-duplication techniques for
doing so are not efficient enough for such types of
problems [3, 5-7].

This paper presents a domain-independent technique
for sorting similar records and a modification to the

transitivity rule to apply into domain-independent cases.
It also considers time for performing the de-duplication
on real-world data and proposes a new idea for making
the duplicate detection algorithms faster for real-world
data. In addition, modification has been proposed to an
existing similar-string matching algorithm [8] for
improving efficiency. Finally, an algorithm implements
all these techniques together. Experimental results show
that the proposed schemes perform better than the
existing domain-independent similar-string matching
schemes. The rest of the paper is organized as follows.
Section II contains literature review. Section III presents
the background of the proposed methods. Section IV
describes proposed methods and algorithms in details. To
demonstrate the performance of the proposed approach,
experimental results are presented and analyzed in
Section V. Section VI contains some limitations and
points to future works, followed by the conclusions in the
final section.

II. LITERATURE REVIEW

The standard method for detecting exact duplicates is
to sort the dataset and then to perform an exact matching
with the neighbor records to determine whether two
records are duplicates or not. Different authors have
extended this approach for detecting the
similar/approximate duplicate records in databases [9-
13]. These approaches vary by the amount of domain
knowledge supplied by the user. Some of these
approaches are domain-specific and/or assumes that the
user for each application domain will supply the domain
knowledge. Lee et al. proposed a framework for data
cleaning [4]. They addressed the problem of transitivity
rule in the field of similar-duplicate detection, and
proposed a method for avoiding this problem. Still, their
proposed method is domain-dependent and requires some
rules and certainty factor (c.f.). To specify these rules,
domain knowledge is necessary. It also requires user
involvement for defining the c.f. Wang et al. proposed
another rule based duplicate detection methodology [10].
They used experts’ knowledge to create rules and key
from a set of attributes when the global key is absent.
Some authors also proposed to create production rules
based on domain-specific knowledge. However, creating
rules is often time consuming. Certainly, duplicate
detection systems should use as less domain knowledge
as possible [14]. In addition, the result must be acceptable
enough for keeping the time duration in a tolerable range.
The reason is that usually data mining processes are
applied on databases, which contain huge amount of data.

Hernandez and Stolfo proposed some of the earlier
works for similar-duplicate detection [5, 7]. All these
works are almost similar and based on Merge/Purge
technique. However, their proposed Merge/Purge
technique gives solution only for domain-specific
problems. The authors used a window-based system to
limit the number of comparisons required for a record
with its neighbor records. It utilized equational theory
that needs to be changed for each domain and also
requires domain knowledge. In addition, it used a sorting

JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010 1801

© 2010 ACADEMY PUBLISHER

technique based on keys selected by user. This technique
fails, if the user makes a poor choice to sort the data. To
increase the efficiency of the data cleaning method, Lee
et al. proposed a token-based technique for data
preprocessing [6]. This technique requires external source
files, which contain useful information to remove typical
errors from the dataset. Unfortunately, it can be used only
for some particular domain-specific problems, and for
most cases, it is not possible to get such an external
source file. For sorting the dataset, they proposed a
method similar to the method proposed in [5]. Their
sorting method involved three stages. In the first stage,
the data in each field of the selected attribute are
tokenized, next the tokens are internally sorted and then
they are used for sorting the dataset. This method fails, if
the record contains errors in the selected attribute. Monge
and Elkan proposed a completely domain-independent
work [3]. Their proposed sorting method treats each
record as one long string and sorts them lexicographically
reading from left to right in one pass and right to left in
another pass. The authors also proposed a priority queue
based technique for limiting the number of comparisons.
To group similar records they used pure transitivity rule,
but they also mentioned some problems of using
transitivity rule for detecting similar-duplicates. In [9],
the authors presented a concept in which prediction is
made by assigning weight proportional to the importance
of information and using co-occurrence and textual
similarity functions. However, this work is partially
domain-independent and the memory and time
requirement for performing the required operations is
very high. Hylton proposed an algorithm for identifying
and merging related bibliographic records, which are in
different formats [11]. It was designed to work using
authors’ names and titles. It works only for bibliographic
records; hence, it is domain-specific. Winkler proposed a
method, which can be applied for a limited range of very
good quality lists that have known matching
characteristics [12]. Weis et al. proposed an industry-
scale duplicate detection system [13], which is an
extension of the domain-independent approach proposed
for detecting duplicates in XML data [15]. However, the
proposed industry-scale duplicate detection system is
totally domain-dependent and requires rules and the
knowledge of domain experts’.

