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Abstract—In recent years, privacy protection has become 
an important topic when cooperative computation is 
performed in distributed environments. This paper puts 
forward efficient protocols for computing the 
multi-dimensional aggregates in distributed environments 
while keeping privacy preserving. We propose a novel 
model, which contains two crucial stages: local computation 
and cooperative computation based on secure multiparty 
computation protocols for privacy-preserving on-line 
analytical processing. According to the new model, we 
develop approaches to privacy-preserving count aggregate 
query over both horizontally partitioned data and vertically 
partitioned data. We, meanwhile, propose an efficient 
sub-protocol Two-Round Secure Sum Protocol. Theoretical 
analysis indicates that our solutions are secure and the 
answers are exactly accurate, that is, they can securely 
obtain the exact answer to aggregate query without 
revealing anything about their confidential data to each 
other. We also analyze detailedly the communication cost 
and computation complexity of our schemes in the paper 
and it shows that the new solutions have good linear 
complexity. No privacy loss and exact accuracy are two 
main significant advantages of our new schemes. 

Index Terms—Privacy, OLAP, Homomorphic Encryption, 
Secure Multiparty Computation, Scalar Product Protocol 

I. INTRODUCTION 

On-line analytical processing (denoted as OLAP) is a 
significant data analysis technology. In recent years, 
OLAP encounters a new problem that it is now required 
to developed methods to protect the confidential 
information of individuals when the computation of 
multi-dimensional aggregates is performed in distributed 
environments. Privacy preserving OLAP (denoted as 
PPOLAP) devotes to designing secure distributed OLAP 
model and developing privacy protection approaches to 
concrete aggregate query. Agrawal et al. [1] first propose 
the problem of PPOLAP in a distributed scene and define 
a model for privacy-preserving computation of 
multidimensional count aggregates over data partitioned 
across multiple clients using the randomization approach. 
However, the model is not practical, because that its 
process was extremely complex and the scheme [1] is 
only able to return the inaccurate answers. Thus, more 
efficient methods should be developed for the special 
problems of PPOLAP. 

The purpose of Secure Multi-party Computation 
(denoted as SMC) [2-3] is to allow a group of 
participants to carry out cooperative computations over 
their private inputs in a special way that each participant 
knows the multi-party cooperative computations’ result, 
but nobody learns more other than what could be derived 
from his outputs of the cooperative computations. Yao [2] 
introduces the notion of SMC in 1982. Since then, it has 
been a hot research topic and attracts numerous 
researchers [2-13]. Basic SMC protocols can be used to 
construct far more complicated privacy preserving 
protocols to solve special practical questions, including 
privacy preserving data mining [14-15], privacy 
preserving social networks [16], privacy-preserving 
computation geometry [7-8], etc. 

In this paper, we investigate how to achieve PPOLAP 
using the methods of SMC and propose a novel model 
for aggregate queries over distributed data in 
privacy-preserving manner. Based on homomorphous 
encryption system [17] and scalar product protocol [4-6], 
we propose two efficient schemes for PPOLAP following 
the new model, which are respectively application in two 
kinds of different distributed data structure, horizontally 
partitioned data and vertically partitioned data. 
Furthermore, we derive theoretical formulas to analyze 
the security and performance of the two schemes. It 
shows that our privacy preserving solutions are secure 
and the communication overheads and computation cost 
are reasonable. Another significant advantage of the new 
schemes is that they will return the accurate result to 
aggregate query instead of its maximum likelihood 
estimator which is the answer in Agrawal’s model [1]. 

Our main contributions in this paper are: 
(1) We define a model for privacy-preserving 

computation of multidimensional count aggregates based 
on SMC; 

(2) We propose a novel secure sum protocol: 
Two-Round Secure Sum Protocol (denoted as TSSP), 
which is quite secure to against underlying collusion; 

(3) We present two efficient schemes for PPOLAP 
following the new model, which are respectively 
application in two kinds of different distributed data 
structure, horizontally partitioned data and vertically 
partitioned data, and we detailedly analyze the security 
and performance of the two new schemes. 
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The rest of this paper is organized as follows. In 
Section 2, we discuss some related work and give 
necessary preliminaries. The privacy preserving count 
aggregate query scheme on horizontally partitioned data 
and Two-Round Secure Sum Protocol are presented in 
section 3. Section 4 proposes a privacy preserving 
solution to count aggregate query on vertically 
partitioned data. We conclude our work and present 
directions for future research in section 5. 

