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Abstract— Due to the growing application of peer-to-peer 

computing, the distributed applications are continuously 

spreading over extensive number of nodes. To cope with this 

large number of participants, various cluster based 

hierarchical solutions have been proposed. Cluster based 

algorithms are scalable by nature. Several of them are 

quorum based solutions. All of these solutions exploit the 

idea of coordinator/leader of cluster. Thus, fault tolerance of 

these algorithms is low. If any coordinator fails, election of 

new one is required. Here we propose a cluster based 

network architecture of two layers of hierarchy and present 

a hierarchical permission based algorithm, which is free of 

coordinator use. We simulate our proposed algorithm and 

show that it outperforms related ME algorithms.  

Index Terms— cluster, distributed algorithm, hierarchical, 

mutual exclusion, permission, quorum 

I. INTRODUCTION

In distributed systems, different processes run on 

different nodes of a network and they often need to 

access shared data and resources, or need to execute some 

common events. The portion of an event or application, 

where any shared component or common events are 

accessed, is the Critical Section (CS). Mutual Exclusion 

(ME) algorithms ensure the consistent execution of the 

CS by the processes. As the shared memory is absent in 

distributed systems, the solutions of the ME problem is 

not straightforward. Due to the enormous importance of 

ME and the difficulty of its solution, it is an active 

research area since last three decades. The classic 

algorithms for Mutual exclusion that have been proposed 

for fixed networks can be classified in two types: 

centralized and distributed approaches. In the centralized 

solutions, a node is designated as coordinator to deliver 

permission to the other nodes to access the CS, while in 

the distributed solutions the permission is obtained from 

consensus among all network nodes. 

Distributed mutual exclusion algorithms are generally 

classified in two categories: token based and permission 

based [18]. Permission based mutual algorithms [4, 5, 6, 

7] impose that a requesting node must receive 

permissions from other nodes (a set of nodes or all other 

nodes) to access the CS. In the token-based mutual 

exclusion algorithms [1, 2, 3], a unique token is shared 

among the set of nodes. The node holding the token can 

enter the CS. In the best case, no communication is 

necessary since the token may be available locally. 

Otherwise, a mechanism is needed to locate the token. If 

the node holding the token fails, expensive token 

regeneration protocols [17] must be executed. Nisho 

presented a highly resilient, though still complex, token 

based mutual exclusion algorithm [2]. Naimi proposed an 

algorithm [3] that takes O(log n) cost too. 

Ricart and Agrawala proposed the first permission 

based algorithm [4] in 1981, which takes 2(n 1) 

messages for a node to get consensus. To access the CS a 

node needs consensus from all other n 1 nodes in the 

network. 

Concept of quorum improves the performance of 

permission-based algorithms to a great extent, where to 

access the CS a node needs to have permissions only 

from all of the nodes of a quorum. This kind of 

algorithms takes lower message cost and is resilient to 

node and communication failures. Message cost of these 

algorithms is proportional to the quorum size. Therefore 

these algorithms try to achieve the two goals: small 

quorum size with high degree of fault tolerance.  

The majority quorum algorithm [15] is the first 

algorithm of this kind. According to this algorithm, a 

node must obtain permission from a majority of nodes in 

the network. Maekawa presented an ME algorithm [5] by 

forming a logical structure on the network. In this 

scheme, a set of nodes is associated with each node, and 

this set has a nonempty intersection with all sets 

corresponding to the other nodes. As the size of each set 

is n, the algorithm incurs n order of cost.  

Garcia-Molina and Barbara [16] have properly defined 

the concept of quorums with the notion of coterie. A 

coterie is a set of sets with the property that any two 

members of a coterie have a nonempty intersection. 

Combining the idea of logical structures and the notion of 
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Figure 1. Network architecture of the proposed algorithm 

coteries, an efficient and fault tolerant quorum generation 

algorithm for ME is proposed by Agarwal and Abbadi 

[6]. Here the nodes form a logical binary tree to generate 

quorums. The quorum can be regarded as attempting to 

obtain permissions from nodes along a root–to–leaf path. 

If the root fails, then the obtaining permissions should 

follow two paths: one root–to–leaf path on the left subtree 

and one root-to-leaf path on the right subtree. This 

algorithm tolerates both node failures and network 

partitions. In the best case, this algorithm incurs 

logarithmic cost considering the size of the network. 

However, the cost increases with the increase of node 

failures. 

At present, the number of distributed nodes has 

become very large. With the increasing importance of 

peer-to-peer computing [23] as well as grid computing 

[24], the distributed applications have been extended over 

a large number of nodes. The performance of these 

distributed applications depends on the number of 

participating nodes. Classical ME algorithms illustrated 

above do not consider these matters. Hence, we need 

scalable algorithms that reduce the number of 

participating nodes. 

Sometimes the nodes in a network are divided into 

several groups where each group is often called a cluster. 