Similar-string matching is one of the key requirements
for similar-duplicate detection systems. Several works are
available on similar/approximate string matching in the
literature [16-19]. Unfortunately, most of them are
designed to solve particular problems. The well-known
Boyer and Moore’s algorithm [17] is very effective to
find a pattern in a string, but it is a kind of exact matching
algorithm and does not hold for similar-string matching.
Du et al. proposed an approximate string matching
algorithm to solve only dictionary problems [18]. Smith-
Waterman algorithm [19] is another well-known
algorithm, which was originally developed to compare
DNA or protein sequences. The most popular method for
similar-string matching is based on edit-distance [20],
which is the minimum number of unit operations (for

example, add, delete, insert) needed to perform on
individual characters to transform one string to the other
[16, 21]. These types of functions are also called classical
edit-distance functions, or textual similarity functions.
Monge showed that recursive algorithm gives more
accurate result for approximate string matching than
previous classical algorithms [22]. Still, the complexity
of the proposed algorithm is very high due to its recursive
comparisons of sub-strings. On the other hand,
Udechukwu et al. claimed that their proposed Positional
algorithm improves the result of the recursive algorithm
[8]. Conversely, experimental result shows that, for some
cases, the original Positional algorithm fails to return an
acceptable score. This situation arises when the shorter
string is a sub-string of the longer string. However, we
believe that with some modification, it can be made more
efficient. In this paper, we presented a modified version
of the Positional algorithm and the experimental results
are satisfactory enough.

III. BACKGROUND OF THE PROPOSED METHOD

The sorting method proposed in [6] is not completely
domain-independent. In fact, it is partially domain-
independent, as it requires the user to select the most
important fields for sorting the similar records. A
completely domain-independent technique for sorting the
records was proposed in [3]. However, this technique
fails, if the database table contains most unique field in
one side and less unique field in the other side. It also
fails, if error either in the most unique field or another
record is similarly duplicated for error in the first and last
field. Whereas our proposed method works efficiently for
solving the problem of error in unique field or when the
error is in some other fields, which has a high uniqueness
value compared to that of others.

TABLE I.
DATASET WITH ALL UNIQUE RECORDS

 Field-1 Field-2 Field-3
R1 A B C
R2 D E F
R3 G H I
R4 J K L

TABLE II.
DATASET WITH SIMILAR-DUPLICATE RECORDS

 Field-1 Field-2 Field-3
R1 A B C
R2 D E F
R3 G H I
R4 J B L

TABLE III.
DATASET WITH SIMILAR-DUPLICATE RECORDS

 Field-1 Field-2 Field-3
R1 A B C
R4 J B L
R2 D E F
R3 G H I

1802 JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010

© 2010 ACADEMY PUBLISHER

Table I represents the dataset, where data in all records
are unique or they become unique due to some errors. In
this scenario, it is really hard to determine the sorting
strategy. However in a real-world dataset, it is natural
that some records will be similarly duplicates and we can
assume that some of its values will be exactly duplicates
as in Table II. In these cases, the uniqueness of the fields
will be affected.

For example, in Table I, uniqueness of Field-1, Field-2
and Field-3 are 100%, but in Table II, uniqueness of
Field-2 is 75%. In Table II records R1 and R4 may be
similar or not. If we use the uniqueness information and
sort the dataset using the less unique field, R1 and R4
will be closer as in Table III.

Similar-string matching algorithms are expensive [3].
They have to perform more computations than exact
string matching algorithms. In a real-world dataset, the
number of unique records will be many times higher than
the number of duplicate records. Hence, performing an
efficient similar-string matching algorithm is not required
when the number of characters in a string is much lower
than the number of characters in the second string or the
characters in one string does not appear in a certain
amount in the second string. Therefore, we decided to use
a fast string matching algorithm that calls the efficient
similar-string matching algorithm when the number of
characters and the appearance of characters between two
strings pass a threshold value. This will save a lot of
computational efforts.

IV. PROPOSED MODIFICATIONS AND ALGORITHMS

A. Modification of the Positional Algorithm
Most of the existing string matching algorithms do not

handle abbreviations efficiently [23], and for many cases,
they do not give acceptable measures of similarity. One
of the efficient similar-string matching algorithms is
Positional string matching algorithm [8]. It can handle
abbreviations efficiently and is able to measure the
similarity between two strings more efficiently than the
classical string matching algorithms. However for some
cases, it fails to return a good measure of similarity.

For example, consider two strings: A=“John” and
B=“Johnathon”. Using the original Positional algorithm,
we get a match score of 1; whereas there are 5 characters
mismatch between A and B. A match score of 1 usually
means that the strings are exact duplicates. Therefore, the
match score of 1 is not acceptable. In fact, the original
Positional algorithm will return a match score of 1,
irrespective of the number of characters exist in the left or
right side of “John” of the second string. This is because
during the match score calculation, the algorithm
considers only the length of the shorter string ignoring
the length of the other string. As was doing in the original
Positional algorithm:

match score = (total match score returned by the
shorter string / total number of characters in the shorter
string).

Here only the shorter string returns the match score.
However, it is reasonable to consider the longer string

also. In fact, the size of both strings has its effect on the
calculation of the final match score. In this work, we
calculate the mach score as,

match score = (total match score returned by the
shorter string / average number of characters in both
strings)

Using the latest score for the above problem, we get a
match score of 0.61, which is more acceptable.