II. RELATED WORK AND PRELIMINARIES 

The related work and some essential preliminaries are 
introduced in the following content. 

A. Privacy preserving OLAP 
Agrawal et al. [1] first propose the problem of 

PPOLAP in a distributed scene and define a model for 
privacy preserving computation of multidimensional 
count aggregate query on data partitioned across multiple 
clients using the randomization approach, where each 
client contributes perturbed private data to a central 
server, and then the server evaluates the answers to initial 
aggregate queries on global tables against perturbed 
tables by reconstructing original distributions. However, 
the model in [1] using randomization approach has some 
drawbacks. The following are several of them: 

(1) It can’t return the accurate result to aggregate query 
but just obtains a maximum likelihood estimator of 
the exact value. 

(2) The reconstruction is extremely complex and 
executes many matrix manipulations which are 
expensive in computation overhead. 

(3) The randomization approach only ensures 
low-lever privacy [1]. 

(4) Some private data of the clients will be revealed 
even though other party doesn’t know which parts 
are genuine and which are fictitious. 

(5) There is a central server in the model, and all 
clients send perturbed data to the server; as a result, 
the server may become a bottle-neck and 
confidential information of clients will suffer huge 
leakage when a malicious attacker gains access to 
the server. 

(6) Since each client transports their perturbed data to 
the central server, the amount of communication 
between server and clients is great large. 

For the reasons above, Agrawal’s model [1] is not 
suitable for practical applications. More efficient 
methods should be developed for the problems of 
PPOLAP. 

We investigate PPOLAP and propose a new-type 
model (displayed in Figure 1) using SMC protocols to 
facilitate it. In our new model, each aggregate query on 
global data is broken down into some secondary queries 
for every client; a client performs local computation on 
his private sub-database. The results of local 
computation will act as the private inputs of SMC 
protocols to compute accurate answer to original global 
aggregate query in privacy-preserving and cooperative 
way. At last, SMC protocols securely output the exact 

answer to primordial aggregate query on global data.  
According to the model in Figure 1, we propose two 

approaches to response the privacy-preserving problems 
in OLAP, which respectively have application in 
different distributed data structures. We put forward 
privacy preserving solution to count aggregate query on 
horizontally partitioned data in section 3; communication 
overheads and computation complexity of each client in 
our schemes is O(1)O(1), therefore, the total communication 
overheads and computation complexity is O(h)O(h) where 
hh denotes the number of participant clients. Then section 
4 bends to privacy-preserving count aggregate query on 
vertically partitioned data; cost of each client is O(n)O(n) 
where nn denotes the size of global database records. 
Theoretical analysis gives sufficient evidence of security 
and correctness of our schemes. 

 
 Figure 1. The PPOLAP model based on SMC protocols 

B. Homomorphic Encryption 
A public key encryption scheme (E; D)(E; D), where EE  

and DD are polynomial-time algorithms for encryption 
and decryption respectively, is homomorphic when it 
meets the following condition 

D(E(m1)£ E(m2)) = m1 + m2D(E(m1)£ E(m2)) = m1 + m2. 
That is E(m1)£ E(m2) $ E(m1 + m2)E(m1)£ E(m2) $ E(m1 + m2), where $$ 

denotes that they hide the same plaintext item. As a result, 
we can employ homomorphic cryptosystem to compute 
E(x + y)E(x + y) from E(x)E(x) and E(y)E(y) such that the secret 
numbers xx  and yy  aren’t disclosed. Pallier [17] 
proposed a semantically secure (IND-CPA secure) 
homomorphic encryption system. Another significant 
feature of Pallier’s homomorphic encryption system is 
that it doesn’t encrypt a plaintext unit into a same 
ciphertext item everytime. If EE  is the encryption 
function which has two inputs a secret message mm and a 
random parameter rr, for an arbitrary secret message mm, 
we have E(m; r1) 6= E(m; r2) (r1 6= r2)E(m; r1) 6= E(m; r2) (r1 6= r2). However, the 
decryption doesn’t depend on the random parameter at 
all and D(E(m; r1)) ´ D(E(m; r2)) ´ mD(E(m; r1)) ´ D(E(m; r2)) ´ m  where DD 
is the corresponding decrypt function. The encryption 
scheme that satisfies the above property is called a 
probabilistic encryption scheme which was first 
introduced in [18]. We briefly describe Pallier’s 
cryptosystem as follows. See [17] for more details. 

