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Abstract—In ordinary statistical methods, multiple outliers 
in multiple linear regression model are detected sequentially 
one after another, where smearing and masking effects give 
misleading results. If the potential multiple outliers can be 
detected simultaneously, smearing and masking effects can 
be avoided. Such multiple-case outlier detection is of 
combinatorial nature and  sets of possible 
outliers need to be tested, where  is the number of data 
points. This exhaustive search is practically impossible. In 
this paper, we have used quantum-inspired evolutionary 
algorithm (QEA) for multiple-case outlier detection in 
multiple linear regression model. A Bayesian information 
criterion based fitness function incorporating extra penalty 
for number of potential outliers has been used for 
identifying the most appropriate set of potential outliers. 
Experimental results with 10 widely referred datasets from 
statistical literature show that the QEA overcomes the effect 
of smearing and masking and effectively detects the most 
appropriate set of outliers.  
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Index Terms— Bayesian information criterion based fitness 
function, multiple-case outlier detection, multiple linear 
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I.  INTRODUCTION 

If substantial error is associated with data, multiple 
linear regression is used to model the trend of the data, 
which minimizes the discrepancy between the data points 
and the fitted straight line or hyper plane. In statistical 
data analysis, outliers or aberrant observations are 
observations that are somehow different from the 
majority of the data [1, 2]. The presence of outliers in the 
data may result into misleading multiple linear regression 
model, which is biased towards the outliers. There are 
several statistical methods for outlier detection [1], where 
the outliers are detected sequentially one by one. There 
are also several ways of taking the detected outliers into 
account in the analysis. For example, the outliers can be 

removed from the data altogether or they can be 
incorporated into the statistical model [1]. There are two 
problems in practical outlier detection known as smearing 
and masking. Smearing means that an outlier causes 
another non-outlier observation to be considered as an 
outlier by an outlier detection method. Masking means 
that an outlier prevents another outlier being detected by 
an outlier detection method. One by one or sequential 
detection of outliers may, therefore, be misleading, if the 
detection of one outlier causes the subsequent detection 
of other outliers to be flawed, due to either smearing or 
masking, or both. Multiple-case or simultaneous outlier 
detection method can overcome the limitations of the 
sequential outlier detection method. Multiple-case outlier 
detection method can be thought of simultaneously 
dividing the data points into two subsets – subset of 
outlying data points and subset of non-outlying data 
points. The subset of non-outlying data points must have 
at least two data points for linear regression. The simplest 
multiple-case outlier detection method would be to 
consider all possible permutations of the data points into 
outliers and non-outliers subsets and decide which of 
these is the best combination based on some criterion. 
This method is combinatorial in nature and requires 

 possible combinations to be considered, 
where  is the number of data points. As the exhaustive 
search of  possible combinations is practically 
impossible, evolutionary algorithms (genetic algorithms, 
evolutionary algorithms, evolutionary programming, etc.) 
may be very useful in detecting multiple-case outliers. 
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The first attempt of using genetic algorithm (GA) to 
detect multiple-case outliers is reported in [3, 4]. In these, 
subsets of data points with cardinality , for k

⎣ ⎦2,,2 Nk L= , where  is the number of data points, 
are separately identified to be potential outliers and they 
are omitted from the dataset to calculate measure of 
outlyingness. In [3], least squares technique [5, 6] is used 
to measure outlyingness of a data subset, that is, a data 
subset with minimum value of sum of squared residuals is 
considered to be non-outlying data subset. In [4], besides 

N
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least squares technique, other two techniques such as 
Cook’s squared distance [7] and measure of remoteness 
[8] are used as the measure of outlyingness. Then post 
analysis is used to identify the outlier set. In these GAs, 
ordered-based integer encoding of the chromosome, a 
variant of two-parent uniform ordered-based crossover 
(UOX) [9], and a mutation that replace a randomly 
chosen point with a unique random value are used. This 
approach suffers from two drawbacks – (i) the GA is run 
⎣ ⎦ 12 −N  times separately, where  is the number of 
data points, to identify 

N

⎣ ⎦ 12 −N  separate subsets of 
potential outliers, which is time consuming and (ii) the 
post analysis to identify the outlier set from ⎣ ⎦ 12 −N  
sets is somewhat misleading. 