According to this concepts some hybrid ME solutions [8, 

9] are proposed. Actual goal of these proposed algorithms 

was to combine two different approaches in different 

layers, intra-group (lower layer) and inter-group (upper 

layer). Two distributed ME solutions are presented by 

Erciyes [10] using a logical structure, where clusters are 

arranged on a ring. Bertier et al. proposed two token-

based algorithms in [11] taking into account the 

hierarchical network topology, which reduce both latency 

cost and number of message. These three solutions are 

modification of Naimi’s token-based algorithm [3] for 

proxy-based cluster. As these algorithms are basically 

token based, they suffer due to token failure. A two-layer 

permission based algorithm is presented by Rahman et al. 

in [12], where the coordinators (named as message 

routers) of the clusters form the upper layer. For quorum 

formation, tree-quorum algorithm [6] is used in each 

layer of the algorithm. Rahman and Akbar extended this 

algorithm in [13] for multilayer clustered network. 

However, the main problem of these algorithms [12, 13] 

is the failures of coordinators. Any failed coordinator has 

to be replaced using a leader election algorithm, which 

incurs extra cost. 

In this paper, we propose a cluster-based two-layer 

distributed ME algorithm that uses no specific 

coordinator for a particular cluster, but improves the 

performance by reducing participating nodes. Fault 

tolerance of our proposed solution is much higher than 

the algorithm of Rahman et al. [12] and incurs less 

communication cost especially when failures occur. We 

also choose tree-quorum algorithm for selecting quorums 

in both of the layers, so that we can compare the 

performance of our algorithm with that of Rahman et al.’s 

algorithm. In Section II we describe the proposed 

network. Our proposed solution along, its proofs of 

correctness and liveness, and analysis for optimality are 

presented in Section III. At the end of this section, we 

also propose a maintenance algorithm in case of node 

failures. Next section includes the simulated comparison 

of the algorithm especially with Rahman et al. Finally, we 

present a critical evaluation of our algorithm followed by 

a conclusion. 

II. PROPOSED NETWORK

A.  Description of the Environment 

We consider an asynchronous distributed system, 

which follows the model proposed in [20]. Each pair of 

nodes is connected through a communication channel. 

Links may fail causing intermittent message drop. The 

message delays for communication and processing are 

finite. No assumption is made for the relative speeds of 

the nodes. A node may fail by stopping or crashing, in 

accordance with fail-stop model [19]. However, a failed 

node may restart afterwards (after a reasonably long 

time), which will be referred as recovery. When a process 

fails, it loses all its states. However, it may use local 

stable storage to save some information (that never 

changes throughout the execution of the algorithm), so 

that it can retrieve them later for proper execution of ME 

algorithm. 
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B.  Network Architecture 

The nodes in a network are partitioned into several 

nonintersecting groups. Each group is called a cluster. 

The nodes inside the clusters form the lower layer of 

nodes. Though any number of arbitrary nodes forms the 

next (upper) layer, as a matter of guideline, from each of 

the clusters an arbitrary node is taken for the upper layer. 

Thus, the number of nodes of this layer is equal to the 

number of clusters. The upper layer can be considered as 

a single cluster. In Fig.1, Cl,1, Cl,2, Cl,3 and Cl,4 are four 

nonintersecting lower layer clusters. Four nodes a, b, c 

and d, taken from each of the lower layer clusters 

respectively, form the upper layer cluster Cu, which is 

only cluster of the upper layer. Note that, each node is a 

member of a lower layer cluster; so each member of the 

upper layer cluster is also a member of one of the lower 

layer clusters. 

Each node knows the members of its lower layer 

cluster as well as the members of the upper layer cluster. 

As the memberships to the clusters remain unchanged 

throughout the program, a node keeps this information in 

stable storage, so that it can retrieve this data after 

recovery. 

III. PROPOSED ALGORITHM

A.  Brief Outline 

Two layers of nodes participate in our proposed 

algorithm: the members of a lower layer cluster and the 

members of the upper layer cluster. A coordination 

algorithm, as in [12, 13], communicates between these 

two layers of executions. In both layers, we use the tree-

quorum algorithm [6] for quorum creation. When a node 

x wants to access the CS, first it requires to have the 

consensus from the nodes inside its lower layer cluster. 

When x gets permission at this layer, it needs to have 

permission from the upper layer. To get this permission, x

selects an arbitrary node y among the members of the 

upper layer cluster as its representing node. To y, x is 

identified as the represented node. At the upper layer y

executes the ME algorithm on behalf of x. If y gets 

consensus from the members of the upper layer cluster, it 

informs x about the consent. At this point, the node x has 

the total consensus, i.e., permissions from both layers, 

and can use the CS safely. We apply classical quorum 

based ME algorithm [5, 6] inside a cluster for collecting 

consensus. 

A.  Message and States 

As we apply quorum based ME algorithm inside the 

clusters, our ME algorithm uses Request, Reply, Release,

Inquire and Yield messages. Since some nodes are 

members of two clusters of both layers, Layer No is 

added to the contents of these messages to identify the 

layer (i.e., the cluster) of executing ME algorithm. 