B. Domain-Independent Transitivity Rule for Similar-
Duplicate Detection

Transitivity rule states that if A is equivalent to B and
B is equivalent to C then A is equivalent to C.
Transitivity rule is used for similar-duplicate detection.
Ref. [4] describes the problem of using transitivity rule
for similar-duplicate record detection using one character
threshold so that two strings will be similar. If there is
only one character mismatch then “Father” is similar-
duplicate of “Mather” and “Mather” is similar-duplicate
of “Mother”. According to the transitivity rule, “Father”
is similar-duplicate of “Mother”. Since there are two
character mismatches between “Father” and “Mother”;
they are not similar-duplicates according to our threshold.
For these types of problems, a very high threshold is
required to separate the values. However, a very high
threshold will lower the value of Recall. A solution to the
transitivity rule for detecting similar-duplicate records
was proposed in [4] to obtain a high Recall without
declaring these types of values as similar. However, all of
their proposed solutions are rule based and it requires c.f.;
which in turn requires the user involvement. Moreover, it
was domain-specific. So far we know there is no solution
for domain-independent cases to reduce the effect of the
transitivity rule. Our proposed Domain-Independent
Transitivity (DIT) algorithm (described in Algorithm-1)
for similar-duplicate detection is totally domain-
independent, and it does not require any rule, c.f., or user
involvement. In DIT algorithm, SIM stands for similarity
and PR stands for power of a record. We call the latest
record (the highest numbered record) in a window as the
window creator. Input to the algorithm is two records:
window creator and record to which the window creator
declares similarity (i.e. passes a threshold value). It
should be noted that if the window creator does not
declare similarity with some records, then there is no
need to invoke DIT.

Algorithm 1: DIT
��� �������	
��� �� ���� ������������� �������� ����������� ����� ���

� ��

� �� � ���������
���� 	
� �� ���� ������� � � �������
� � ����
�� �	
� !�

� ������"��!�� �����!�������"���������

� �� ���#!�
���������"���������$ ��!�������������������������

����	
�!������������!�����������������"��������������	
�!�
��

�����������!�
� ��

� �����% $ �������������!�� ���������!�
������������!�
� �

���������	
�"�������������������$ ������

JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010 1803

© 2010 ACADEMY PUBLISHER

���������� �����& �� �������� ��������������!���������!�
���� �' ����

���� ��"���������$ ��� �!� ��� � �(������ ���� �"����� ���� 	
� !� �����

���������������"�����������������"���������$ ���

� �� � ��) ���������� �!�
������������"���������$ ��������!� �����

	
� ��� ������� ��� ��������!�
� � ����� � $ �� ��� �� ��������!�
� �����

�"����������	
���������������

� �� ���) ���������� ��� ��� ���� !����� ��� ���
�� ��� ����������

��� ������� � ����� �� �� ������� ��� "�� � ���� ��� �� ���� ���� !�
� � ����

�����������	
������������!�
� �

Consider a pre-defined threshold of 0.7 for declaring
two records as duplicates. If the similarity between
records R2 and R1 is � 0.7, then R1 is a duplicate of R2
and a set {R2, R1 (this set is open because it still can
grow), will be created. Then, we associate a value PR
with each record in the set. This value is the measurement
of the ability of a record to bring another similar record in
the set to which it belongs. If R2 declares a match with
R1 in the dataset, then PRR2 = 1 and PRR1 = (similarity
between R2 and R1)*(PRR2). If PRR1 is above the
threshold value then a set {(R2, 1), (R1, PRR1), will be
created. Suppose, there is another record R which was
similar to R1, then PRR = (similarity between R1 and
R)*(PRR1), will be recalculated with respect to R1’s new
PR in the new set and if the PR of R passes the threshold,
then also it will be moved to the set where R1 has been
moved. Otherwise R becomes the representative of the
set.

If R1 is exact duplicate of R2, then SIMR2,R1 = 1 and
PRR2 = 1. As a result, PRR1 = SIMR2,R1*PRR2 = (1)*(1) =
1. PRR1 > 0.7, so, R1 will be accepted as a duplicate of
R2.

If R1 is similar to R2 by half, then SIMR2,R1 = 0.5 and
PRR2 = 1. Hence, PRR1 = SIMR2,R1*PRR2 = (0.5)*(1) = 0.5.
PRR1 < 0.7, so, R1 will not be accepted as a duplicate.

If SIMR2,R1 = 0.9 and PRR2 = 1, then PRR1 =
SIMR2,R1*PRR2 = (0.9)*(1) = 0.9. Since PRR1 > 0.7, R1
will be accepted as duplicate. Now if R is exact duplicate
to R1, then PRR = SIMR1,R*PRR1 = (1)*(0.9) = 0.9 = PRR1.
So, in case of exact duplicate, PR is preserved.

