
A Permission Based Hierarchical Algorithm for

Mutual Exclusion

Mohammad Ashiqur Rahman
Dept. of SIS, University of North Carolina at Charlotte, North Carolina, USA

Email: mrahman4@uncc.edu

Md. Mostofa Akbar
Dept. of CSE, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh

Email: mostofa@cse.buet.ac.bd

Abstract— Due to the growing application of peer-to-peer

computing, the distributed applications are continuously

spreading over extensive number of nodes. To cope with this

large number of participants, various cluster based

hierarchical solutions have been proposed. Cluster based

algorithms are scalable by nature. Several of them are

quorum based solutions. All of these solutions exploit the

idea of coordinator/leader of cluster. Thus, fault tolerance of

these algorithms is low. If any coordinator fails, election of

new one is required. Here we propose a cluster based

network architecture of two layers of hierarchy and present

a hierarchical permission based algorithm, which is free of

coordinator use. We simulate our proposed algorithm and

show that it outperforms related ME algorithms.

Index Terms— cluster, distributed algorithm, hierarchical,

mutual exclusion, permission, quorum

I. INTRODUCTION

In distributed systems, different processes run on

different nodes of a network and they often need to

access shared data and resources, or need to execute some

common events. The portion of an event or application,

where any shared component or common events are

accessed, is the Critical Section (CS). Mutual Exclusion

(ME) algorithms ensure the consistent execution of the

CS by the processes. As the shared memory is absent in

distributed systems, the solutions of the ME problem is

not straightforward. Due to the enormous importance of

ME and the difficulty of its solution, it is an active

research area since last three decades. The classic

algorithms for Mutual exclusion that have been proposed

for fixed networks can be classified in two types:

centralized and distributed approaches. In the centralized

solutions, a node is designated as coordinator to deliver

permission to the other nodes to access the CS, while in

the distributed solutions the permission is obtained from

consensus among all network nodes.

Distributed mutual exclusion algorithms are generally

classified in two categories: token based and permission

based [18]. Permission based mutual algorithms [4, 5, 6,

7] impose that a requesting node must receive

permissions from other nodes (a set of nodes or all other

nodes) to access the CS. In the token-based mutual

exclusion algorithms [1, 2, 3], a unique token is shared

among the set of nodes. The node holding the token can

enter the CS. In the best case, no communication is

necessary since the token may be available locally.

Otherwise, a mechanism is needed to locate the token. If

the node holding the token fails, expensive token

regeneration protocols [17] must be executed. Nisho

presented a highly resilient, though still complex, token

based mutual exclusion algorithm [2]. Naimi proposed an

algorithm [3] that takes O(log n) cost too.

Ricart and Agrawala proposed the first permission

based algorithm [4] in 1981, which takes 2(n 1)

messages for a node to get consensus. To access the CS a

node needs consensus from all other n 1 nodes in the

network.

Concept of quorum improves the performance of

permission-based algorithms to a great extent, where to

access the CS a node needs to have permissions only

from all of the nodes of a quorum. This kind of

algorithms takes lower message cost and is resilient to

node and communication failures. Message cost of these

algorithms is proportional to the quorum size. Therefore

these algorithms try to achieve the two goals: small

quorum size with high degree of fault tolerance.

The majority quorum algorithm [15] is the first

algorithm of this kind. According to this algorithm, a

node must obtain permission from a majority of nodes in

the network. Maekawa presented an ME algorithm [5] by

forming a logical structure on the network. In this

scheme, a set of nodes is associated with each node, and

this set has a nonempty intersection with all sets

corresponding to the other nodes. As the size of each set

is n, the algorithm incurs n order of cost.

Garcia-Molina and Barbara [16] have properly defined

the concept of quorums with the notion of coterie. A

coterie is a set of sets with the property that any two

members of a coterie have a nonempty intersection.

Combining the idea of logical structures and the notion of

Manuscript received January 30, 2010; revised April 05, 2010;

accepted April 18, 2010.

Corresponding author: Mohammad Ashiqur Rahman, Email:

mrahman4@uncc.edu

JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010 1789

© 2010 ACADEMY PUBLISHER
doi:10.4304/jcp.5.12.1789-1799

a b

c

d

b
a

c

d

Cl,1 Cl,2 Cl,3 Cl,4

Cu

Figure 1. Network architecture of the proposed algorithm

coteries, an efficient and fault tolerant quorum generation

algorithm for ME is proposed by Agarwal and Abbadi

[6]. Here the nodes form a logical binary tree to generate

quorums. The quorum can be regarded as attempting to

obtain permissions from nodes along a root–to–leaf path.

If the root fails, then the obtaining permissions should

follow two paths: one root–to–leaf path on the left subtree

and one root-to-leaf path on the right subtree. This

algorithm tolerates both node failures and network

partitions. In the best case, this algorithm incurs

logarithmic cost considering the size of the network.

However, the cost increases with the increase of node

failures.

At present, the number of distributed nodes has

become very large. With the increasing importance of

peer-to-peer computing [23] as well as grid computing

[24], the distributed applications have been extended over

a large number of nodes. The performance of these

distributed applications depends on the number of

participating nodes. Classical ME algorithms illustrated

above do not consider these matters. Hence, we need

scalable algorithms that reduce the number of

participating nodes.

Sometimes the nodes in a network are divided into

several groups where each group is often called a cluster.

According to this concepts some hybrid ME solutions [8,

9] are proposed. Actual goal of these proposed algorithms

was to combine two different approaches in different

layers, intra-group (lower layer) and inter-group (upper

layer). Two distributed ME solutions are presented by

Erciyes [10] using a logical structure, where clusters are

arranged on a ring. Bertier et al. proposed two token-

based algorithms in [11] taking into account the

hierarchical network topology, which reduce both latency

cost and number of message. These three solutions are

modification of Naimi’s token-based algorithm [3] for

proxy-based cluster. As these algorithms are basically

token based, they suffer due to token failure. A two-layer

permission based algorithm is presented by Rahman et al.

in [12], where the coordinators (named as message

routers) of the clusters form the upper layer. For quorum

formation, tree-quorum algorithm [6] is used in each

layer of the algorithm. Rahman and Akbar extended this

algorithm in [13] for multilayer clustered network.