Possible values of Layer No are only 0 and 1, which 

identify the upper layer and the lower layer respectively. 

The communication between the CS requesting node, a 

member of a lower layer cluster, and its representing 

node, a member of the upper layer cluster, is done 

through Layer_Request, Layer_Reply and Layer_Release

messages, similar to [12, 13]. Functions of these 

messages are briefly described below: 

When a node x gets the consensus from a quorum 

of its lower layer cluster, it sends a Layer_Request

message to an arbitrary node y, its representing 

node, to process the request in the upper layer 

cluster. 

If y receives consensus inside the upper layer 

cluster, it sends a Layer_Reply message to x.

In order to release the consensus in the upper layer 

x sends a Layer_Release message to y.

Timestamp, a global logical time [14], consists in each 

message and denotes the time of sending the message. 

This timestamp is crucial for Request message. As 

multiple requests can come from different nodes to a 

single node, a node often needs to keep them in a queue 

to process afterward. A node keeps the incoming Request

messages in a minimum priority queue, be identified as 

QUEUE, according to their timestamps. A node denotes 

its queues at the upper layer and the lower layer using 

QUEUE[0] and QUEUE[1] respectively. If timestamps of 

two Request messages are equal, then node identification 

numbers are used for this determination. This ordering is 

crucial for avoiding deadlock and starvation. A member 

node of the upper layer cluster also maintains a normal 

first-in first-out queue, be identified as FIFO, for 

Layer_Request messages. 

Different nodes participate in the algorithm. At an 

instant, a node, according to its role, owns a state. As 

some nodes play at both layers, they possess same or 

different states at these two layers. To represent the 

proposed system, we define following arrays of states, 

where each element of an array represents the state of the 

corresponding node at a particular layer. Size of each 

array is only two with 0 and 1 indices: 0 for the upper 

layer and 1 for the lower layer. 

REQUESTING[0…1]: A node set this state to true 

if it sends Request messages to its fellow nodes 

(members of its cluster).  

LOCKED[0…1]: This state is set to true when a 

node sends Reply to a fellow REQUESTING node. 

Latter node is the locking node of the former.  

BUSY[0…1]: When a requesting node of the upper 

layer (Layer 0) cluster gets consensus from its 

cluster, its BUSY[0] state becomes true. In case of 

the lower layer (Layer 1), when a requesting node 

of a lower layer cluster gets consensus from its 

cluster as well as from the upper layer cluster, its 

BUSY[1] state is set to true. 

INQUIRING[0…1]: When a LOCKED node wants 

its consensus back, it sends an Inquire message to 

its locking node. At this point, the node sets the 

INQUIRING state to true. 

State LAYER_REQUESTING is also defined for the 

nodes of the lower layer cluster. When a requesting node 

of a lower layer cluster gets necessary consensus from its 

cluster, it sends a Layer_Request message to its 

representing node. Its LAYER_REQUESTING state, at 

this time, is set to true. Initially, all the states are false. 
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We will use ‘a state is set’ or similar languages to mean 

that the state is set to true. Similarly, we will use ‘a state 

is unset’ to mean that the state is false and ‘a state is 

reset’ to mean that the state is set to false. We will also 

use “a node gets into a state from another state” or similar 

writings in order to mean that the latter state resets while 

the former state sets. 

C.  Algorithm 

In order to obtain consensus, a requesting node 

requires consensus from two separate quorums. Firstly, 

the requesting node forms a quorum in its lower layer 

cluster and seeks consensus from the quorum. Next, its 

representing node seeks consensus by forming a quorum 

in the upper layer cluster.  

Fig. 2 shows the basic state transition diagram of a 

node at any layer according to the proposed algorithm. In 

the diagram, two dummy sates IDLE and IDLE2 are 

used. IDLE denotes the state when both of LOCKED and

INQUIRING states are false, while IDLE2 denotes the 

state when all of REQUESTING, BUSY and

LAYER_REQUESTING states are false. State transitions 

are labeled with numbers so that we can specify them 

later. 

A node, if its LOCKED or INQUIRING state is unset, 

chooses the Request message at the head of its QUEUE 

and sends a Reply message, as its consensus, to the 

requesting node and sets its LOCKED state (State 

transition 6). Once a node exits from its critical section, it 

sends Release messages to all nodes of the lower layer 

quorum and, through the representing node, to all nodes 

of the upper layer quorum. After getting the release 

message, a node resets its LOCKED state (State transition 

7) and chooses another request residing at top of its 

QUEUE, if it is not empty, for next processing.  

The following points briefly describe the algorithm: 

Requests for the CS are generated at lower layer 

clusters. These requests are processed sequentially 

in both layers. The clusters Cl,1 and Cu in Fig. 1, 

for example, represent the participating clusters, if 

a node of Cl,1 places a request for the CS. 