Another attempt of using GA for outlier detection and 
variable selection in multiple linear regression model is 
presented in [2]. This work deals with multiple-case 
outlier detection in multiple linear regression model. 
Additional dummy variables are used corresponding to 
potential outliers. These dummy variables are by 
definition binary in nature. Binary encoded chromosome 
is used to represent dummy variables corresponding to 
potential outliers. The 1s of the chromosome represent 
the dummy variables and the variables are created before 
the GA is run and used in the regression model to 
determine the fitness of the solution. The fitness of the 
solution is calculated using a modified form of the 
Bayesian Information Criterion (BIC) [10]. The used 
fitness function is 

 . (1) NNNNp d /)log(/)log()1()ˆlog(CBI 2 ++=′ σ km+

CBI ′

where,  is the sample size, that is, the number of data 
points,  is the residual sum of squares, 1 is for 
constant in the model,  is number of independent 
(predictor) variables,  is the number of outlier 
dummies, and  is extra penalty given to outlier 
dummies. A solution with lowest  value is selected. 
The selection of parents is biased towards the fitness 
values and a two point classical crossover and classical 
mutation are used. 
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Another GA based multiple-case outlier detection in 
multiple regression model having multicollinearity 
problems is reported in [11]. This is similar to the method 
of [2] with the additional feature that it handles 
multicollinearity [12] in multiple linear regression model, 
defined as linear dependencies among the independent 
(predictor) variables. 

In the above works, GAs are used to detect multiple-
case outliers in multiple linear regression models. 
However, other evolutionary techniques may be equally 
or more suitable for this purpose. Han and Kim [13] 
propose quantum-inspired evolutionary algorithm (QEA) 
and experimentally show that the QEA is better than 
classical GAs for solving 0/1 knapsack problem. Latter, 
in [14], they propose extension of the basic QEA such as 
termination criterion, a modified version of the variation 
operator, and a two-phase scheme to improve the 
performance of the QEA. Besides, applications of the 

QEA in different combinatorial application areas such as 
disk allocation problem [15], multiobjective 0/1 knapsack 
problem [16], and face detection [17] are reported. The 
basic QEA structure presented in [13] is based on the 
concept and principle of quantum computing. As the 
QEA is found to be effective for other combinatorial 
problems, it is also likely that it will be very suitable for 
multiple-case outlier detection, since the problem is 
combinatorial in nature. 

In our earlier work [18], we use QEA for detecting 
multiple-case outliers in simple least-squares regression 
model with one independent (predictor) variable and one 
dependent (response) variable. This work is an extension 
of our earlier work, where we use QEA for detecting 
multiple-case outliers in multiple linear regression model 
with two or more independent (predictor) variables and 
one dependent (response) variable. 

The rest of the paper is organized as follows. In 
Section II, we discuss multiple linear regression model 
and outliers. We discuss our proposed QEA for multiple-
case outlier detection in multiple linear regression model 
in Section III. In Section IV, we present our experimental 
results. Finally, in Section V, we conclude the paper. 

II.  MULTIPLE LINEAR REGRESSION MODEL AND 
OUTLIERS 

Regression analysis is a statistical technique, which 
helps us to investigate and to fit an unknown model for 
quantifying relations among observed variables. It is 
appealing because it provides a conceptually simple 
method for investigating functional relationships among 
variables [19]. Let us have a set of  observations N
( )

iii pi xxxy L,,, 21 , for i  of N,,2,1 L= )1( +p  

dimensional random vector . To serve 
the purpose in regression analysis, the classical model 
assumes a relation of the scalar type 

)p, xL,,,( 21 xxy

 ippi ii
xxy εβββ ++++= L110 , for    (2) Ni ,,2,1 L=

where  is the dependent response variable, 
 are  independent predictor variables, 

iy
x,L

iii pxx ,, 21

0

p

β  is the intercept on the Y-axis, pβββ ,,, 21 L  are the 
regression coefficients for each of the independent 
predictor variables, and iε  is the error or residual, for 

N,Li ,2,1= . If we designate  as  response 
vector,  as  predictor vectors, and  
as 

Y 1×N

pXX ,2X ,1

1
,L 1×N ε

×N
X ,,1 L

 error vector, then the relationship between  
and  can be formulated as 

Y
pXX ,2

 εXXXY +++++= ppββββ L22110               (3) 

We can rewrite the system of equations by matrix 
notation as 

 εXβY +=                                    (4) 
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where  is the  response vector,  is the 
 design matrix,  is the  parameter 

vector (regression coefficients), and  is the 

Y
)1+

1×N X
(× pN β 1)1( ×+p

ε 1×N  error 
vector. 