However, if SIMR2,R1 = 0.9 and PRR2 = 1, then PRR1 =
SIMR2,R1*PRR2 = (0.9)*(1) = 0.9. PRR1 > 0.7, so, R1 will
be accepted as duplicate of R2. If, now SIMR1,R = 0.8,
then PRR = SIMR1,R*PRR1 = (0.8)*(0.9) = 0.72. Since PRR

> 0.7, R will be accepted as duplicate in the set where R2
and R1 both exist.

Whereas, If SIMR2,R1 = 0.8 and PRR2 = 1, then PRR1 =
SIMR2,R1*PRR2 = 0.8. PRR1 > 0.7, so, R1 will be accepted
as duplicate of R2. If now, SIMR1,R = 0.8, then PRR =
SIMR1,R*PRR1 = 0.64. PRR < 0.7, so, R will not be
accepted as a duplicate in the set where R2 exists. In
order to be duplicate, SIMR1,R must be greater than 0.87.

Here the achievement is that, as R1 is diverging from
R2, R is needed to be more similar to R1 in order to
become the member of the set where R2 exists. From our
experimental result, we found that although this method
does not compare R2 and R directly, we get the
approximate value of matching R2 and R straight away.

If there is no similarity at all between R2 and R, then we
get a value which is approximately zero or negligible.

C. Domain-Independent Duplicate Detection Algorithm
(DIDD)

Our proposed Algorithm-2, Domain-Independent
Duplicate Detection Algorithm (DIDD), is totally
domain-independent. All the proposals made in this
paper, can be used together using the DIDD algorithm.
Moreover, with some simple modifications in the existing
system, any part of the proposal made in this paper is also
applicable with existing similar-duplicate detection
system.

Algorithm 2: DIDD
��� * ����� ���� ���� ���+ ������� !� ����� ������ ���� !� ���� ���������

, ��+ ������� ��� �� ��� ������� $ ������������ �������� ������� � ���

!���!!�����������!���������� �����

� ��- �����������������������������+ ��������� ������������������������

����������������� ����� #!� �� ����������� ���� ���� � �������� �����

����� ���� ���� �������� ������ ��� � ������ ���� ������ ��� � ���

"�� ������ �� � ����� ���� ��� ����.��"������� ������� ������� �����

�������

/ ���- ����"���������!�����������

0�� 	��!�� � �� ����� �("����$ �� ���� !���� ������� � �������� "�������

� �������������������.�������������������������������������

��� ������� ��.��� ������� ��� ���� ������ ��� � � � ���� #!� ����

� ������������� ��� � ������ ��"��.�"���!���� ��������� $ �����

���������������������"�0��

1�� 	��!�� � ��� �("����$ �� � ��� �!!������� ������� � �������� "�������

��� � !�� ����� ������� ����� ��� ������� � ��� �� $ �� �� �� "��.

�"���!�������������������"�0��

2�� #!� ������� ������� � � ������� ���������� ������"�1� ����� $ ���� ��

"��.�"���!�������������������� �!����� �������� ��(�������������

!� ��"������� ������� ����� ���� ���� � ��!���� !�� � !� ����

��������$ ��� �������#!�����!����� ��(���������� �������������������

��������!���"������������������������������������

3��#!����������������!�� ���� �����!���"�������������������������

�����������������������������!���"���������������- �$ �������

����!���"���������������

4 ��
�"�������"��0���3����������������������!�����������������������

�������������� ����������������"�0��

5 ��6 �' ����������!���"����������������������������"�2�����' ��"���

������!�� ���������������������������� ���������������

As in Fig. 2, after getting the initial input dataset, the
DIDD algorithm attempts to sort it to bring the similar-
duplicate records nearer. After that, it utilizes window-
based system to limit the number of comparisons. The
purpose of this step is to determine the neighbor records
with which each record will be directly compared. At this
stage, the DIDD algorithm uses two different string-
matching algorithms to reduce the use of expensive but
efficient similar-string matching algorithm for every pair
of tuples found. The first string-matching algorithm
measures the similarity between the two selected records

1804 JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010

© 2010 ACADEMY PUBLISHER

Dataset of N
records�

�Sort the records Set window

length := w

Move window
one record down

to d

Set i:=0

Set i := i+1�d-i >0?

Take d-th and
(d-i)-th record�

Fast match�
Greater than
threshold�

Efficient
match

Greater than
threshold?

Modified
transitivity

rule

N-th and (N-w)-
th record

comapared?�
i = w?

END

yes
yes

yes

yes

yes

no

no

no

no

no

Clean the duplicates

Figure 2. Flowchart of the proposed DIDD algorithm.

very quickly to estimate the chance of these two records
to be identical. Comparing the similarity with a pre-
defined threshold value serves this purpose. If it finds any
reasonable chance, the second string-matching algorithm
is invoked with the selected records; otherwise the DIDD
algorithm checks the dataset for other records. In that
case, the second string-matching algorithm calculates the
similarity between the received records very efficiently. It
is very important to get an efficient matching score
because these similarity scores will be used again to
apply the modified transitivity rule among the members
of similar group. If the similarity measured by the second
string-matching algorithm passes a threshold value, then
the modified transitivity rule is applied for grouping the
similar records. If there remain more records to be
checked, then the process of measuring the similarity
between two records are repeated. Otherwise the DIDD
algorithm calls up any existing cleaning system to clean
the selected duplicates and then finishes.