The CS requesting node x first executes ME 

algorithm in its lower layer cluster Cl. It selects a 

quorum ql and sends a Request message to each of 

the quorum members. Now, its REQUESTING[1]

state is set (State transition 1). When x receives 

Reply messages from all members of ql, it has the 

consensus in this layer. Now it picks an arbitrary 

node y (as representing node) from the members 

of the upper layer cluster Cu and sends a 

Layer_Request message to y. At this point, x’s

REQUESTING[1] state is reset and 

LAYER_REQUESTING state is set (State 

transition 2). 

When y gets Layer_Request from x (as represented 

node), it queues the message into its FIFO, if it is 

already processing another Layer_Request (i.e., 

any of its states at this layer is true). Otherwise, it 

selects a quorum qu inside Cu and executes ME 

algorithm on behalf of x. It’s REQUESTING[0]

state is set at this stage (State transition 1). When y

gets Reply messages from all qu members, it has 

the consensus in Cu. Now it resets 

REQUESTING[0] state and sets BUSY[0] state 

(State transition 3) and sends a Layer_Reply

message to x.

When x receives the Layer_Reply message from y,

it has the total consensus, i.e., permissions from 

both layers, and so it resets its 

LAYER_REQUESTING state and sets its BUSY[1] 

state (State transition 4) and executes the CS. In 

this way, a node mutual exclusively enters the CS. 

After execution of the CS, x resets its BUSY[1]

state (State transition 5) and sends Release

messages to the members of ql. At the same time, 

it also sends a Layer_Release message to y.

When y gets Layer_Release from x, it normally 

resets its BUSY[0] state (State transition 5) and 

sends release messages to the members of qu. But 

if there is one or more Layer_Request message in 

y’s FIFO, y will not leave the consensus. Rather it 

will choose one from the FIFO and will give 

consensus directly to that node through 

Layer_Reply message. This reduces the message 

cost per CS entry. It may seem that this step also 

reduces the fairness of ME algorithm. As the 

maximum number of Layer_Request messages in 

Cu is equal to the number of lower layer clusters 

and as the representing nodes are chosen 

randomly, fair randomness distributes 

Layer_Request messages among the nodes of Cu

equally. 

Inquire and Yield messages works to avoid deadlock, 

similarly as in [6, 12, 13]. Let a node u receives a request 

from node v that possesses an earlier timestamp than its 

currently processing request of a node w, to which it has 

already sent Reply message. Then u puts the request of v
into QUEUE and sends an Inquire message to w and 

waits for either a Yield or Release message from w. At 

this time, its LOCKED state is reset and INQUIRING
state is set (State transition 8). When w receives the 

Inquire message from u, it relinquishes the consensus of 

u as well as sends a Yield message to u if and only if it 

has not received all replies from its requesting quorum 

members. If w has already acquired all necessary replies 

to access the CS and may be already executing the CS, 

then it simply ignores the Inquire message and proceeds 

normally, that is, it continues to execute the CS. After 

finishing the execution, it sends a Release message to the 

inquiring node u. When u receives the Yield message, it 

resets it INQUIRING state (State transition 9) and puts 

IDLE 2 LAYER_REQUESTING

BUSY

REQUESTING

LOCKED

INQUIRING

IDLE

1 2

3

45
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Figure 2. State transition diagram 
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back the request of w into its QUEUE. Now it pop out the 

request from the top of QUEUE and accordingly sends a 

Reply message to corresponding node and gets into 

LOCKED state again (State transition 6). In the mean 

time if no Request with earlier timestamp has come, the 

Request of y is the selected request message. If u receives 

Release message instead of Yield message from w, it does 

the same (State transition 9) except reinserting the request 

of w into QUEUE, since the request has been served 

already. 

D.  An Extension to the Algorithm 

According to the above description of the algorithm, 

the progression of the algorithm is sequential since 

consensus must be ensured in a lower layer cluster before 

processing starts in the upper layer cluster. Now we 

extend our proposed algorithm by incorporating 

parallelism in order to reduce this sequential behavior:  

When a node x begins to execute ME algorithm in 

its associated lower layer cluster, it also sends an 

in-advance special request, called 

Advance_Layer_Request, to its arbitrary selected 

representing node y at the upper layer. When y

receives this Advance_Layer_Request, it starts to 

execute ME algorithm in the upper layer cluster 

without setting its represented node. If x gets 

consensus within its lower layer cluster, it sends 

Layer_Request to y. When y gets the request, it 

sets x as its represented node. Within the time, y

may have already received consensus in the upper 

layer cluster. Otherwise, y has reached a point 

towards getting consensus. 

o If y gets consensus before receiving 

Layer_Request from a node of one of the 

lower layer clusters, it will wait for a 

threshold period for the request and gets into 

a new state, named as WAITING, from 

REQUESTING[0] state. Within this 

threshold time, if any Layer_Request come, 

it sets the request sending node as its 

represented node and sends Layer_Reply to 

that node. It now gets into BUSY[0] state 

from WAITING state. If no Layer_Request

comes (has no represented node), y will 

release this consensus (and resets its 

WAITING state) so that other competing 

nodes need not to wait long.   