However, the main problem of these algorithms [12, 13]

is the failures of coordinators. Any failed coordinator has

to be replaced using a leader election algorithm, which

incurs extra cost.

In this paper, we propose a cluster-based two-layer

distributed ME algorithm that uses no specific

coordinator for a particular cluster, but improves the

performance by reducing participating nodes. Fault

tolerance of our proposed solution is much higher than

the algorithm of Rahman et al. [12] and incurs less

communication cost especially when failures occur. We

also choose tree-quorum algorithm for selecting quorums

in both of the layers, so that we can compare the

performance of our algorithm with that of Rahman et al.’s

algorithm. In Section II we describe the proposed

network. Our proposed solution along, its proofs of

correctness and liveness, and analysis for optimality are

presented in Section III. At the end of this section, we

also propose a maintenance algorithm in case of node

failures. Next section includes the simulated comparison

of the algorithm especially with Rahman et al. Finally, we

present a critical evaluation of our algorithm followed by

a conclusion.

II. PROPOSED NETWORK

A. Description of the Environment

We consider an asynchronous distributed system,

which follows the model proposed in [20]. Each pair of

nodes is connected through a communication channel.

Links may fail causing intermittent message drop. The

message delays for communication and processing are

finite. No assumption is made for the relative speeds of

the nodes. A node may fail by stopping or crashing, in

accordance with fail-stop model [19]. However, a failed

node may restart afterwards (after a reasonably long

time), which will be referred as recovery. When a process

fails, it loses all its states. However, it may use local

stable storage to save some information (that never

changes throughout the execution of the algorithm), so

that it can retrieve them later for proper execution of ME

algorithm.

1790 JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010

© 2010 ACADEMY PUBLISHER

B. Network Architecture

The nodes in a network are partitioned into several

nonintersecting groups. Each group is called a cluster.

The nodes inside the clusters form the lower layer of

nodes. Though any number of arbitrary nodes forms the

next (upper) layer, as a matter of guideline, from each of

the clusters an arbitrary node is taken for the upper layer.

Thus, the number of nodes of this layer is equal to the

number of clusters. The upper layer can be considered as

a single cluster. In Fig.1, Cl,1, Cl,2, Cl,3 and Cl,4 are four

nonintersecting lower layer clusters. Four nodes a, b, c

and d, taken from each of the lower layer clusters

respectively, form the upper layer cluster Cu, which is

only cluster of the upper layer. Note that, each node is a

member of a lower layer cluster; so each member of the

upper layer cluster is also a member of one of the lower

layer clusters.

Each node knows the members of its lower layer

cluster as well as the members of the upper layer cluster.

As the memberships to the clusters remain unchanged

throughout the program, a node keeps this information in

stable storage, so that it can retrieve this data after

recovery.

III. PROPOSED ALGORITHM

A. Brief Outline

Two layers of nodes participate in our proposed

algorithm: the members of a lower layer cluster and the

members of the upper layer cluster. A coordination

algorithm, as in [12, 13], communicates between these

two layers of executions. In both layers, we use the tree-

quorum algorithm [6] for quorum creation. When a node

x wants to access the CS, first it requires to have the

consensus from the nodes inside its lower layer cluster.

When x gets permission at this layer, it needs to have

permission from the upper layer. To get this permission, x

selects an arbitrary node y among the members of the

upper layer cluster as its representing node. To y, x is

identified as the represented node. At the upper layer y

executes the ME algorithm on behalf of x. If y gets

consensus from the members of the upper layer cluster, it

informs x about the consent. At this point, the node x has

the total consensus, i.e., permissions from both layers,

and can use the CS safely. We apply classical quorum

based ME algorithm [5, 6] inside a cluster for collecting

consensus.

A. Message and States

As we apply quorum based ME algorithm inside the

clusters, our ME algorithm uses Request, Reply, Release,

Inquire and Yield messages. Since some nodes are

members of two clusters of both layers, Layer No is

added to the contents of these messages to identify the

layer (i.e., the cluster) of executing ME algorithm.

Possible values of Layer No are only 0 and 1, which

identify the upper layer and the lower layer respectively.

The communication between the CS requesting node, a

member of a lower layer cluster, and its representing

node, a member of the upper layer cluster, is done

through Layer_Request, Layer_Reply and Layer_Release

messages, similar to [12, 13]. Functions of these

messages are briefly described below:

When a node x gets the consensus from a quorum

of its lower layer cluster, it sends a Layer_Request

message to an arbitrary node y, its representing

node, to process the request in the upper layer

cluster.

If y receives consensus inside the upper layer

cluster, it sends a Layer_Reply message to x.

In order to release the consensus in the upper layer

x sends a Layer_Release message to y.

Timestamp, a global logical time [14], consists in each

message and denotes the time of sending the message.

This timestamp is crucial for Request message. As

multiple requests can come from different nodes to a

single node, a node often needs to keep them in a queue

to process afterward. A node keeps the incoming Request

messages in a minimum priority queue, be identified as

QUEUE, according to their timestamps. A node denotes

its queues at the upper layer and the lower layer using

QUEUE[0] and QUEUE[1] respectively. If timestamps of

two Request messages are equal, then node identification

numbers are used for this determination. This ordering is

crucial for avoiding deadlock and starvation. A member

node of the upper layer cluster also maintains a normal

first-in first-out queue, be identified as FIFO, for

Layer_Request messages.

Different nodes participate in the algorithm. At an

instant, a node, according to its role, owns a state. As

some nodes play at both layers, they possess same or

different states at these two layers. To represent the

proposed system, we define following arrays of states,

where each element of an array represents the state of the

corresponding node at a particular layer. Size of each

array is only two with 0 and 1 indices: 0 for the upper

layer and 1 for the lower layer.

REQUESTING[0…1]: A node set this state to true

if it sends Request messages to its fellow nodes

(members of its cluster).

LOCKED[0…1]: This state is set to true when a

node sends Reply to a fellow REQUESTING node.

Latter node is the locking node of the former.