V. EXPERIMENTAL RESULTS

A. Observation of the working process of DIT

Example-1
Input: FATHER, MATHER, MOTHER
Window length: 2
Threshold for fast comparison: 0.7
Threshold for word matching in positional comparison:

0.7
Threshold for row matching in positional comparison:

0.7
Data_table =

 'FATHER'
 'MATHER'
 'MOTHER'
After duplicate detection and cleaning output:

FATHER, MOTHER.
In the first step, comparing “MATHER” and

“FATHER”, we get a similarity value of 0.8. Our
threshold is 0.7, so “MATHER” and “FATHER” are
duplicates according to our threshold. They create a set
{(MATHER, 1), (FATHER, 0.8)}. Since there is only
one character mismatch in “MATHER” and “FATHER”,
any matching algorithm will declare them as duplicates.

In the second step, comparing “MOTHER” and
“MATHER”, we get a similarity value of 0.8. Since the
threshold is 0.7, “MOTHER” and “MATHER” are
duplicates according to our threshold value. They create a
set {(MOTHER, 1), (MATHER, 0.8)}. Since there is
only one character mismatch in “MOTHER” and
“MATHER”, any matching algorithm will declare them
as duplicates.

In this stage, according to our modified rule
“MATHER” will check the set it created earlier for any
value which has a PR >= threshold with respect to
MATHER’s new PR. If such one exists, “MATHER” will
bring it to the set where it has joined now. “MATHER”
will find “FATHER” but FATHER’s PR with respect to
MATHER’s new PR is 0.8*0.8 = 0.64 < threshold (0.7).
As a result, “FATHER” will not come in the set where
“MOTHER” exists. “MATHER” will leave all those
values whose PR is less than the threshold with respect to
MATHER’s new PR in the previous set. In this stage
(MOTHER, MATHER) and (FATHER) are creating two
different sets.

JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010 1805

© 2010 ACADEMY PUBLISHER

In the third step “MOTHER” will do a direct match
with “FATHER” and will get a value of 0.66 < threshold
(0.7). So, it will not be declared as duplicate with
“FATHER”.

From the direct match result and our threshold value,
we can conclude that “MOTHER” is not duplicate of
“FATHER” and the same result was obtained by our
algorithm even when we did not compare “MOTHER”
and “FATHER” directly. On the other hand, in the second
step when “MATHER” was trying to take “FATHER” in
the set where “MOTHER” exists, it will found that
FATHER’s PR = 0.64 in the set where “MOTHER”
exists which is � 0.66. This is the direct match result of
“MOTHER” and “FATHER”.

If we use the traditional transitivity rule, then we will
get only one element instead of two. Because,
“MATHER” is duplicate of “FATHER”. “MOTHER” is
a duplicate of “MATHER”, so “FATHER” is a duplicate
of “MOTHER”.

Example -2
Input: CSE, COMPUTER SCIENCE AND

ENGINEERING, COMPUTER SCIENCE AND
TECHNOLOGY, CHITTAGONG STOCK EXCHANGE

Window length: 3
Threshold for fast comparison: 0.75
Threshold for word matching in positional comparison:

0.8
Threshold for row matching in positional comparison:

0.75
Data_table =
 'CSE'
 'COMPUTER SCIENCE AND ENGINEERING'
 'COMPUTER SCIENCE AND TECHNOLOGY'
 'CHITTAGONG STOCK EXCHANGE'
After sorting the Data_table =
 'CHITTAGONG STOCK EXCHANGE'
 'COMPUTER SCIENCE AND ENGINEERING'
 'COMPUTER SCIENCE AND TECHNOLOGY'
 'CSE'
After duplicate detection and cleaning output:

COMPUTER SCIENCE AND TECHNOLOGY, CSE.
After comparing “CHITTAGONG STOCK

EXCHANGE” and “COMPUTER SCIENCE AND
ENGINEERING”, fast match result is 0.5, so no need to
compare it further. After comparing “COMPUTER
SCIENCE AND ENGINEERING” and “COMPUTER
SCIENCE AND TECHNOLOGY”, we find a similarity
value of 0.75.

After comparing “CHITTAGONG STOCK
EXCHANG”' and “COMPUTER SCIENCE AND
TECHNOLOGY”, fast match result is 0.7167, so no need
to compare it further. After comparing “COMPUTER
SCIENCE AND TECHNOLOGY” and “CSE”, fast
match result is 0.6667; again no need to compare it
further.