Key generation: Select two large enough primes pp 
and qq . Then the secret private key sksk  is 
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¸ = lcm(p¡ 1; q ¡ 1)¸ = lcm(p¡ 1; q ¡ 1)  which is the least common 
multiple of p ¡ 1p ¡ 1 and q ¡ 1q ¡ 1. The public key pkpk is 
(n; g)(n; g) , where n = pqn = pq  and g 2 Z¤

n2g 2 Z¤
n2  such that 

gcd(L(g¸ mod n2); n) = 1gcd(L(g¸ mod n2); n) = 1 , that is, the maximal 
common divisor of L(g¸ mod n2)L(g¸ mod n2)  and nn  is 
equivalent to 11  where L(x) = (x¡ 1)=nL(x) = (x¡ 1)=n  and the 
same below. 
Encryption: Let m 2 Znm 2 Zn be the plaintext. Select a 
random number r 2 Znr 2 Zn as the secret parameter for 
probabilistic encryption. Then the cryptograph cc of 
mm is c = gmrn mod n2c = gmrn mod n2. 
Decryption: Let c 2 Zn2c 2 Zn2 be a ciphertext. Then the 
plaintext mm hidden in cc is 

m =
L(c¸ mod n2)

L(g¸ mod n2)
mod nm =

L(c¸ mod n2)

L(g¸ mod n2)
mod n. 

The homomorphic encryption system tersely described 
above is an important tool to be employed in our latter 
work. 

 
Figure 2. Scalar Product Protocol [4] 

C. Scalar Product Protocol 
Given two vectors a = (a1; a2; :::; an)a = (a1; a2; :::; an)  and 

b = (b1; b2; :::; bn)b = (b1; b2; :::; bn), their scalar product, which is also 
called dot product or inner product, is a ¢ b =

Pn
i=1 aibia ¢ b =

Pn
i=1 aibi. 

Scalar product protocol has been proposed in [4-6]. 
When Alice has the vector aa in private and Bob owns 
the other secret vector bb, the objective of scalar product 
protocol is to securely compute the inner product of two 
private vectors held by them. That is to say, scalar 
product protocol permit them to obtain the dot product of 
their private vectors such that neither party learns 
anything about partner’s secret data apart from what is 
inferred from the scalar product and his own vector. At 
the end of scalar product protocol, Alice gets her secret 
output uu and Bob obtains the private number vv, which 
meet the equation u = a ¢ b + vu = a ¢ b + v. 

Scalar product protocol is one of significant members 
in SMC toolkit, and lots of problems can essentially be 
reduced to computing scalar product [4-6, 19]. While aa 
and bb  are binary vectors (namely 
ai; bi 2 f0; 1g; i = 1; 2; :::; nai; bi 2 f0; 1g; i = 1; 2; :::; n ), we call scalar product 
protocol that privately computes a ¢ ba ¢ b as binary scalar 
product protocol. R. N. Wright and Z. Yang [5] has 
presented an efficient secure binary scalar product 
protocol based on homomorphic encryption. In section 4, 
we will make use of binary scalar product protocol [5], 
which is illustrated in Figure 2, to privately evaluate 
count aggregate query on heterogeneous data. 

D. Security Definition 
Many SMC protocols [2-14] are under the semi-honest 

model. In the paper, we assume that all participants are 
semi-honest [3], which is also called honest-but-curious, 
who exactly follow the steps of the protocols and keep a 
record of all the intermediate results he receives to infer 
some potentially confidential information contained in 
them. The formal security definition in the semi-honest 
model has been presented in [3]. Generally speaking, a 
SMC protocol is secure if and only if all the data that 
each participant has or receives during an execution 
could be deduced from his private input and confidential 
output. In fact, our approach over horizontally distributed 
data is stronger than the semi-honest model in some 
sense (see section 3). 