BUSY[0…1]: When a requesting node of the upper

layer (Layer 0) cluster gets consensus from its

cluster, its BUSY[0] state becomes true. In case of

the lower layer (Layer 1), when a requesting node

of a lower layer cluster gets consensus from its

cluster as well as from the upper layer cluster, its

BUSY[1] state is set to true.

INQUIRING[0…1]: When a LOCKED node wants

its consensus back, it sends an Inquire message to

its locking node. At this point, the node sets the

INQUIRING state to true.

State LAYER_REQUESTING is also defined for the

nodes of the lower layer cluster. When a requesting node

of a lower layer cluster gets necessary consensus from its

cluster, it sends a Layer_Request message to its

representing node. Its LAYER_REQUESTING state, at

this time, is set to true. Initially, all the states are false.

JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010 1791

© 2010 ACADEMY PUBLISHER

We will use ‘a state is set’ or similar languages to mean

that the state is set to true. Similarly, we will use ‘a state

is unset’ to mean that the state is false and ‘a state is

reset’ to mean that the state is set to false. We will also

use “a node gets into a state from another state” or similar

writings in order to mean that the latter state resets while

the former state sets.

C. Algorithm

In order to obtain consensus, a requesting node

requires consensus from two separate quorums. Firstly,

the requesting node forms a quorum in its lower layer

cluster and seeks consensus from the quorum. Next, its

representing node seeks consensus by forming a quorum

in the upper layer cluster.

Fig. 2 shows the basic state transition diagram of a

node at any layer according to the proposed algorithm. In

the diagram, two dummy sates IDLE and IDLE2 are

used. IDLE denotes the state when both of LOCKED and

INQUIRING states are false, while IDLE2 denotes the

state when all of REQUESTING, BUSY and

LAYER_REQUESTING states are false. State transitions

are labeled with numbers so that we can specify them

later.

A node, if its LOCKED or INQUIRING state is unset,

chooses the Request message at the head of its QUEUE

and sends a Reply message, as its consensus, to the

requesting node and sets its LOCKED state (State

transition 6). Once a node exits from its critical section, it

sends Release messages to all nodes of the lower layer

quorum and, through the representing node, to all nodes

of the upper layer quorum. After getting the release

message, a node resets its LOCKED state (State transition

7) and chooses another request residing at top of its

QUEUE, if it is not empty, for next processing.

The following points briefly describe the algorithm:

Requests for the CS are generated at lower layer

clusters. These requests are processed sequentially

in both layers. The clusters Cl,1 and Cu in Fig. 1,

for example, represent the participating clusters, if

a node of Cl,1 places a request for the CS.

The CS requesting node x first executes ME

algorithm in its lower layer cluster Cl. It selects a

quorum ql and sends a Request message to each of

the quorum members. Now, its REQUESTING[1]

state is set (State transition 1). When x receives

Reply messages from all members of ql, it has the

consensus in this layer. Now it picks an arbitrary

node y (as representing node) from the members

of the upper layer cluster Cu and sends a

Layer_Request message to y. At this point, x’s

REQUESTING[1] state is reset and

LAYER_REQUESTING state is set (State

transition 2).

When y gets Layer_Request from x (as represented

node), it queues the message into its FIFO, if it is

already processing another Layer_Request (i.e.,

any of its states at this layer is true). Otherwise, it

selects a quorum qu inside Cu and executes ME

algorithm on behalf of x. It’s REQUESTING[0]

state is set at this stage (State transition 1). When y

gets Reply messages from all qu members, it has

the consensus in Cu. Now it resets

REQUESTING[0] state and sets BUSY[0] state

(State transition 3) and sends a Layer_Reply

message to x.

When x receives the Layer_Reply message from y,

it has the total consensus, i.e., permissions from

both layers, and so it resets its

LAYER_REQUESTING state and sets its BUSY[1]

state (State transition 4) and executes the CS. In

this way, a node mutual exclusively enters the CS.

After execution of the CS, x resets its BUSY[1]

state (State transition 5) and sends Release

messages to the members of ql. At the same time,

it also sends a Layer_Release message to y.

When y gets Layer_Release from x, it normally

resets its BUSY[0] state (State transition 5) and

sends release messages to the members of qu. But

if there is one or more Layer_Request message in

y’s FIFO, y will not leave the consensus. Rather it

will choose one from the FIFO and will give

consensus directly to that node through

Layer_Reply message. This reduces the message

cost per CS entry. It may seem that this step also

reduces the fairness of ME algorithm. As the

maximum number of Layer_Request messages in

Cu is equal to the number of lower layer clusters

and as the representing nodes are chosen

randomly, fair randomness distributes

Layer_Request messages among the nodes of Cu

equally.

Inquire and Yield messages works to avoid deadlock,

similarly as in [6, 12, 13]. Let a node u receives a request

from node v that possesses an earlier timestamp than its

currently processing request of a node w, to which it has

already sent Reply message. Then u puts the request of v
into QUEUE and sends an Inquire message to w and

waits for either a Yield or Release message from w. At

this time, its LOCKED state is reset and INQUIRING
state is set (State transition 8). When w receives the

Inquire message from u, it relinquishes the consensus of

u as well as sends a Yield message to u if and only if it

has not received all replies from its requesting quorum

members. If w has already acquired all necessary replies

to access the CS and may be already executing the CS,

then it simply ignores the Inquire message and proceeds

normally, that is, it continues to execute the CS. After

finishing the execution, it sends a Release message to the

inquiring node u. When u receives the Yield message, it

resets it INQUIRING state (State transition 9) and puts

IDLE 2 LAYER_REQUESTING

BUSY

REQUESTING

LOCKED

INQUIRING

IDLE

1 2

3

45

6

9

7
8

Figure 2. State transition diagram

1792 JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010

© 2010 ACADEMY PUBLISHER

back the request of w into its QUEUE. Now it pop out the

request from the top of QUEUE and accordingly sends a

Reply message to corresponding node and gets into

LOCKED state again (State transition 6). In the mean

time if no Request with earlier timestamp has come, the

Request of y is the selected request message. If u receives

Release message instead of Yield message from w, it does

the same (State transition 9) except reinserting the request

of w into QUEUE, since the request has been served

already.