After comparing “COMPUTER SCIENCE AND
ENGINEERING” and “CSE”, we find a similarity value

of 1, using the matching rule for abbreviation. Previously
“COMPUTER SCIENCE AND ENGINEERING” was a
member of the set started by “COMPUTER SCIENCE
AND TECHNOLOGY”, but in that set, it had a PR =
0.75. If it moves to the set started by “CSE”, then PR = 1.
As a result, it moves to the set started by CSE. After
comparing “CHITTAGONG STOCK EXCHANGE” and
“CSE”, we also find a similarity value of 1.

At the end, we find that the set started by “CSE” has
two values: “COMPUTER SCIENCE AND
ENGINEERING” and “CHITTAGONG STOCK
EXCHANGE”, as a result “CSE” is kept as unique and
the remaining two are deleted as duplicates. And the set
started by “COMPUTER SCIENCE AND
TECHNOLOGY” has no duplicate value, so it is also
kept as unique.

B. Experiment with large datasets
The experiment was performed using 7 tests to

compare the time requirement for the proposed algorithm
with two existing domain-independent algorithms:
Scheme-1 [8] and Scheme-2 [3]. We used desktop
computer with Intel Pentium-IV processor, 512 MB
RAM, windows XP operating system and Matlab-
R2007b. The dataset was created by collecting data from
the Internet [24-26] and merging them to a database table.
Since, the proposed method is domain-independent; we
are not concerned about the attributes’ name. There are
total 8 attributes and some attributes contain more than 40
characters data. Table IV contains the description of the
datasets.

TABLE IV
DESCRIPTION OF THE DATASET

Test No. Description of the dataset

test-1 No duplicates

test-2 800 unique records and 5 exact duplicates per record

test-3 400 unique records and 10 exact duplicates per record

test-4 200 unique records and 20 exact duplicates per record

test-5 100 unique records and 40 exact duplicates per record

test-6 80 unique records and 50 exact duplicates per record

test-7 40 unique records and 100 exact duplicates per record

TABLE V
 REQUIRED TIME WITH VARYING THE NUMBER OF DUPLICATES

Test No. Proposed algorithm
(sec)

Scheme-1
(sec)

Scheme-2
(sec)

test-1 50 490 522
test-2 300 460 472
test-3 450 450 470
test-4 480 435 464
test-5 530 440 460
test-6 550 450 450
test-7 670 470 440

1806 JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010

© 2010 ACADEMY PUBLISHER

TABLE VI
RECALL AND PRECISION FOR THE ALGORITHMS

Proposed algorithm Scheme-1 Scheme-2
Thresh

old R P F1 R P F1 R P F1

0.1 1 0.15 .26 1 0.11 .2 1 0.11 .2
0.2 1 0.15 .26 1 0.11 .2 1 0.11 .2
0.3 1 0.15 .26 1 0.12 .21 1 0.11 .2
0.4 0.95 0.59 .73 1 0.36 .53 1 0.25 .4
0.5 0.9 1 .95 0.71 1 .83 0.77 1 .87
0.6 0.9 1 .95 0.52 1 .68 0.52 1 .68
0.7 0.89 1 .94 0.51 1 .67 0.51 1 .67
0.8 0.84 1 .91 0.51 1 .67 0.49 1 .66
0.9 0.67 1 .8 0.49 1 .66 0.4 1 .57
1 0.67 1 .8 0.46 1 .63 0.33 1 .5

Table V contains the required time. From Table V, it

can be observed that the performance of our proposed
algorithm is better than that of the other two algorithms
when the number of duplicates per record is realistic,
whereas the other two algorithms require more time when
the number of duplicates per records is fewer. The reason
is that they use a priority queue. In a priority queue, when
the number of unique records is more, additional
comparisons per records are required to find a match. If
we also make the similar assumption like [3], there will
be a maximum of 20 duplicate records per unique
records. In that case, the test category falls from test-1 to
test-4. In test-4, we require slightly more time. This is
because, to improve the efficiency, we are using a
modified form of the transitivity rule, which requires
additional work than the simple transitivity rule.

It is usual that in a real-world dataset the scenario after
test-4 will rarely occur. On the other-hand, in a real-world
dataset, it is unlikely that every record will have a fixed
number of duplicate records. When two records are the
exact duplicates, our proposed algorithm needs to
perform maximum number of operations. Hence, we used
exact duplicates for time comparison.

Table VI shows the values of Recall (R), Precision (P)
and F1 metric for the proposed method and the other two
methods. It should be mentioned that, R = (number of
true duplicates detected / the number of total duplicates in
the dataset), P = (number of true duplicates detected / the
total number of duplicates detected). F1 Metric [27] gives
equal weight to both of them and is computed as

 F1= (2*R*P)/ (R+P)
For comparing the Recall and Precision, we use a

dataset, which contains 3900 unique records with a
known number of duplicate records. From table VI, we
can find that if the threshold is between 0.1 and 0.4, our
Precision is better, whereas if the threshold is between 0.5
and 1, our Recall is better than the other two algorithms.
For better understanding of the readers, these
comparisons are also visually presented separately in Fig.
3, Fig. 4 and Fig. 5. This claim can also be justified by
the values of F1 metric presented in Fig. 6.