It is common and usual to have other nodes 

besides x in the lower layer clusters competing in 

order to get consensus. Obviously, each of those 

nodes will send an Advance_Layer_Request to 

their corresponding representing nodes. It is easily 

possible for y to be selected as representing node 

by multiple nodes of same or different lower layer 

clusters. When y is in processing for a 

Layer_Request or an Advance_Layer_Request

message, it may receive more Layer_Request or

Advance_Layer_Request messages. How such a 

Layer_Request handles is described already in the 

earlier subsection. In case of 

Advance_Layer_Request, the node only counts the 

number of pending Advance_Layer_Request

messages in order to process later. 

o Let x and z both are requesting for consensus 

in same or two different lower layer clusters. 

Both of the nodes have selected y as their 

representing nodes. Presently y is running 

ME algorithm in the upper layer cluster in 

response to x’s Advance_Layer_Request,

since the request of x has reached y earlier 

than that of z. Thus, y’s request is treated as a 

pending request. However, z gets consensus 

before x. So, z sends Layer_Request to y.

Now y sets z as its represented node and the 

ongoing ME processing continues. Before 

that, y was executing the ME algorithm for 

an anonymous node of a lower layer cluster 

(i.e., without having represented node), 

although the initiator of the processing was 

the Advance_Layer_Request of x.

After getting Layer_Release from z, y will begin 

advance processing again, if its counter shows that there 

are some pending Advance_Layer_Request messages to 

serve. However, at this time, x may get consensus in its 

lower layer cluster and then it will send a Layer_Request

to y.

E.  Proofs 

1. Correctness:

A mutual exclusion solution is said to be correct if no 

more than one node gets simultaneous access to the CS. 

For quorum based algorithms, this condition holds, if 

there is at least one common node between any two 

quorums. In our proposed two-layer ME solution, we 

must get consensus at each layer: in a lower layer cluster 

and in the upper layer cluster. So, a quorum of our 

solution can be defined as ul qqq , where lq  and uq

are the quorums formed respectively with the members of 

a lower layer cluster and with the members of the upper 

layer cluster.  

Similarly, another quorum could be ul ppp ,

where lp  and up  are the quorums respectively of a 

lower layer cluster and of the upper layer cluster. Now, 

)()( uull qpqpqp

Here, uu qp , since these are the quorums 

selected from the members of the same cluster, the only 

cluster of the upper layer, and these are formed according 

to the tree-quorum algorithm, which ensures the 

intersection between any two quorums. So, qp .

Thus, the solution must maintain mutual exclusion for 

accessing the CS. 

2. Liveness:

To prove the liveness, we need to show that each 

request is served within a finite period. Let the C nodes of 

a cluster be N1, N2, … …, NC. Consider the worst case 

scenario where the requests from each of the fellow nodes 

are queued at Np. The timestamp of the queued request of 
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Ni at Np are Ti, where 1 i C. The request sent by Nm

contains the maximum timestamp. Thus, Tcurrent > Tm > Ti,

where Tcurrent is the current time and mi . Let, the 

timestamp of the next request coming from Nj (after 

completion of its earlier request with timestamp Tj) is 

denoted by next
jT . Definitely, next

jT Tcurrent. Hence, 

next
jT  > Tm. Therefore, the request from Nm will be served 

in a finite duration (after C–1 outstanding requests are 

served) as it has the earlier timestamp than the next group 

of requests. So, any request of a node in a cluster of the 

lower layer or the upper layer must be served in a finite 

period. 

In our two-layer architecture, a requesting node must 

have consensus at both layers. After getting consensus 

from its lower layer cluster, the node asks (by sending a 

Layer_Request message) its representing node to collect 

consensus in the upper layer cluster. Since the 

representing node processes the Layer_Request messages 

in FIFO manner, every Layer_Request will be processed 

in a finite time. Again, as the request of the representing 

node in the upper layer cluster must be served, ultimately 

the request is served in both layers within a finite period. 

So, liveness is proved.  

F.  Optimal Cluster Size 

To find the optimal cluster size of the proposed 

solution, we do analysis in this section considering the 

tree-quorum algorithm [6] that is applied for quorum 

formation. According to the tree-quorum algorithm, the 

expected quorum size for a network with size n is 

expressed as )2)(1()1( 11 hhh cfcfc , where f

denotes the fraction of the quorums that include the root 

of the binary tree with height h, while h is approximately 

log n – 1. So, f is the probability of the root to be included 

in the quorum, when all the quorums are equally 

probable. As we assume that the root is included in the 

quorum if it is available, f is equivalent to the probability 

of the root being available. In the recursive equation of 

expected quorum size, each node becomes the root of a 

subtree in a particular level of the tree. Therefore, f
denotes the probability that a node is available at a 

particular instant, simply, the availability of a node. The 

average number of messages needed against a single 

request of a node to enter the CS is proportional to 

quorum size. Thus hc , expected quorum size, represents 

message cost function. Solving this recurrence, following 

equation is found:  

1      when,1

1when,
1

)2(

fh

f
f

fhf
ch

                                (1) 

In our algorithm, there are participating clusters in two 

layers: a lower layer cluster and the upper layer cluster.  