To fit a regression model, we estimate the parameters 
using least squares method, which minimizes the sum of 
squared deviations of the observed and fitted response, 
which is commonly referred to as residual sum of squares 

                   .              (5) )()(
1

2 XβYXβYee −−==∑
=

T
N

i

T
ie

Minimization of (5) results into the least squares estimate 
of  β

                             .                            (6) YXXXβ TT 1)(ˆ −=

The fitted regression model corresponding to the level of 
the regressor variables is 

                                     .                                    (7) βXY ˆˆ =

The corresponding residual or error vector is 

         .        (8) YXXXXYβXYYYe TT 1)(ˆˆ −−=−=−=

The residual sum of squares is calculated from (5) as 

                       .                     (9) )ˆ()ˆ( βXYβXYee −−= TT

The residual sum of squares has  degrees of 
freedom associated with it, since  parameters are 
estimated in the regression model. Thus, the residual 
mean square or variance of the residual is 

)1( +− pN
)1( +p

                             
)1(

ˆ 2

+−
=

pN

T eeσ                             (10) 

The errors or residuals are normally distributed 
. If outliers occur in the data, the errors can 

be thought to have a different distribution from normal 
[2, 11]. There are several possibilities, but perhaps the 
most intuitive one is the mixture model, where with 
probability 

)ˆ,0(~ 2σNei

π−1  each error  comes from a  
distribution, and with probability 

ie )ˆ,0( 2σN
π  from another 

distribution, where 10 << π . In practical works the data 
sets may have outliers. One outlying observation can 
destroy least squares estimation, resulting into parameter 
estimates that do not provide useful information for the 
majority of the data. The detection of outliers is 
important, not only for their own sake, but also because 
the inference drawn from the model will be biased if 
outliers are neglected. 

The effect of potential outliers can be minimized using 
robust regression techniques. One of the best examples of 
this is least median of squares (LMS) [20]. With this 
technique, the median of the squared residuals  is 
minimized rather than the sum. This works well because 
for any line under consideration, only the point 
corresponding to the median of the sorted squared 

residuals is used. This results in throwing out the high 
and low residual values that might tend to throw least 
squares off of the trail. 

2
ie

III.  THE PROPOSED QUANTUM-INSPIRED EVOLUTIONARY 
ALGORITHM FOR MULTIPLE-CASE OUTLIER DETECTION IN 

MULTIPLE LINEAR REGRESSION MODEL 

The proposed quantum-inspired evolutionary algorithm 
(QEA) for multiple-case outlier detection in multiple 
linear regression model maintains three data structures as 
discussed below: 

Population of Q-bit individuals: A Q-bit in a QEA is a 
classical equivalent of a qubit in a quantum system. A Q-
bit is represented as a tuple ),( βα  or a column vector 

 such that , where  is the probability 

that the Q-bit is in state 0 and  is the probability that 
the Q-bit is in state 1. A Q-bit can be visualized as a two-
dimensional unit vector, where 

⎥
⎦

⎤
⎢
⎣

⎡
β
α

122 =+ βα 2α

2β

α  is the projection of the 
unit vector on the x -axis and β  is the projection of the 
unit vector on the -axis. When the unit vector lies on 
the 

y
x -axis, it represents a 0 and when it lies on the -

axis, it represents a 1. The probabilities of a Q-bit being 
in state 0 or 1 can be changed by rotating the Q-bit. If a 
Q-bit is rotated towards y-axis, it converges towards state 
1 and if it is rotated towards x-axis, it converges towards 
state 0. The rotation operator that rotates the Q-bit 

y

θ  
radian in the anticlockwise direction is 

⎥
⎦

⎤
⎢
⎣

⎡ −
=

θθ
θθ

θ
cossin
sincos

)(R . 

If the Q-bit  is rotated using the rotation operator ⎥
⎦

⎤
⎢
⎣

⎡
β
α

)(θR , then the new Q-bit is formed as follows: 

              .           (11) 
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A Q-bit individual of length  is represented as N

                    ( )( ) ( )[ ]NNq βαβαβα ,,, 2211 L= ,               (12) 

where  is the number of data points. A Q-bit individual 
of length  eventually represents  binary individuals 
in superposition. The population of Q-bit individuals at 
generation 

N
N N2

t  is denoted by . Readers can see [13] 
for more details of Q-bit individuals. 

)(tQ

Population of observed binary solutions: The multiple-
case outlier detection problem can be encoded as a binary 
string of length  N

                                ( )Nzzzz L21= ,                            (13) 
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where  is the number of data points and if N 0=iz , then 
the ith data point is considered as a potential outlier, 
otherwise considered as a non-outlier. The population of 
binary solutions at generation t  is denoted by . The 
sizes of the population of Q-bit individuals and the 
population of binary solutions are same. The population 
of binary solutions   is generated by probabilistic 
observation of the population of Q-bit individuals 

. In the probabilistic observation process, the 
binary value of  of an observed binary solution is set to 
1 if and only if  for the corresponding 
Q-bit individual, otherwise it is set to 0. 