Figure 3. Recall and precision for the proposed algorithm.

Figure 4. Recall and Precision for Scheme-1(Independent de-

duplication in data cleaning).

Figure 5. Recall and Precision for Scheme-2 (An efficient domain

independent algorithm for detecting approximately duplicate database
records).

JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010 1807

© 2010 ACADEMY PUBLISHER

Figure 6. Performance using F1 metric

Efficiency of duplicate detection algorithms depends
on the efficiency of the sorting method, as well as the
efficiency of the similar-string matching algorithm. From
the experimental results, it is clear that the proposed
sorting method and the similar-string matching algorithm
are more efficient than the other two algorithms for
detecting similar-duplicates.

The values in the Table VI also justify this. From the
table, it can be found that when Precision is the same, our
sorting method and the modified string-matching
algorithm is able to detect more duplicates than the other
algorithms. At the threshold value of 0.4, our Recall is
slightly lower than the other two algorithms. However,
when Recall is the same, our Precision is always better
than the other two algorithms. Considering both Recall
and Precision, the overall efficiency of our algorithm is
better. In short, our proposed DIT algorithm plays an
important role for making the precision better than the
other algorithms. Also, it reduces the number of false
positives.

VI. LIMITATIONS AND FUTURE WORKS

Near-duplicates are those entities, which are identical
from their sense/meanings, but not from their
appearances. For example, “Master” and “Teacher” are
neither identical nor similar in a character-by-character
sense, but they are near-duplicates considering the fact
that their meanings are almost the same in some cases.
The string-matching algorithm we proposed in this paper,
is not capable of detecting such near-duplicates. To detect
such type of near-duplicates, the meanings of the related
strings should be considered. Detection of near-duplicates
can be simply achieved by replacing the string-matching
algorithm with the one which is capable of detecting such
type of duplicates. It will not bring any change in the
proposed DIT or DIDD algorithm. Some authors use
near-duplicate to mean similar/approximate duplicate, but
because of the difference between the words near and
similar, we do not agree to use near and similar
synonymously.

In the proposed algorithms, threshold is the amount of
similarity that determines the difference between two
strings in order to be declared as duplicates. It can be any
value in the range between 0 and 1.0. In a particular
domain, the users can use threshold value of 0.5 (for
example) to declare two strings as duplicates, when their
resultant similarity is equal to or above 50%. For the
same domain, if the users consider that the error is
relatively low, they can use threshold value of 0.95 (for
example) to declare two strings as duplicates, when their
resultant similarity is equal to or above 95%. On the other
hand, for two different domains, the users are free to use
the same threshold 0.9 (for example), if they want to
declare two strings as duplicates; where their resultant
similarity is equal to or above 90%. It is possible to use
different thresholds for the same domain or the same
threshold for different domains depending on the range of
errors in data. So the determination of threshold does not
depend on domain, it depends on the users.

We used a window-based system for limiting the
number of comparisons made with the nearby records,
but a priority queue based system or other methods can
also be used to test whether any further improvement can
be made using all/any of the proposed techniques.

In this paper, we did not consider the problem of
missing values or limiting the number of attributes,
because these are usually handled before the duplicate
detection phase. We also gave the same importance for
each attribute during the calculation of similarity between
records. In future, we hope to improve the sorting method
to bring the similar-records closer and to set the field
weights in some automatic way.

 VII. CONCLUSIONS

This paper presents a domain-independent similar-
duplicate detection algorithm for data cleaning in data
mining. The efficiency of any duplicate detection
algorithm depends heavily on the efficiency of sorting
methods. The sorting method proposed in this paper is a
novel technique for bringing the similar-records closer

1808 JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010

© 2010 ACADEMY PUBLISHER

and it can sort the records efficiently. The proposed
algorithm also explores the idea to make the duplicate
detection algorithms faster and more efficient for real-life
data. A domain-independent transitivity rule is also
proposed to reduce the negative aspect of the transitivity
rule for domain-independent cases. This paper also
outlines an algorithm to implement all the proposed
methods together. All the techniques, we have proposed
in this paper can be applied individually or with other
existing methods.

ACKNOWLEDGMENT

The authors wish to thank Dr. N. H. Siddique of
University of Ulster for his feedback. His comments
helped us to make this paper more readable.

REFERENCES

[1] Data Mining. Retrieved from Wikipedia:
http://en.wikipedia.org/wiki/Data_mining. Accessed on:
May 2009.

[2] DMS Tutorial – CRISP Process.
http://dms.irb.hr/tutorial/dm_proces.php, Accessed on:
May 2009.

[3] A. E. Monge and C. Elkan. “An efficient domain
independent algorithm for detecting approximately
duplicate database records,” In Proc. SIGMOD Workshop
on Data Mining and Knowledge Discovery, Arizona, pp.
23-29, May 1997.