We consider two parameters: n, the number of nodes in 

the network and C, cluster size of each lower layer 

cluster. Therefore, the number of lower layer clusters is 

n/C and this is cluster size of the upper layer cluster. The 

height of the tree formed by the nodes inside a lower 

layer cluster is 1logChl . Thus, the height of the tree 

formed by the nodes of the upper layer cluster 

is 1lu hhh . Now, the total message cost of the 

proposed solution is: 

c  = 
lhc +

uhc + number of representing node for 

coordination 

Here, 
lhc and 

uhc are the message costs at the lower 

layer and the upper layer respectively. Hence, 

1
1

)2(

1

)2( 11 1

f

ff

f

ff
c

hhh

                     (2) 

Taking the derivative of c with respect to hl and 

equating it to zero, we get nC as the condition of 

optimality. Then, cluster size of the upper layer cluster is 

n/ n , i.e., n .  Thus, cluster size of each cluster is 

n for optimality. Fig. 3(a) and Fig. 3(b) show 

theoretical message cost of our proposed hierarchical 

algorithm along with that of the ME algorithm of 

Agarwal and Abbadi [6]. Message cost of proposed 

algorithm is calculated by (2) taking optimal cluster size 

into account. Both figures show that the new algorithm 

analytically outperforms the other. Our simulation result 

in Section IV also justifies our analytical result. Note that, 

the message costs shown in the figures are actually 
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expected quorum sizes. 

B.  Availability of a Quorum 

The probability that a node is available at any time is f.

According to the tree quorum algorithm [6], the 

availability of a quorum in a cluster is computed by 

formulating a recurrence relation. The recurrence relation 

is in terms of the availabilities of forming quorums in the 

subtrees of a binary tree. Let Ai be the availability of 

forming a quorum in a tree of height i. Thus, Ai+1, the 

availability of forming a quorum in a tree of height i + 1 

is given as 

Ai+1 = Probability (root is up) × Availability (Left 

subtree) × Availability (Right subtree) 

+ Probability (root is up) × Unavailability (Left 

subtree) × Availability (Right subtree) 

+ Probability (root is up) × Availability (Left subtree) 

× Unavailability (Right subtree) 

+ Probability (root is down) × Availability (Left 

subtree) × Availability (Right subtree). 

Using f as the probability of the root being up and Ai as 

the availability of a subtree of height i, we can write the 

above expression as 

Ai+1 = fA2
i + f(l – Ai) Ai + fAi (l – Ai) + (1 – f)A2

i,

i.e., Ai+1 = 2fAi + (1 – 2f) A2
i.

Here, 1 – Ai is the unavailability of a subtree of height 

i. Note that the availability of a quorum in a tree with a 

single node (height 0) is f, i.e., A0 = f.

In our proposed solution, the number of nodes in the 

system is n and the number of nodes in a cluster (i.e., 

cluster size) is C. According to Subsection III.F, all 

clusters have the same size C (i.e., n ) for optimal 

solution. Letting the height of the binary tree formed by C

nodes is h , the availability of a quorum in a cluster is 

A h = 2fA 1h  + (1 – 2f) A2
1h .

A quorum q of our solution is defined as ul qq ,

where lq and uq  are quorums formed from the nodes of 

a lower layer cluster and the upper layer cluster 

respectively. So the availability of a quorum of our 

solution is aggregation of the availabilities of 2 quorums. 

As each cluster has size C (i.e., a binary tree of height h )

the availability is 

A h = A h × A h  = (A h )2

Fig. 4(a) and Fig. 4(b) show the availability of a 

quorum in the ME algorithm of Agarwal and Abbadi [6] 

and that in our proposed algorithm varying the number of 

nodes (n) and availability of a node (f) respectively. For 

higher values of n and f, especially when f>0.7, quorum 

availabilities in both algorithms are almost equal. High 

quorum availability is crucial in order to ensure the 

access to the CS for each node. 

F.  Node Failures and Maintenance Algorithm 

Maintenance algorithm maintains the correctness of 

our mutual exclusion algorithm in case of failure of a 

node that is executing or participating in the ME 

algorithm. It is assumed that when a node u is interrelated 

with another node v because of the execution of ME 

algorithm, then if v fails, u can detect the failure [25][26]. 

When u detects such failure, it executes the maintenance 

algorithm. This algorithm along with its correctness proof 

is illustrated below taking the help of Fig. 5. 

1. In case of node failures:

Following two cases are required to handle in case of a 

node failure:  

a. Let x be a member of the upper layer cluster Cu.

As a representing node, it is processing the 

Layer_Request of y, a member of a lower layer 

cluster Cl,1, in Cu. Some nodes in Cu are in 

LOCKED state due to this request processing. 