A1 A2 ... Am

1 a11 a12 ... a1m

2 a21 a22 ... a2m

... ::: ... ... ...

n an1 an2 ... anm

A1 A2 ... Am

1 a11 a12 ... a1m

2 a21 a22 ... a2m

... ::: ... ... ...

n an1 an2 ... anm

 

Figure 3. The global table SS  

E. Problem Definition 
There is a relation table S(A1; A2; :::; Am)S(A1; A2; :::; Am) shown in 

Figure 3. The table SS  has mm attributes A1; A2; :::; AmA1; A2; :::; Am 
and nn rows. In our setting, each client only privately 
owns some rows or a few columns of the global table SS . 
They have an intention of carrying out aggregate query 
on the table SS  by means of cooperation and none of 
private data is leaked simultaneously, i.e., a client gains 
nothing but the result of aggregate query and what could 
be deduced from the answer to query. In this paper, we 
develop approaches to privately perform count aggregate 
query like as the following form on both homogeneous 
data and heterogeneous data according to the PPOLAP 
model based on SMC protocols in a decentralized, 
distributed environments. 

select count(¤)

from S

where P1 and P2 and ::: and Pc

select count(¤)

from S

where P1 and P2 and ::: and Pc 
Here PiPi (i = 1; 2; :::; c)(i = 1; 2; :::; c) is the condition for selecting. 

We propose privacy preserving solution to count 
aggregate query as the form above on horizontally 
partitioned data in section 3, then section 4 bends to 
privacy-preserving count aggregate query on vertically 
partitioned data. 
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III. PRIVACY PRESERVING AGGREGATE QUERY OF 
OLAP ON HORIZONTALLY PARTITIONED DATA 

Horizontally partitioned data is also referred to 
homogeneous data where each client holds a subset of 
the rows in the table SS  including mm attribute values. 
Figure 4 illustrates a horizontally distributed data 
partitioning over two clients, where the table SS  is 
divided into double data blocks and each data block has 
all the mm attribute values. 

A1 A2 ... Am

1 a11 a12 ... a1m

2 a21 a22 ... a2m

... ::: ... ... ...

k ak1 ak2 ... akm

A1 A2 ... Am

1 a11 a12 ... a1m

2 a21 a22 ... a2m

... ::: ... ... ...

k ak1 ak2 ... akm

 

(1) Client 1(1) Client 1 

 

A1 A2 ... Am

k + 1 ak+1;1 ak+1;2 ... ak+1;m

k + 2 ak+2;1 ak+2;2 ... ak+2;m

... ::: ... ... ...

n an1 an2 ... anm

A1 A2 ... Am

k + 1 ak+1;1 ak+1;2 ... ak+1;m

k + 2 ak+2;1 ak+2;2 ... ak+2;m

... ::: ... ... ...

n an1 an2 ... anm

 

(2) Client 2(2) Client 2 

 Figure 4. Horizontally Partitioned Data (1 6 k < n)(1 6 k < n) 

In this section, we describe how to securely evaluate 
count aggregate query on horizontally partitioned data. 
It’s set that the table SS  is horizontally distributed 
between hh  (h > 3)(h > 3) individual clients C1; C2; :::; ChC1; C2; :::; Ch 
where CiCi (1 6 i 6 h)(1 6 i 6 h) possesses a private sub-table SiSi 
including mm  attribute values and S =

Sh
i=1 SiS =

Sh
i=1 Si , 

Si \ Sj = ;Si \ Sj = ;(i 6= j;(i 6= j;1 6 i; j 6 h)1 6 i; j 6 h). They want to jointly 
conduct count aggregate query on the union of all their 
private data sets without disclosing any private data to 
anybody else including other participators.  

To find out the result of count aggregate query on the 
global table SS , C1; C2; :::; ChC1; C2; :::; Ch together implement the 
following two stages. 

1. Local Computation: CiCi (i = 1; 2; :::; h)(i = 1; 2; :::; h) carries out 
the sub-query on its local private sub-table SiSi as 
follows. 

select count(¤)

from Si

where P1 and P2 and ::: and Pc

select count(¤)

from Si

where P1 and P2 and ::: and Pc 
We denote the return value of the above SQLSQL 

statement as nini. 
2. Cooperative Computation: C1; C2; :::; ChC1; C2; :::; Ch 

cooperate to privately compute the sum 
Ph

i=1 ni

Ph
i=1 ni 

by performing Two-Round Secure Sum Protocol. 
 

Two-Round Secure Sum Protocol 
  The goal of Two-Round Secure Sum Protocol 
(denoted as TSSP) is to deal with the following problem 
that hh  (h > 3)(h > 3) individual clients C1; C2; :::; ChC1; C2; :::; Ch  hold 
secret private numbers n1; n2; :::; nhn1; n2; :::; nh  separately and 
they intend to find out the sum 

Ph
i=1 ni

Ph
i=1 ni while each 

party obtains nothing about other client’s private 
information. 