[4] M. L. Lee, T. W. Ling and W. L. Low “IntelliClean: A
knowledge-based intelligent data cleaner,” In Proc. Sixth
ACM SIGKDD international conference on Knowledge
discovery and data mining, Boston, USA, pp. 290-294,
August 2000.

[5] M. A. Hernandez and S. J. Stolfo, “Real-world data is
dirty: Data cleansing and the Merge/Purge problem,” Data
Mining and Knowledge Discovery, vol. 2, no. 1, pp. 9-37,
1998.

[6] M. L. Lee, H. Lu, T. W. Ling and Y. T. Ko, “Cleansing
data for mining and warehousing,” In Proc. 10th
International Conference on Database and Expert Systems
Applications (DEXA), Florence, Italy, pp. 751 – 760,
September 1999.

[7] M. Hernandez and S. Stolfo, “The Merge/Purge problem
for large databases,” In Proc. ACM SIGMOD International
Conference on Management of Data, San Jose, California,
pp. 127 – 138, May 1995.

[8] A. Udechukwu and C. Ezeife, K. Barker, “Independent de-
duplication in data cleaning,” Journal of Information and
Organizational Sciences, vol. 29, no. 2, pp. 53-68, 2005.

[9] R. Ananthakrishna, S. Chaudhuri and V. Ganti,
“Eliminating fuzzy duplicates in data warehouses,” In
Proc. 28th VLDB Conference, Hong Kong, China, pp. 586-
597, 2002.

[10] Y. R. Wang, S. E. Madnick, and D. C. Horton, “Inter-
database instance identification in composite information
systems,” In Proc. Twenty-Second Annual Hawaii
International Conference on System Sciences, Kailua-
Kona, pp. 677–684, January 1989.

[11] J. A. Hylton. Identifying and Merging Related
Bibliographic Records. Master of Engineering Thesis,
Department of EECS, Massachusetts Institute of
Technology, Cambridge, MA June 1996.

[12] W. E. Winkler, Advanced Methods for Record Linkage
Technical Report, Statistical Research Division, U.S.
Bureau of the Census, Washington, DC, 1994.

[13] M. Weis, F. Naumann, U. Jehle, J. Lufter and H. Schuster,
“Industry-scale duplicate detection,” In Proc. International
Conference on Very Large Databases, Auckland, NZ, vol.
1, no. 2, pp. 1253-1264, 2008.

[14] A. Monge, “Matching algorithms within a duplicate
detection system,” IEEE Data Engineering Bulletin, vol.
23, no. 4, pp.14-20, 2000.

[15] M. Weis and F. Naumann, “DogmatiX tracks down
duplicates in XML,” In Proc. ACM SIGMOD International
Conference on Management of Data, Baltimore, MD, pp.
431-442, 2005.

[16] P. A. V. Hall and G. R. Dowling, “Approximate string
matching,” ACM Computing Surveys, vol. 12, no. 4, pp.
381– 402, 1980.

[17] R. S. Boyer and J. S. Moore, “A fast string-searching
algorithm,” Communications of the ACM, vol. 20, no. 10,
pp. 762–772, 1977.

[18] M. W. Du and S. C. Chang, “Approach to designing very
fast approximate string matching algorithms,” IEEE
Transactions on Knowledge and Data Engineering, vol. 6,
pp. 620–633, August 1994.

[19] T. F. Smith and M. S. Waterman, “Identification of
common molecular subsequences,” Journal of Molecular
Biology, vol. 147, pp. 195–197, 1981.

[20] V. Levenshtein, “Binary codes capable of correcting
deletions, insertions, and reversals,” Soviet Physics –
Doklady10, vol. 10, pp. 707–710, 1966.

[21] J. Peterson, “Computer programs for detecting and
correcting spelling errors,” Communications of the ACM,
vol. 23, no. 12, pp. 676–687, 1980.

[22] A. Monge, Adaptive Detection of Approximately Duplicate
Database Records and The Database Integration
Approach to Information Discovery. Ph.D. Thesis, Dept. of
Comp. Sci. and Eng., Univ. of California, San Diego,
1997.

[23] A. K. Elmagarmid, P. G. Ipeirotis and V. S. Verykios,
“Duplicate record detection: A survey,” IEEE Transaction
on Knowledge and Data Engineering, vol. 19, no. 1, pp. 1-
16, 2007.

[24] Flag Forum – The Forum for discussions on All Things
Flag related. http://flags.skalman.nu/flags/bib_main.html,
Accessed on: September 2009.

[25] Downloads Home Page – Microsoft Office Online.
http://office.microsoft.com/en-us/downloads/, Accessed
on: September 2009.

[26] Microsoft Download Center.
http://www.microsoft.com/downloads/, Accessed on:
September 2009.

[27] H. K. Farsani and M. Nematbakhsh, “A semantic
recommendation procedure for electronic product catalog,”
International Journal of Applied Mathematics and
Computer Sciences, vol. 3, no. 2, pp. 86-91, 2006.

JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010 1809

© 2010 ACADEMY PUBLISHER