)(tZ

)(tZ

0[

)1( −tQ

iz
2]1random iβL <

The best binary solution: The best binary solution is 
denoted by ,  where  is the number of 
data points, which  stores the best binary solution so far 
generated. 

)( 21 Nbbbb L= N

The structure of the QEA for multiple-case outlier 
detection is given below: 

Procedure QEA for multiple-case outlier detection 
begin 

0←t  
(i) initialize  )(tQ
(ii) make  by observing  )(tZ )(tQ
(iii) repair  )(tZ
(iv) evaluate  )(tZ
(v) store best solution among  into b  )(tZ

while (t < MAX_GEN) do 
begin 

1+← tt  
(vi)  make  by observing )(tZ )1( −tQ  
(vii)  repair  )(tZ
(viii)  evaluate  )(tZ
(ix)  update  )(tQ
(x)  store the best solution among  and )(tZ

b  into b  
end 

end 
 
The procedure is discussed below step wise: 

Step (i): The Q-bits of all Q-bit individuals of  are 

initialized to 

)0(Q

21== βα , which implies that the 
probabilities of a Q-bit being in state 0 or 1 are equal. 

Step (ii): The population of binary solutions  is 
generated by probabilistic observation of the population 
of Q-bit individuals . 

)0(Z

)0(Q

Step (iii): We have assumed that the number of outliers 
in a dataset is less than ⎣ 2N ⎦ , where  is the number 
of data points. However, we will consider the maximum 
number of 0s in an observed binary solution to be 

N

⎣ ⎦2N  
to test the under penalty value of K  as discussed later in 

this section. If the number of 0s in an observed binary 
solution is more than ⎣ ⎦2N , then the excess 0s are 
randomly selected and converted into 1s. 

Step (iv): The evaluation of a binary solution is the most 
important part of the QEA for multiple-case outlier 
detection. We have used the following Bayesian 
information criterion based fitness function for a binary 
solution z : 

           ( ) NnKmpzf )log()1(ˆlog)( 2 +++= σ ,         (14) 

where  is the number of data points,  is the number 
of 1s in the binary solution 

N n
z , i.e., the number of non-

outlier data points,  is the number of 0s in the binary 
solution 

m
z , i.e., the number of potential outlier data 

points, Nmn =+ , 1 is for the constant in the model,  

is the number of independent predictor variable,  is 
calculated using (10) for only the n  non-outlier data 
points, and  is extra penalty given to the 
number of potential outliers . Readers can easily 
recognize from (10) that  is the variance of the 
residual of least-squares fit of  non-outlier data points. 
Selection of the value of 

p
2σ̂

)1≥(KK
m

n

2σ̂

K  will be discussed later in this 
section. A smaller value of  means that elimination 
of the potential outlier data points from the dataset will 
produce a better least-squares fit of the remaining non-
outlier data points. 

)(zf

Step (v): The binary solution z  among  having the 
lowest  value is stored into . 

)0(Z
)(zf b

The while loop runs the subsequent generations of the 
QEA. 

Step (vi): The population of binary solutions  is 
generated by probabilistic observation of the population 
of Q-bit individuals 

)(tZ

)1( −tQ . 

Step (vii): The binary solutions in  are repaired as in 
Step (iii). 

)(tZ

Step (viii): The repaired binary solutions in  are 
evaluated as in Step (iv). 

)(tZ

Step (ix): In this step, the Q-bit individuals are updated to 
converge towards the stored best solution b  by rotating 
each Q-bit θ  radian. If  for a binary solution )()( bfzf <
z , then the Q-bits of the corresponding Q-bit individual 
are not rotated, i.e., rotated 0 radians. If  for 
a binary solution 

)(bff ≥)(z
z , then there are three situations: (i) if 

ibiz = , then the corresponding Q-bit is not rotated, (ii) if 
0=iz  and 1=ib , then the corresponding Q-bit is rotated 

θ  radians towards y-axis to converge the Q-bit towards 
1, and (iii) if 1=iz  and , then the corresponding 
Q-bit is rotated 

0=ib
θ  radians towards x-axis to converge the 

Q-bit towards 0. We have used πθ 01.0=  radians as 
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rotation angle for our experiments. Readers can see [13] 
for more details of updating Q-bit individuals. 

Step (x): The binary solution z  among  and b  
having the lowest  value is stored into . 

)(tZ
b)(zf

For a given dataset, the proposed QEA is run several 
times with different K  values and the potential set of 
outliers is determined using the following technique: 
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Figure 1. Scatter plot, LS line with and without outliers, and LMS 
line for CYG Data. 
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Figure 2. Outlier set identification in CYG Data.