D. An Extension to the Algorithm

According to the above description of the algorithm,

the progression of the algorithm is sequential since

consensus must be ensured in a lower layer cluster before

processing starts in the upper layer cluster. Now we

extend our proposed algorithm by incorporating

parallelism in order to reduce this sequential behavior:

When a node x begins to execute ME algorithm in

its associated lower layer cluster, it also sends an

in-advance special request, called

Advance_Layer_Request, to its arbitrary selected

representing node y at the upper layer. When y

receives this Advance_Layer_Request, it starts to

execute ME algorithm in the upper layer cluster

without setting its represented node. If x gets

consensus within its lower layer cluster, it sends

Layer_Request to y. When y gets the request, it

sets x as its represented node. Within the time, y

may have already received consensus in the upper

layer cluster. Otherwise, y has reached a point

towards getting consensus.

o If y gets consensus before receiving

Layer_Request from a node of one of the

lower layer clusters, it will wait for a

threshold period for the request and gets into

a new state, named as WAITING, from

REQUESTING[0] state. Within this

threshold time, if any Layer_Request come,

it sets the request sending node as its

represented node and sends Layer_Reply to

that node. It now gets into BUSY[0] state

from WAITING state. If no Layer_Request

comes (has no represented node), y will

release this consensus (and resets its

WAITING state) so that other competing

nodes need not to wait long.

It is common and usual to have other nodes

besides x in the lower layer clusters competing in

order to get consensus. Obviously, each of those

nodes will send an Advance_Layer_Request to

their corresponding representing nodes. It is easily

possible for y to be selected as representing node

by multiple nodes of same or different lower layer

clusters. When y is in processing for a

Layer_Request or an Advance_Layer_Request

message, it may receive more Layer_Request or

Advance_Layer_Request messages. How such a

Layer_Request handles is described already in the

earlier subsection. In case of

Advance_Layer_Request, the node only counts the

number of pending Advance_Layer_Request

messages in order to process later.

o Let x and z both are requesting for consensus

in same or two different lower layer clusters.

Both of the nodes have selected y as their

representing nodes. Presently y is running

ME algorithm in the upper layer cluster in

response to x’s Advance_Layer_Request,

since the request of x has reached y earlier

than that of z. Thus, y’s request is treated as a

pending request. However, z gets consensus

before x. So, z sends Layer_Request to y.

Now y sets z as its represented node and the

ongoing ME processing continues. Before

that, y was executing the ME algorithm for

an anonymous node of a lower layer cluster

(i.e., without having represented node),

although the initiator of the processing was

the Advance_Layer_Request of x.

After getting Layer_Release from z, y will begin

advance processing again, if its counter shows that there

are some pending Advance_Layer_Request messages to

serve. However, at this time, x may get consensus in its

lower layer cluster and then it will send a Layer_Request

to y.

E. Proofs

1. Correctness:

A mutual exclusion solution is said to be correct if no

more than one node gets simultaneous access to the CS.

For quorum based algorithms, this condition holds, if

there is at least one common node between any two

quorums. In our proposed two-layer ME solution, we

must get consensus at each layer: in a lower layer cluster

and in the upper layer cluster. So, a quorum of our

solution can be defined as ul qqq , where lq and uq

are the quorums formed respectively with the members of

a lower layer cluster and with the members of the upper

layer cluster.

Similarly, another quorum could be ul ppp ,

where lp and up are the quorums respectively of a

lower layer cluster and of the upper layer cluster. Now,

)()(uull qpqpqp

Here, uu qp , since these are the quorums

selected from the members of the same cluster, the only

cluster of the upper layer, and these are formed according

to the tree-quorum algorithm, which ensures the

intersection between any two quorums. So, qp .

Thus, the solution must maintain mutual exclusion for

accessing the CS.

2. Liveness:

To prove the liveness, we need to show that each

request is served within a finite period. Let the C nodes of

a cluster be N1, N2, … …, NC. Consider the worst case

scenario where the requests from each of the fellow nodes

are queued at Np. The timestamp of the queued request of

JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010 1793

© 2010 ACADEMY PUBLISHER

Ni at Np are Ti, where 1 i C. The request sent by Nm

contains the maximum timestamp. Thus, Tcurrent > Tm > Ti,

where Tcurrent is the current time and mi . Let, the

timestamp of the next request coming from Nj (after

completion of its earlier request with timestamp Tj) is

denoted by next
jT . Definitely, next

jT Tcurrent. Hence,

next
jT > Tm. Therefore, the request from Nm will be served

in a finite duration (after C–1 outstanding requests are

served) as it has the earlier timestamp than the next group

of requests. So, any request of a node in a cluster of the

lower layer or the upper layer must be served in a finite

period.

In our two-layer architecture, a requesting node must

have consensus at both layers. After getting consensus

from its lower layer cluster, the node asks (by sending a

Layer_Request message) its representing node to collect

consensus in the upper layer cluster. Since the

representing node processes the Layer_Request messages

in FIFO manner, every Layer_Request will be processed

in a finite time. Again, as the request of the representing

node in the upper layer cluster must be served, ultimately

the request is served in both layers within a finite period.

So, liveness is proved.

F. Optimal Cluster Size

To find the optimal cluster size of the proposed

solution, we do analysis in this section considering the

tree-quorum algorithm [6] that is applied for quorum

formation. According to the tree-quorum algorithm, the

expected quorum size for a network with size n is

expressed as)2)(1()1(11 hhh cfcfc , where f

denotes the fraction of the quorums that include the root

of the binary tree with height h, while h is approximately

log n – 1. So, f is the probability of the root to be included

in the quorum, when all the quorums are equally

probable. As we assume that the root is included in the

quorum if it is available, f is equivalent to the probability

of the root being available. In the recursive equation of

expected quorum size, each node becomes the root of a

subtree in a particular level of the tree. Therefore, f
denotes the probability that a node is available at a

particular instant, simply, the availability of a node. The

average number of messages needed against a single

request of a node to enter the CS is proportional to

quorum size. Thus hc , expected quorum size, represents

message cost function. Solving this recurrence, following

equation is found:

1 when,1

1when,
1

)2(

fh

f
f

fhf
ch

 (1)

In our algorithm, there are participating clusters in two

layers: a lower layer cluster and the upper layer cluster.