Some other nodes in Cu have x’s Request waiting 

in their request queues. Now, x failed. How the 

maintenance algorithm cancels the engagement 
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of the nodes with x and so keeps the correctness 

of the algorithm is described as follows: 

i. z in Cu is in LOCKED state by x: When z
detects that its locking node x is failed, it 

withdraws its consensus after waiting 

for a long enough time to ensure that 

there is no node of any lower layer 

cluster in BUSY state due to having 

consensus (Layer_Reply) from x. After 

the threshold period, z is free to give 

consent to any pending request. 

ii. In Cu, z has Request from x waiting in its 

QUEUE: After detecting x’s failure, z

discards the request from the QUEUE. 

iii. Represented node y sent Layer_Request
to its representing node x: If y is in 

LAYER_REQUESTING state, i.e., 

waiting for Layer_Reply from x, it 

selects another representing node in Cu

and sends Layer_Request to its new 

representing node. 

b. Let x be a member of a lower layer cluster Cl,1. It 

is processing its request in order to access the CS. 

Some nodes in Cl,1 are in LOCKED state due to 

this request processing while some other nodes in 

Cl,1 have Request message of x waiting in their 

request queues. Node x may send Layer_Request

to its representing node z at upper layer. Now, x

is failed. How the maintenance algorithm cancels 

the engagement of the nodes with x and so keeps 

the correctness of the algorithm is described as 

follows:   

i. y in Cl,1 is in LOCKED state for x: When 

y detects that its locking node x is failed, 

it withdraws its consensus. Node y is 

now free to give consent to any pending 

request. 

ii. In Cl,1, y has Request from x waiting in 

its QUEUE: After detecting x’s failure, y

discards the request from the QUEUE. 

iii. x sent Layer_Request to its representing 

node z in Cu: Action of z due to failure 

of x depends on its FIFO. If FIFO is 

empty, z stops processing and sends 

Release messages to all nodes of the 

quorum in Cu to which it sent Request
messages. But if FIFO is not empty, the 

action differs. It does not stop 

processing; rather it takes out a 

Layer_Request message from its FIFO 

and makes the message sender its 

represented node at lower layer. If z is in 

BUSY state, it also sends a Layer_Reply

message to the new represented node.  

c. If a node x gets consensus from a node y through 

Reply (both nodes are at the same layer) or 

Layer_Reply (x is at the lower layer and z is at the 

upper layer), it does not relinquish the consensus 

if y fails until it has finished the use of this 

consensus. (This action keeps correctness along 

with the delay action stated earlier in a.i and the 

actions taken after x’s recovery stated in next 

subsection) 

2. In case of node recovery:

Let, x recovers after its failure. Now it can participate 

in ME solution starting as an IDLE state. But at the time 

of failure it could be in LOCKED state giving consensus 

to a fellow node z. If z is still using the consensus of x, no 

way x can give consensus to any other fellow node. 

Again, as a representing node, x might be in BUSY state 

at the time of its failure by sending Layer_Reply to y. So, 

after recovery, x should take care whether y is still using 

its consensus. Former scenario is possible when x is a 

member of a cluster at any layer while the latter scenario 

is possible only when x is a member of the upper layer 

cluster. How the maintenance algorithm handles the 

correctness of the algorithm in these scenarios is 

described below: 

After recovery, if x finds that it was in LOCKED

state at the time of its failure and its locking node 

was z, it sends a message called Node_Recovery to 

z. If z is not using the consensus of x, it sends back 

a Release message to x immediately. Otherwise, z
does not respond to the Node_Recovery message. 

At that time, x will receive Release message from 

z after a period, when z finishes the use of x’s

consensus. Until getting Release message from z,

x will not start to give consensus against any 

Request message. So, the Request messages 

received in this period will be queued in the 

QUEUE. 

When x recovers, it sends a Node_Recovery
message to its represented node y if x was in BUSY

state at the time of its failure. If y is not using the 

consensus of x, it sends back a Layer_Release
message to x immediately. Otherwise, y does not 

respond to this Node_Recovery message. At that 

time, x will receive Layer_Release message from y

after a period, when y’s BUSY state becomes false. 

Similar to previous case, until getting 

Layer_Release message from z, x will not start to 

process Layer_Request. In the mean time, if any 

Layer_Request comes to x, the message is queued 

in its FIFO. 

Remind that when a node recovers it retrieves the 

information about its clusters and its parent cluster from 

its stable storage (Subsection II.B). We are now taking 

another assumption to maintain the correctness of the 

algorithm in case of failure/recovery: Each node keeps 

the status of its BUSY and LOCKED states along with the 

values of its locking node and its represented node saved 

in stable storage, so that these data can be retrieved after 

recovery. After recovery all other states and variables are 

reset, i.e., initialized with their default values. 

G.  Critical Evaluation 

The availability of a quorum in our solution is lower 

than the original classic algorithm [6] at low f along with 

small n, which is depicted in Fig. 4. Though the algorithm 

is especially suitable for large n, it is possible that, in 
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some clusters quorum formation may become impossible 

due to lack of necessary live nodes. Then the requesting 

nodes of those clusters will be starved, though there 

might be enough live nodes in the system. In the 

simulation (presented in the next section), we assume that 

no cluster will be in such a situation. For the justification 

of the assumption, we keep either n or f or both such 

high, so that each cluster can have feasible number of live 

nodes for quorum formation.  