 
• For a given dataset, run the QEA a number of times 

with different seeds for the random number generator 
for different runs, so that the random number 
generator generates different sequences of random 
numbers in different runs and the different runs 
follow different search paths. 

• For each run of the QEA, use a range of K  values 
from under penalty (a K  value that detects a set of 
outliers with cardinality ⎣ ⎦2N  100% of times or 

1=K ) to over penalty (a K  value that detects no 
outliers 100% of times). 

• Select the set of outliers that is detected by most K  
values. Break the tie by selecting the set of outliers 
that is detected most of the times. 

IV.  EXPERIMENTAL RESULTS 

We have implemented the QEA for multiple-case 
outlier detection in multiple linear regression model using 
MATLAB programming on a PC. We have arbitrarily 
used MAX_GEN = 500 and the population sizes (the 
numbers of individuals in the populations) have been 
chosen depending on the problem. For each dataset, the 
QEA has been arbitrarily run 100 times with different 
seeds for the random number generator and for all 
datasets the same set of seeds has been used. We have 
experimented with 10 well-referred datasets from [19, 21] 
– six datasets have one predictor variable, one dataset has 
two predictor variables, one dataset has three predictor 
variables, one dataset has four predictor variables, and 
one dataset has six predictor variables.  We discuss here 
experimental result of each dataset separately. 

The first dataset that we have experimented with is the 
Hertzsprung-Russel diagram of the CYG OB1 star cluster 
from [21], which is an often analyzed dataset in statistical 
literatures. The data is taken from 47 stars in the direction 
of Cygnus. The independent predictor variable is the log 
of the effective temperature at the surface of each star and 
the dependent response variable is the log of the star’s 
light intensity. We will refer to this dataset as CYG 
dataset. This dataset is analyzed by many researchers as 
an interesting masking problem. Figure 1 shows the 
scatter plot, least-squares (LS) lines with and without 
outliers, and LMS line for this dataset. Figure 1 shows 
that four data points 11, 20, 30, and 34 are clearly apart 
from the bulk. Two other data points 7 and 9 follow the 
same direction as of the previous four. Four data points 
11, 20, 30, and 34 are reported as outlier in [4, 21]. Five 
data points 7, 11, 20, 30, and 34 are reported as outlier in 
[22]. Six data points 7, 9, 11, 20, 30, and 34 are reported 
as outliers in [23]. For this dataset we have arbitrarily 

used population size 100. The “number of outliers 
detected” versus “% of times outlier detected” for this 
dataset is shown in Figure 2. From Figure 2, we see that 
seven outliers are detected 2% of times, 15 outliers are 
detected 3% of times, and 23 outliers are detected 95% of 
times by 1=K . As 23 is exactly equal to 
⎣ ⎦ ⎣ ⎦2472 =N , we have not considered this set as 
potential outlier set, since the cardinality of the potential 
outlier set is less than ⎣ ⎦2N . We will use the same 
argument in the following experiments also. Six outliers 
are detected 93% of times by 2=K . Four outliers are 
detected 18% of times by . Each potential outlier 
set is detected by only one 

3=K
K  value, but the outlier set 

with six outliers is detected highest percentage of times 
(93% of times) by 2=K . Therefore, we have selected 
outlier set with six outliers (data points 7, 9, 11, 20, 30, 
and 34) as potential outliers for this dataset, which is also 
reported as outliers in [23]. However, data points 7 and 9 
are not detected as outliers in [4, 21] and data point 9 is 
not detected as outlier in [22] due to smearing and/or 
masking, but our QEA can detect them as outliers. This 
implies that our QEA overcomes the effects of smearing 
and masking. From Figure 1, we also see that the LS line 
for 41 data points without the six detected outliers (data 
points 7, 9, 11, 20, 30, and 34) and the LMS line of all 47 
data points are in the same direction. 

The second dataset we have experimented with is the 
Kootenary River Data from [21, 24], which has 13 data 
points. These data are measurements of water flow at two 

JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010 1783

© 2010 ACADEMY PUBLISHER



Libby

N
ew

ga
te

20 30 40 50 60 70

20
25

30

LS line

LS line without outlier

LMS line

4

Figure 3. Scatter plot, LS line with and without outlier, and LMS 
line for Kootenary River Data. 
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Figure 6. Outlier set identification in Belgium Data.

different points (Libby and Newgate) on the Kootenary 
River in January for the years 1931 to 1943. The 
independent predictor variable is the water flow at Libby 
point and the dependant response variable is water flow at 
Newgate point. Figure 3 shows the scatter plot, LS lines 
with and without outlier, and LMS line for this dataset. 
Data point 4 is reported as outlier in [21]. For this dataset 
we have arbitrarily used population size 100. The 
“number of outliers detected” versus “% of times outlier 
detected” for this dataset is shown in Figure 4. From 
Figure 4, we see that one outlier (data point 4) is detected 
100% of times by , which is also reported 
as outlier in [21]. Therefore, our QEA successfully 
detects the only known outlier. From Figure 3, we also 
see that the LS line for 12 data points without the one 
detected outlier (data point 4) and the LMS line of all 13 
data points are in the same direction. 