We consider two parameters: n, the number of nodes in

the network and C, cluster size of each lower layer

cluster. Therefore, the number of lower layer clusters is

n/C and this is cluster size of the upper layer cluster. The

height of the tree formed by the nodes inside a lower

layer cluster is 1logChl . Thus, the height of the tree

formed by the nodes of the upper layer cluster

is 1lu hhh . Now, the total message cost of the

proposed solution is:

c =
lhc +

uhc + number of representing node for

coordination

Here,
lhc and

uhc are the message costs at the lower

layer and the upper layer respectively. Hence,

1
1

)2(

1

)2(11 1

f

ff

f

ff
c

hhh

 (2)

Taking the derivative of c with respect to hl and

equating it to zero, we get nC as the condition of

optimality. Then, cluster size of the upper layer cluster is

n/ n , i.e., n . Thus, cluster size of each cluster is

n for optimality. Fig. 3(a) and Fig. 3(b) show

theoretical message cost of our proposed hierarchical

algorithm along with that of the ME algorithm of

Agarwal and Abbadi [6]. Message cost of proposed

algorithm is calculated by (2) taking optimal cluster size

into account. Both figures show that the new algorithm

analytically outperforms the other. Our simulation result

in Section IV also justifies our analytical result. Note that,

the message costs shown in the figures are actually

0

5

10

15

20

25

30

200 400 600 800 1000 1200

Number of Nodes (n)

M
e
ss

g
e
 C

o
st

Algorithm of Agarwal and Abbadi

Proposed Hierarchical Algorithm

0

10

20

30

40

50

0.7 0.75 0.8 0.85 0.9 0.95 1

Availability of a Node (f)

M
e
ss

a
g

e
 C

o
st

Algorithm of Agarwal and Abbadi

Proposed Hierarchical Algorithm

(a) (b)

Figure 3. Message cost of algorithms by (a) varying n with f=0.8 and (b) varying f with n=1200

1794 JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010

© 2010 ACADEMY PUBLISHER

expected quorum sizes.

B. Availability of a Quorum

The probability that a node is available at any time is f.

According to the tree quorum algorithm [6], the

availability of a quorum in a cluster is computed by

formulating a recurrence relation. The recurrence relation

is in terms of the availabilities of forming quorums in the

subtrees of a binary tree. Let Ai be the availability of

forming a quorum in a tree of height i. Thus, Ai+1, the

availability of forming a quorum in a tree of height i + 1

is given as

Ai+1 = Probability (root is up) × Availability (Left

subtree) × Availability (Right subtree)

+ Probability (root is up) × Unavailability (Left

subtree) × Availability (Right subtree)

+ Probability (root is up) × Availability (Left subtree)

× Unavailability (Right subtree)

+ Probability (root is down) × Availability (Left

subtree) × Availability (Right subtree).

Using f as the probability of the root being up and Ai as

the availability of a subtree of height i, we can write the

above expression as

Ai+1 = fA2
i + f(l – Ai) Ai + fAi (l – Ai) + (1 – f)A2

i,

i.e., Ai+1 = 2fAi + (1 – 2f) A2
i.

Here, 1 – Ai is the unavailability of a subtree of height

i. Note that the availability of a quorum in a tree with a

single node (height 0) is f, i.e., A0 = f.

In our proposed solution, the number of nodes in the

system is n and the number of nodes in a cluster (i.e.,

cluster size) is C. According to Subsection III.F, all

clusters have the same size C (i.e., n) for optimal

solution. Letting the height of the binary tree formed by C

nodes is h , the availability of a quorum in a cluster is

A h = 2fA 1h + (1 – 2f) A2
1h .

A quorum q of our solution is defined as ul qq ,

where lq and uq are quorums formed from the nodes of

a lower layer cluster and the upper layer cluster

respectively. So the availability of a quorum of our

solution is aggregation of the availabilities of 2 quorums.

As each cluster has size C (i.e., a binary tree of height h)

the availability is

A h = A h × A h = (A h)2

Fig. 4(a) and Fig. 4(b) show the availability of a

quorum in the ME algorithm of Agarwal and Abbadi [6]

and that in our proposed algorithm varying the number of

nodes (n) and availability of a node (f) respectively. For

higher values of n and f, especially when f>0.7, quorum

availabilities in both algorithms are almost equal. High

quorum availability is crucial in order to ensure the

access to the CS for each node.

F. Node Failures and Maintenance Algorithm

Maintenance algorithm maintains the correctness of

our mutual exclusion algorithm in case of failure of a

node that is executing or participating in the ME

algorithm. It is assumed that when a node u is interrelated

with another node v because of the execution of ME

algorithm, then if v fails, u can detect the failure [25][26].

When u detects such failure, it executes the maintenance

algorithm. This algorithm along with its correctness proof

is illustrated below taking the help of Fig. 5.

1. In case of node failures:

Following two cases are required to handle in case of a

node failure:

a. Let x be a member of the upper layer cluster Cu.

As a representing node, it is processing the

Layer_Request of y, a member of a lower layer

cluster Cl,1, in Cu. Some nodes in Cu are in

LOCKED state due to this request processing.