In the lower layer, it is possible to associate a node 

with one or more clusters other than its primary cluster. 

Then, if the node is unable to form quorum in its cluster, 

it can utilize other clusters to form quorum. At that time, 

some issues will be come up to keep consistency. 

However, we consider this issue as a topic for further 

research. 

IV. SIMULATION

We simulate our proposed ME algorithm using 

PARSEC [21], which is a parallel C–based discrete–event 

simulation language. The aim of the simulation is to 

compare the performance of our algorithm with that of 

Rahman et al. [12]. For comparison we take two 

performance metrics: message cost and waiting time per 

CS entry. Message cost is the average message 

complexity per request to enter into the CS, i.e., the 

average number of messages required for a node from 

request placing to getting consensus in order to execute 

the CS. Waiting time is defined as the average time that a 

node spends in waiting to enter the CS after its request. 

A.  Simulation Environment 

Our simulation is executed on a peer-to-peer network 

having an arbitrary number (up to 1200) of nodes 

randomly spread over the network. The network is 

assumed to ensure the ordered delivery of messages 

between a source and a destination. So, the 

communication latency between two specific nodes is 

taken constant. The latencies for message communication 

and message preparation or processing follow normal 

distribution with a mean of 12 and 8 time units 

respectively and a common variance of 50% of the mean. 

The time of CS execution is also taken as a normal 

random number with a mean of 20. These values are 

arbitrary. If we change, for example, the mean time of 

communication latency, the behavior of simulation result 

for waiting time will remain the same, except, with 

different scales of magnitudes.  

A node requests for the CS following a Poisson 

process with 0.0000002 request (arrival) rate. Node 

failures are modeled as a Poisson process with a failure 

rate calculated from the value of f and the recovery time. 

Recovery time is an exponential distribution with a mean 

of 1000000 time units.   

In the simulation, initially we form the clusters 

arbitrarily according to the optimal cluster size and select 

the nodes of the upper layer cluster by taking a random 

node from each cluster. Elections of the message routers 

are not simulated for [12]. Rather, a cost (both time and 

message) is assumed according to a leader election 

algorithm [22]. 

A.  Performance Comparison 

1. Message cost:

Message costs per CS entry for the classic tree-quorum 

based ME algorithm of Agarwal and Abbadi [6], the two-

layer ME algorithm of Rahman et al. [12] and our 

proposed two-layer ME algorithm are plotted in Fig. 6(a) 

and Fig. 6(b) against different network sizes (n) and 

different availability of nodes (f) respectively. Both of the 

figures show that our algorithm simply outperforms the 

others especially when f decreases. According to the tree-

quorum algorithm, the quorum size is inversely 

proportional to the value of f and varies from Vlog  (for 

high values of f) to 
2

V  (for low values of f), where V is 

the number of participating nodes. Both of the two-layer 

algorithms reduce this size of participating nodes to C,

i.e., n , while the participating nodes in the classical 

algorithm is n. So, both algorithms outperforms the latter 

when f <1. Since Rahman et al. uses coordinators of the 

clusters, it needs to reelect new coordinator when any 

coordinator fails. For lower f, the rate of reelection 

increases. As each election of coordinator takes extra 

message cost, for lower f the message cost of Rahman et 

al. is significantly more than that of our proposed 

algorithm.  
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If we decrease the recovery time for a particular f, the 

failure rate will increase and as a result the performance 

of Rahman et al. will be worse. The same will occur in 

case of reduced request rate. For opposite cases, the 

performance of Rahman et al. will be better. 

2. Waiting time:

Average waiting time for a CS entry is plotted in Fig. 

7(a) and Fig. 7(b) against different network sizes (n) and 

different node availabilities (f) respectively. Both of the 

figures show that our proposed algorithm outperforms 

ME algorithms of Rahman et al. [12] and Agarwal and 

Abbadi [6], especially when f<1. Though both algorithms 

of Rahman et al. and ours use network hierarchy of two 

layers, the latter takes less waiting time because of its 

parallel processing. 

V. DISCUSSION

We have proposed a two-layer quorum based solution 

for distributed mutual exclusion. Though the proposed 

algorithm is cluster based, there is no use of specific 

coordinator (message router) for a cluster. Thus, no 

reelection of coordinator is required. We have devised the 

optimal cluster size taking message cost into 

consideration. At the end, we have presented a simulation 

result that demonstrates noticeable improved performance 

of our algorithm comparing to other related algorithms. 

We are currently extending this solution along with 

some enhancements (described in the earlier section) for 

multilevel clustered network like [13], which is left for 

future research publication. Group mutual exclusion 

(GME) is a recent variant of the classical mutual 

exclusion problem, which proposed first in [27]. We are 

also going to extend our hierarchical approach for the 

solution of GME problems. 
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