14,,4,3 L=K

The third dataset we have experimented with is the 
Belgium dataset from [21], which has 24 data points and 
shows the number of international phone calls (in tens of 
millions) from Belgium during 1950 to 1973. For this 
dataset, the last two digits of the year is the independent 
predictor variable and the number of calls is the 
dependent response variable. Figure 5 shows the scatter 
plot, LS lines with and without outliers, and LMS line for 
this dataset. Figure 5 shows that this time series data 
contains heavy contamination for data points 15 to 20 
(years 1964 to 1969). These data points are reported as 

outliers in [4, 21]. For this dataset we have arbitrarily 
used population size 100. The “number of outliers 
detected” versus “% of times outlier detected” for this 
dataset is shown in Figure 6. From Figure 6, we see that 
seven outliers are detected by six different K  values 
( 14,13,12,11,10,9=K ) and eight outliers are detected by 
four different K  values )8, . As outlier set 
with seven outliers (data points 15, 16, 17, 18, 19, 20, and 
21) is detected by m st 

 

o

( 7,6,5=K

K  values (six K  values), we 
have selected this set as potential outliers in this data set. 
Six data points (data points 15, 16, 17, 18, 19, 20) are 
reported as outliers in [4, 21] and are detected by our 
QEA. Moreover, data point 21 is also detected as outlier 
by our QEA. To test whether the data point 21 is a 
potential outlier, we have calculated e ; 

standard deviation of s, ; mean of e s, 

310.2
2
i

2
21 =

2
ie 193.0=sd

172.02 =e ; and 751.0=32 +e sd  for 18 data points 
(excluding data points 15, 16, 17, 18, 19, and 20), which 
shows that the square of the residual for the data point 21 
lies outside the normal distribution of the squares of the 
residuals. Therefore, the data point 21 is a potential 
outlier, which is detected by our QEA. However, the 
sequential outlier detection method could not detect this 
data point as outlier due to smearing and/or masking. 
From Figure 5, we also see that the LS line for 17 data 
points (excluding the detected outlier points 15, 16, 17, 
18, 19, 20, and 21) and the LMS line of all 24 data points 

1784 JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010

© 2010 ACADEMY PUBLISHER



Year

G
ro

w
th

 o
f P

ric
e

40 42 44 46 48

0
10

0
20

0
30

0

LS line

LS  line  without  outlier  &  LMS 8

9

Figure 7. Scatter plot, LS line with and without outliers, and LMS 
line for China Data. 
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Figure 8. Outlier set identification in China Data. 
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Figure 9. Scatter plot, LS line with and without outlier, and LMS 
line for Gesell Adaptive Score Data. 
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Figure 10. Outlier set identification in Gesell Adaptive Score Data. 
are the same, which is also in favor of the conclusion that 
data point 21 is a potential outlier. 

The fourth dataset we have experimented with is the 
China dataset from [21], which is a record of the annual 
rates of growth of average prices in the main free cities of 
free China from 1940 to 1948. The dataset has nine data 
points. The independent predictor variable is the last two 
digits of the year and the dependent response variable is 
the growth of price. Figure 7 shows the scatter plot, LS 
lines with and without outliers, and LMS line for this 
dataset. The data points 8 and 9 are reported as outliers in 
[4, 21]. For this dataset we have arbitrarily used 
population size 100. The “number of outliers detected” 
versus “% of times outlier detected” for this dataset is 
shown in Figure 8. From Figure 8, we see that two 
outliers are detected 100% of times by 14 different K  
values ( ), and one outlier is detected 100% 
of times by three different 

25,,12 L=K
K  values ( ).  As 

outlier set with two outliers (data points 8 and 9) is 
detected by most 

28,27,26=K

K  values (14 different K  values), we 
have selected this set as potential outliers in this data set. 
Thus, our QEA successfully detects all known outliers for 
this data set. From Figure 7, we see that the LS line for 
seven data points (excluding the detected outlier points 8 
and 9) and the LMS line of all nine data points are the 
same. 