Some other nodes in Cu have x’s Request waiting

in their request queues. Now, x failed. How the

maintenance algorithm cancels the engagement

1.0
00

1.0
00

1.0
00

1.0
00

1.0
00

0.9
90

0.9
94

0.9
95

0.9
96

0.9
96

0.7

0.8

0.9

1

600 1200 1800 2400 3000

Number of Nodes (n)

A
v
ai

la
b

il
it

y
 o

f
a

Q
u

o
ru

m

ME Algorithm of Agarwal and Abbadi

Proposed 2-Layer ME Algorithm

1.0
00

1.
00

0

1.0
00

0.
99

7

0.9
291.0

00

1.0
00

0.
99

4

0.9
28

0.
66

4

0

0.2

0.4

0.6

0.8

1

1.2

1 0.9 0.8 0.7 0.6

Availability of a node (f)

A
v
ai

la
b

il
it

y
 o

f
a

Q
u
o

ru
m

ME Algorithm of Agarwal and Abbadi

Proposed 2-Layer ME Algorithm

(a) (b)

Figure 4. Availability of a quorum in algorithms by (a) varying n with f=0.8 and (b) varying f with n=1200

x x y z z

x z
Layer 0

Layer 1

Cl,1 Cl,2 Cl,3

Cu

Figure 5. A clustered network showing the clusters

JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010 1795

© 2010 ACADEMY PUBLISHER

of the nodes with x and so keeps the correctness

of the algorithm is described as follows:

i. z in Cu is in LOCKED state by x: When z
detects that its locking node x is failed, it

withdraws its consensus after waiting

for a long enough time to ensure that

there is no node of any lower layer

cluster in BUSY state due to having

consensus (Layer_Reply) from x. After

the threshold period, z is free to give

consent to any pending request.

ii. In Cu, z has Request from x waiting in its

QUEUE: After detecting x’s failure, z

discards the request from the QUEUE.

iii. Represented node y sent Layer_Request
to its representing node x: If y is in

LAYER_REQUESTING state, i.e.,

waiting for Layer_Reply from x, it

selects another representing node in Cu

and sends Layer_Request to its new

representing node.

b. Let x be a member of a lower layer cluster Cl,1. It

is processing its request in order to access the CS.

Some nodes in Cl,1 are in LOCKED state due to

this request processing while some other nodes in

Cl,1 have Request message of x waiting in their

request queues. Node x may send Layer_Request

to its representing node z at upper layer. Now, x

is failed. How the maintenance algorithm cancels

the engagement of the nodes with x and so keeps

the correctness of the algorithm is described as

follows:

i. y in Cl,1 is in LOCKED state for x: When

y detects that its locking node x is failed,

it withdraws its consensus. Node y is

now free to give consent to any pending

request.

ii. In Cl,1, y has Request from x waiting in

its QUEUE: After detecting x’s failure, y

discards the request from the QUEUE.

iii. x sent Layer_Request to its representing

node z in Cu: Action of z due to failure

of x depends on its FIFO. If FIFO is

empty, z stops processing and sends

Release messages to all nodes of the

quorum in Cu to which it sent Request
messages. But if FIFO is not empty, the

action differs. It does not stop

processing; rather it takes out a

Layer_Request message from its FIFO

and makes the message sender its

represented node at lower layer. If z is in

BUSY state, it also sends a Layer_Reply

message to the new represented node.

c. If a node x gets consensus from a node y through

Reply (both nodes are at the same layer) or

Layer_Reply (x is at the lower layer and z is at the

upper layer), it does not relinquish the consensus

if y fails until it has finished the use of this

consensus. (This action keeps correctness along

with the delay action stated earlier in a.i and the

actions taken after x’s recovery stated in next

subsection)

2. In case of node recovery:

Let, x recovers after its failure. Now it can participate

in ME solution starting as an IDLE state. But at the time

of failure it could be in LOCKED state giving consensus

to a fellow node z. If z is still using the consensus of x, no

way x can give consensus to any other fellow node.

Again, as a representing node, x might be in BUSY state

at the time of its failure by sending Layer_Reply to y. So,

after recovery, x should take care whether y is still using

its consensus. Former scenario is possible when x is a

member of a cluster at any layer while the latter scenario

is possible only when x is a member of the upper layer

cluster. How the maintenance algorithm handles the

correctness of the algorithm in these scenarios is

described below:

After recovery, if x finds that it was in LOCKED

state at the time of its failure and its locking node

was z, it sends a message called Node_Recovery to

z. If z is not using the consensus of x, it sends back

a Release message to x immediately. Otherwise, z
does not respond to the Node_Recovery message.

At that time, x will receive Release message from

z after a period, when z finishes the use of x’s

consensus. Until getting Release message from z,

x will not start to give consensus against any

Request message. So, the Request messages

received in this period will be queued in the

QUEUE.

When x recovers, it sends a Node_Recovery
message to its represented node y if x was in BUSY

state at the time of its failure. If y is not using the

consensus of x, it sends back a Layer_Release
message to x immediately. Otherwise, y does not

respond to this Node_Recovery message. At that

time, x will receive Layer_Release message from y

after a period, when y’s BUSY state becomes false.

Similar to previous case, until getting

Layer_Release message from z, x will not start to

process Layer_Request. In the mean time, if any

Layer_Request comes to x, the message is queued

in its FIFO.

Remind that when a node recovers it retrieves the

information about its clusters and its parent cluster from

its stable storage (Subsection II.B). We are now taking

another assumption to maintain the correctness of the

algorithm in case of failure/recovery: Each node keeps

the status of its BUSY and LOCKED states along with the

values of its locking node and its represented node saved

in stable storage, so that these data can be retrieved after

recovery. After recovery all other states and variables are

reset, i.e., initialized with their default values.

G. Critical Evaluation

The availability of a quorum in our solution is lower

than the original classic algorithm [6] at low f along with

small n, which is depicted in Fig. 4. Though the algorithm

is especially suitable for large n, it is possible that, in

1796 JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010

© 2010 ACADEMY PUBLISHER

some clusters quorum formation may become impossible

due to lack of necessary live nodes. Then the requesting

nodes of those clusters will be starved, though there

might be enough live nodes in the system. In the

simulation (presented in the next section), we assume that

no cluster will be in such a situation. For the justification

of the assumption, we keep either n or f or both such

high, so that each cluster can have feasible number of live

nodes for quorum formation.

In the lower layer, it is possible to associate a node

with one or more clusters other than its primary cluster.

Then, if the node is unable to form quorum in its cluster,

it can utilize other clusters to form quorum. At that time,

some issues will be come up to keep consistency.

However, we consider this issue as a topic for further

research.

IV. SIMULATION

We simulate our proposed ME algorithm using

PARSEC [21], which is a parallel C–based discrete–event

simulation language. The aim of the simulation is to

compare the performance of our algorithm with that of

Rahman et al. [12]. For comparison we take two

performance metrics: message cost and waiting time per

CS entry. Message cost is the average message

complexity per request to enter into the CS, i.e., the

average number of messages required for a node from

request placing to getting consensus in order to execute

the CS. Waiting time is defined as the average time that a

node spends in waiting to enter the CS after its request.