The fifth dataset we have experimented with is the 
Gesell Adaptive Score dataset from [21]. The dataset has 
21 data points. The independent predictor variable is the 

age (in months) at which a children utters its first words 
and the dependent response variable is its Gesell adaptive 
score. Figure 9 shows the scatter plot, LS lines with and 
without outlier, and LMS line for this dataset. The data 
point 19 is reported as outliers in [21, 25]. For this dataset 
we have arbitrarily used population size 100. The 
“number of outliers detected” versus “% of times outlier 
detected” for this dataset is shown in Figure 10. From 
Figure 10, we see that one outlier (data point 19) is 
detected 5% of times by 2=K  and the same outlier is 
detected 100% of times by .  Therefore, we have 
selected data point 19 as potential outlier in this data set. 
Thus, our QEA successfully detected the only known 
outlier for this data set. From Figure 9, we see that the LS 
line for 20 data points (excluding the detected outlier data 
point 19) and the LMS line of all 21 data points are in the 
same direction. 

3=K

The sixth dataset we have experimented with is the 
Brain dataset from [21], which contrasts body weight (in 
kilograms) against the brain weight (in grams) of 28 
different animal species. The independent predictor 
variable is the body weight and the dependent response 
variable is the brain weight. Figure 11 shows the scatter 
plot, LS lines with and without outliers, and LMS line for 
this dataset. The data points 6, 16, and 25 are reported as 
outliers in [4, 21]. For this dataset we have arbitrarily 
used population size 100. The “number of outliers 
detected” versus “% of times outlier detected” for this 
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Figure 11. Scatter plot, LS line with and without outliers, and LMS 
line for Brain Data. 
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Figure 12. Outlier set identification in Brain Data.
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Figure 13. Outlier set identification in Aircraft Data. 
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Figure 14. Outlier set identification in Modified Wood Specific 
Gravity Data. 

dataset is shown in Figure 12. From Figure 12, we see 
that two outliers are detected by seven different K  
values ( ), three outliers are detected by two 
different 

13,,7 L=K
K  values ( ), five outliers are detected 

by nine different 
6,5=K

K  values ( ), six outliers 
are detected by one 

13,,5 L=K
K  value ( 4=K ), seven outliers are 

detected by one K  value ( ), and 11 outliers are 
detected by three different 

3=K
K  values ( ). The 

outlier set with five outliers (data points 6, 7, 14, 16, 25) 
is detected by most (nine) 

6,5,4=K

K  values and we have taken 
this outlier set as potential outlier set. The three data 
points 6, 16, and 25 are reported as outliers in [4, 21] and 
are also detected by our QEA. Besides these three known 
outliers, our QEA has detected two more data points (data 
points 7 and 14) as outliers. To test whether the data 
points 7 and 17 are potential outliers, we have calculated 

; ; standard deviation 

of s, ; mean of s, 

4038227.59 2
14e

270894.4=sd

2
7 =e

2
ie

1145544.56
2
ie

=

82.2492222 =e ; 

and 02.10619063 =+ sd2e  for 25 data points (excluding 
data points 6, 16, and 25), which shows that the square of 
the residual for the data points 7 and 14 lie outside the 
normal distribution of the squares of the residuals. 
Therefore, the data points 7 and 14 are potential outliers, 
which are detected by our QEA. However, the sequential 
outlier detection method could not detect these data 
points as outliers due to smearing and/or masking. This 

implies that our QEA overcomes the effects of smearing 

and masking. From Figure 11, we also see that the LS 
line for 23 data points without the five detected outliers 
(data points 6, 7, 14, 16, and 25) and the LMS line of all 
28 data points are in the same direction. 

The seventh dataset we have experimented with is the 
Aircraft dataset from [21], which has 23 data points. The 
four independent predictor variables are aspect ratio, lift-
to-drag ratio, weight of the aircraft (in pound), and the 
maximum thrust. The dependent response variable is the 
cost. As the dimension of the data set is five, we cannot 
draw the scatter plot, LS lines with and without outliers, 
and LMS line for this dataset. However, the data points 
16 and 22 are reported as outliers in [26]. For this dataset 
we have arbitrarily used population size 5. The “number 
of outliers detected” versus “% of times outlier detected” 
for this dataset is shown in Figure 13. From Figure 13, we 
see that one outlier is detected by one K  value ( 5=K ), 
and two outliers are detected by three K  values 
( 4,3,2=K ). The outlier set with two outliers (data points 
16 and 22) is detected by most (three) K  values and we 
have taken this outlier set as potential outlier set. 
Therefore, our QEA has successfully detected the known 
outlier set for this dataset. 

The eighth dataset we have experimented with is the 
Modified Wood Specific Gravity dataset from [21], which 
has 20 data points. The five independent predictor 
variables are anatomical factors and the dependent 
response variable is the wood specific gravity. As the 
dimension of the dataset is six, we cannot draw the scatter 
plot, LS lines with and without outliers, and LMS line for 
this dataset. However, the data points 4, 6, 8, and 19 are 
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reported as outliers in [21]. For this dataset we have 
arbitrarily used population size 5. The “number of 
outliers detected” versus “% of times outlier detected” for 
this dataset is shown in Figure 14. From Figure 14, we 
see that one outlier is detected by one K  value ( 6=K ), 
four outliers are detected by six different K  values 
( ), six outliers are detected by one 9,,4 L=K K  value 
( ), and nine outliers are detected by two different 6=K
K  values ( ). The outlier set with four outliers 
(data points 4, 6, 8, and 19) is detected by most (six) 

5,3=K
K  

values and we have taken this outlier set as potential 
outlier set. Therefore, our QEA has successfully detected 
the known outlier set for this dataset. 
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Figure 15. Outlier set identification in Stackloss Data. 
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Figure 16. Outlier set identification in Scottish Hills Races Data. 

The ninth dataset we have experimented with is the 
Stackloss dataset from [21], which has 21 data points that 
describe the operation of a plant for the oxidation of 
ammonia to nitric acid. The three independent predictor 
variables are rate of production, temperature, and acid 
concentration. The dependent response variable is the 
stackloss. As the dimension of the data set is four, we 
cannot draw the scatter plot, LS lines with and without 
outliers, and LMS line for this dataset. However, the data 
points 1, 3, 4, and 21 are reported as outliers in [21]. For 
this dataset we have arbitrarily used population size 5. 
The “number of outliers detected” versus “% of times 
outlier detected” for this dataset is shown in Figure 15. 
From Figure 15, we see that one outlier is detected 2% of 
times by 4=K  and 2% of times by , two outliers 
are detected by one 

6=K
K  value ( ), four outliers are 

detected 24% of times by 
3=K

4=K  and 13% of times by 
, five outliers are detected by one 5=K K  value 

( ), and eight outliers are detected by one 3=K K  value 
( ). Though outlier sets with one outlier and four 
outliers are detected by two 

6=K
K  values, the outlier set 

with four outliers is detected more times (37% of times) 
than outlier set with one outlier (4% of times). Therefore, 
we have taken outlier set with four outliers (data points 1, 
3, 4, and 21) as potential outlier set. Thus, our QEA has 
successfully detected the known outlier set for this 
dataset. 

The tenth dataset we have experimented with is the 
Scottish Hills Races dataset from [19], which is a record 
of 35 races in Scotland in 1984. The two independent 
predictor variables are the distance (in miles) and the 
climb (in feet). The dependent response variable is the 
record time (in seconds). As the dimension of the data set 
is three, we cannot draw the scatter plot, LS lines with 
and without outliers, and LMS line for this dataset. 
However, the data points 7, 18, and 33 are reported as 
outliers in [2, 11, 19]. For this dataset we have arbitrarily 
used population size 100. The “number of outliers 
detected” versus “% of times outlier detected” for this 
dataset is shown in Figure 16. From Figure 16, we see 
that one outlier is detected by three different K  values 
( ), two outliers are detected by two different 10,9,8=K
K  values ( ), and three outliers are detected by 
four different 

7,6=K
K  values ( ). As the outlier set 

with three data points (data points 7, 18, 33) is detected 
by most (four) 

5,4,3,2=K

K  values, we have taken this outlier set as 

the potential outlier set. Thus, our QEA has successfully 
detected the known outlier set for this dataset. 

V.  CONCLUSIONS 

Quantum-inspired evolutionary algorithm (QEA) for 
multiple-case outlier detection in multiple linear 
regression model is presented here. Experimental results 
with 10 well-referred datasets with two to six 
independent predictor variables and one dependent 
response variable from statistical literature [19, 21] show 
that the proposed QEA has detected all outliers 
previously detected using sequential outlier detection 
methods. Moreover, for two datasets with one 
independent predictor variable (Belgium dataset and 
Brain dataset), the QEA also has detected some more 
potential outliers that were not detected by sequential 
outlier detection methods due to smearing and/or 
masking. From this observation, we can conclude that the 
proposed QEA is completely able to avoid the potential 
problems of smearing and masking. 

Multiple-case outlier detection is combinatorial in 
nature and requires testing of  subsets of data 
points as potential outliers, where  is the number of 
data points. For this practical limitation, multiple-case 
outlier detection is not used for large datasets. The superb 
performance of QEA for multiple-case outlier detection 
in multiple linear regression model will allow us to 
handle this practical limitation of large dataset very 
effectively.  
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