A. Simulation Environment

Our simulation is executed on a peer-to-peer network

having an arbitrary number (up to 1200) of nodes

randomly spread over the network. The network is

assumed to ensure the ordered delivery of messages

between a source and a destination. So, the

communication latency between two specific nodes is

taken constant. The latencies for message communication

and message preparation or processing follow normal

distribution with a mean of 12 and 8 time units

respectively and a common variance of 50% of the mean.

The time of CS execution is also taken as a normal

random number with a mean of 20. These values are

arbitrary. If we change, for example, the mean time of

communication latency, the behavior of simulation result

for waiting time will remain the same, except, with

different scales of magnitudes.

A node requests for the CS following a Poisson

process with 0.0000002 request (arrival) rate. Node

failures are modeled as a Poisson process with a failure

rate calculated from the value of f and the recovery time.

Recovery time is an exponential distribution with a mean

of 1000000 time units.

In the simulation, initially we form the clusters

arbitrarily according to the optimal cluster size and select

the nodes of the upper layer cluster by taking a random

node from each cluster. Elections of the message routers

are not simulated for [12]. Rather, a cost (both time and

message) is assumed according to a leader election

algorithm [22].

A. Performance Comparison

1. Message cost:

Message costs per CS entry for the classic tree-quorum

based ME algorithm of Agarwal and Abbadi [6], the two-

layer ME algorithm of Rahman et al. [12] and our

proposed two-layer ME algorithm are plotted in Fig. 6(a)

and Fig. 6(b) against different network sizes (n) and

different availability of nodes (f) respectively. Both of the

figures show that our algorithm simply outperforms the

others especially when f decreases. According to the tree-

quorum algorithm, the quorum size is inversely

proportional to the value of f and varies from Vlog (for

high values of f) to
2

V (for low values of f), where V is

the number of participating nodes. Both of the two-layer

algorithms reduce this size of participating nodes to C,

i.e., n , while the participating nodes in the classical

algorithm is n. So, both algorithms outperforms the latter

when f <1. Since Rahman et al. uses coordinators of the

clusters, it needs to reelect new coordinator when any

coordinator fails. For lower f, the rate of reelection

increases. As each election of coordinator takes extra

message cost, for lower f the message cost of Rahman et

al. is significantly more than that of our proposed

algorithm.

81

100

52
57 60

40 44 47

90

0

20

40

60

80

100

120

600 900 1200

Number of Nodes (n)

M
es

sa
g

e
C

o
st

Algorithm of Agarwal and Abbadi

Algorithm of Rahman et al.

Proposed Algorithm

3
3 4

5 6
0

8
0

3
4 3
9 4
7 5
5

206

100

5
2

3
0

0

50

100

150

200

250

1 0.9 0.8 0.7

Node Availability (f)

M
e
ss

a
g

e
 C

o
st

Algorithm of Agarwal and Abbadi

Algorithm of Rahman et al.

Proposed Algorithm

(a) (b)

Figure 6. Message cost of ME algorithms for (a) different n with f=0.9 and (b) different f with n=1200

JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010 1797

© 2010 ACADEMY PUBLISHER

If we decrease the recovery time for a particular f, the

failure rate will increase and as a result the performance

of Rahman et al. will be worse. The same will occur in

case of reduced request rate. For opposite cases, the

performance of Rahman et al. will be better.

2. Waiting time:

Average waiting time for a CS entry is plotted in Fig.

7(a) and Fig. 7(b) against different network sizes (n) and

different node availabilities (f) respectively. Both of the

figures show that our proposed algorithm outperforms

ME algorithms of Rahman et al. [12] and Agarwal and

Abbadi [6], especially when f<1. Though both algorithms

of Rahman et al. and ours use network hierarchy of two

layers, the latter takes less waiting time because of its

parallel processing.

V. DISCUSSION

We have proposed a two-layer quorum based solution

for distributed mutual exclusion. Though the proposed

algorithm is cluster based, there is no use of specific

coordinator (message router) for a cluster. Thus, no

reelection of coordinator is required. We have devised the

optimal cluster size taking message cost into

consideration. At the end, we have presented a simulation

result that demonstrates noticeable improved performance

of our algorithm comparing to other related algorithms.

We are currently extending this solution along with

some enhancements (described in the earlier section) for

multilevel clustered network like [13], which is left for

future research publication. Group mutual exclusion

(GME) is a recent variant of the classical mutual

exclusion problem, which proposed first in [27]. We are

also going to extend our hierarchical approach for the

solution of GME problems.

REFERENCES

[1] K. Raymond, “A Tree based Algorithm for Distributed

Mutual Exclusion”, ACM Transactions on Computer

Systems, vol. 7, pp. 61–77, February 1989.

[2] S. Nisho, K.F. Li and E.G. Manning, “A resilient mutual

exclusion algorithm for computer networks”, IEEE

Transactions on Parallel and Distributed Systems, vol. 1,

pp. 344–355, 1990.

[3] M. Naimi, M. Trehel, and A. Arnold, “A log (N)

distributed mutual exclusion algorithm based on path

reversal,” Journal of Parallel and Distributed Computing,

vol. 34, pp. 1–13, April 1996.

[4] G. Ricart and A. K. Agrawala, “An Optimal Algorithm for

Mutual Exclusion in Computer Networks”,

Communications of the ACM, vol. 24, pp. 9–17, January

1981.

[5] M. Maekawa, “A N Algorithm for Mutual Exclusion in

Decentralized Systems”, ACM Transaction on Computer

Systems, vol. 3, No. 2, pp. 145–159, 1985.

[6] D. Agarwal and A. El Abbadi, “An Efficient and Fault–

Tolerant Solution for Distributed Mutual Exclusion”, ACM

Transactions on Computer Systems, vol. 9, pp. 1–20,

February 1991.

[7] P. C. Saxena and J. Rai, “A survey of permission-based

distributed mutual exclusion algorithms”, Elsvier Science

Publishers B. V., vol. 25, pp. 159-181, May 2003.

[8] Q. E. K. Mamun, M. Ali, S. M. Masum and M. A. R.

Mustafa, “A Two–Layer Hybrid Algorithm for Achieving

Mutual Exclusion In Distributed Systems”, WSEAS

Transactions on Systems, vol. 3, pp. 1193–1198, May

2004.

[9] Ahmed Housni and Michel Trelhel, “Distributed Mutual

Exclusion Token-Permission based by Prioritized Groups”,

Proceedings of the ACS/IEEE International Conference on

Computer Systems and Applications, pp. 253–259, June

2001.

[10] K. Erciyes, “Distributed Mutual Exclusion Algorithms on a

Ring of Clusters”, ICCSA, SV-Lecture Notes in Computer

Science, 2004.

[11] M. Bertier, L. Arantes and P. Sens, “Distributed Mutual

Exclusion Algorithms for Grid Applications: a Hierarchical

Approach”, Journal of Parallel and Distributed Computing

(JPDC), Elsevier, vol. 66, pp. 128-144, 2006.
[12] Mohammad Ashiqur Rahman, Mohammad Shafiul Alam,

M. M. Akbar, “A Two Layer Quorum Based Distributed

Mutual Exclusion Algorithm”, The 9th International
Conference on Computer and Information Technology

(ICCIT), December, 2006.

[13] Mohammad Ashiqur Rahman, M. M. Akbar, “A Quorum

Based Distributed Mutual Exclusion Algorithm for Multi-

Level Clustered Network Architecture”, Workshop on
Algorithms and Computation (WALCOM), Dhaka,

February, 2007.

[14] L. Lamport, “Time, clocks, and the ordering of events in a

distributed system.”, Communications of the ACM, vol. 21,

pp. 558-564, July 1978.

400

505

2
7

5

2
9

8

3
1

3

2
2

5

2
4

3

2
6

2

454

0

100

200

300

400

500

600

600 900 1200

Number of Nodes (n)

W
a
it

in
g

 T
im

e

Algorithm of Agarwal and Abbadi

Algorithm of Rahman et al.

Proposed Algorithm

1
6

0

5
0

5

2
6

0

2
8

5

3
1

3

3
3

0

1
9

5

2
1

7

2
6

2

2
8

6

1220

2
6

5

0

200

400

600

800

1000

1200

1400

1 0.9 0.8 0.7

Node Availability (f)

W
a
it

in
g

 T
im

e

Algorithm of Agarwal and Abbadi

Algorothm of Rahman et al.

Proposed Algorithm

(a) (b)

Figure 7. Waiting times of ME algorithms for (a) different n with f=0.9 and (b) different f with n=1200

1798 JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010

© 2010 ACADEMY PUBLISHER

[15] R. H. Thomas, “A majority consensus approach to

concurrency control”, ACM Transaction on Database

System, vol. 4, pp.180-209, June 1979.

[16] H. Garcia-Molina and D. Barbara, “How to Assign votes in

a Distributed System”, Journal of the Association for

Computer Machinery, vol. 32, pp. 841-860, 1985.

[17] J. Misra, “Detecting termination of distributed

computations using markers”, Proceedings of the 2nd ACM
Annual Symposium on Principles of Distributed

Computing, pp. 237–249, 1985.

[18] M. Raynal, “A simple taxonomy for distributed mutual

exclusion algorithms”, ACM SIGOPS Operating Systems

Review, vol. 25, pp. 47-50, 1991.

[19] R. D. Schlichting and F. B. Schneider, “Fail-stop

processors: an approach to designing fault-tolerant

computing systems”, ACM Trans. on Computing Systems,

vol. 1, pp. 222–238, 1983.

[20] F. Cristian and C. Fetzer, “The timed asynchronous

distributed system model”, IEEE Transactions on Parallel

and Distributed Systems, vol. 10, pp. 642–627, 1999.

[21] R. Bagrodia, R. Meyerr, and et al., “PARSEC: a parallel

simulation environment for complex system”, UCLA

Technical Report, 1997.

[22] Scott D. Stoller, “Leader election in asynchronous

distributed systems”, IEEE Transactions on Computers,

vol. 49, pp. 283–284, 2000.

[23] R. Steinmetz and K. Wehrle, “Peer-to-Peer Systems and

Applications”, Lecture Notes in Computer Science, vol.

3485, 2005.

[24] Mark Baker, Rajkumar Buyya and Domenico Laforenza,

“Grids and Grid Technologies for Wide-Area Distributed

Computing”, Software: Practice and Experience (SPE),

Wiley Press, vol. 32, pp. 1437-1466, December 2002.

[25] Raimundo Jose and Araujo Macedo, “Failure Detection in

Asynchronous Distributed Systems”, Proceedings of II

Workshop on Tests and Fault-Tolerance, pp. 76-81, 2000.

[26] C. Fetzer: “Perfect Failure Detection in Timed

Asynchronous Systems”, IEEE Transactions on

Computers, vol. 52, pp. 99-112, February 2003.

[27] Y. J. Joung, “Asynchronous Group Mutual Exclusion”,

Proceedings of the 17th A CM Symposium on Principles of

Distributed Computing, pp. 51–60, June 1998.

Mohammad Ashiqur Rahman He

received his BSc and MSc in Computer

Science and Engineering from BUET,

Dhaka, Bangladesh in 2004 and 2007

respectively. His primary research area

focused on distributed systems and

computing, computer networks,

information and network security.

Currently he is a PhD student of the

Department of Software and Information

Systems, University of North Carolina at Charlotte, USA.

Before that, he was working as an Assistant Professor, Dept. of

CSE, Ahsanullah University of Science and Technology,

Dhaka, Bangladesh.

Md. Mostofa Akbar He received his

BSc and MSc in Computer Science and

Engineering from BUET, Dhaka,

Bangladesh in 1996 and 1998

respectively. He received his PhD from

University of Victoria, Canada in 2002.

His research interests focus on operations

research, distributed systems, computer

networks, wireless sensor and mobile ad

hoc networks.

Currently he is working as an Associate Professor, Dept. of

CSE, BUET.

JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010 1799

© 2010 ACADEMY PUBLISHER