 

C2

Ch

C3

...

Ch-1

C1

 
(a) First Round 

 
(b) Second Round 

Figure 5. Two Different Ring Topologies, gg  and ff  are respectively 
the largest odd number and even integer in the closed interval [1; h][1; h]. 

Highlight of TSSP: In the protocol, there are two 
rounds to securely compute the sum. In the first round, 
each client obtains a secret random digit to obscure his 
private number. They alter the order of transmitting 
messages in the second round to reduce the information 
loss caused by underlying collusion and the sum will 
safely be found out after the second round. In the first 
round, C1C1 randomly generates a key pair (pk1; sk1)(pk1; sk1) of 
Pallier’s homomorphic cryptosystem (see section 2.2) 
and a large integer m numm num which is much greater than 
the total number of records in the table SS . Then C1C1 
sends C2C2 the encryption of a random natural number rr; 
C2C2  randomly selects a private numeric parameter r2r2 
which will be used to mask its confidential number n2n2 
in the second round and computes 
Epk1

(r + r2) = Epk1
(r)£ Epk1

(r2)Epk1
(r + r2) = Epk1

(r)£ Epk1
(r2)  which is sent to 

C3C3 . ChCh  recursively obtains Epk1
(r +

Ph
k=2 ri)Epk1

(r +
Ph

k=2 ri) along 
the ring illustrated in Figure 5(a) and sends it to C1C1. At 
last, C1C1 decrypts Epk1

(r +
Ph

k=2 ri)Epk1
(r +

Ph
k=2 ri) and sets 

r1 = m num¡ (

hX
k=2

ri) (mod m num)r1 = m num¡ (

hX
k=2

ri) (mod m num), 

such that 0 ´ (
Ph

k=1 ri)(mod m num)0 ´ (
Ph

k=1 ri)(mod m num) holds. 
Therefore, each client retains a random integer which 

is called digital envelope in [14] to hide its private 
number, the return value of local sub-query, in the next 
round. Assume gg and ff  are respectively the maximal 
odd integer and the largest even number in the closed 
interval [1; h][1; h]. It is quite clear that 

g = h; f = h¡ 1 if h is odd integerg = h; f = h¡ 1 if h is odd integer; 
g = h¡ 1; f = h if h is even integerg = h¡ 1; f = h if h is even integer. 

The client C2C2 generates another key pair (pk2; sk2)(pk2; sk2) 
of homomorphic encryption system in the second round. 
Then, they implement the following circle where the 

Start / Termination 
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order of transmitting messages is demonstrated in Figure 
5(b). C2C2  encrypts s + r2 + n2s + r2 + n2  where ss  is a random 
integral value selected and held by C2C2 and transmits 
Epk2

(s + r2 + n2)Epk2
(s + r2 + n2) to its immediate successor C4C4; then 

C4C4 computes Epk2
(s + r2 + r4 + n2 + n4)Epk2
(s + r2 + r4 + n2 + n4)

= Epk2
(s + r2 + n2)£ Epk2

(r4 + n4)= Epk2
(s + r2 + n2)£ Epk2

(r4 + n4) and sends it to 
C6C6. It is repeated on the ring shown in Figure 5(b) until 
C2C2 receives Epk2

(s +
Ph

k=1 ri +
Ph

k=1 ni)Epk2
(s +

Ph
k=1 ri +

Ph
k=1 ni) from CgCg. 

Finally, C2C2  decrypts it, then obtains 
Ph

i=1 ni

Ph
i=1 ni  by 

subtracting the extra value ss and modulo m numm num and 
broadcasts the exact sum. 
The Correctness Analysis of TSSP: To explain the 
equation sum =

Ph
t=1 ntsum =

Ph
t=1 nt  is correct, the proof is 

displayed as below. 
In the step 5 of TSSP, it is quite clear that 

yi = Epk2
(s + n2 + n4 + ::: + ni + r2 + r4 + ::: + ri)yi = Epk2
(s + n2 + n4 + ::: + ni + r2 + r4 + ::: + ri). 

Therefore, yg = Epk2
(s +

Ph
t=1 nt +

Ph
t=1 rt)yg = Epk2

(s +
Ph

t=1 nt +
Ph

t=1 rt) 
holds in the step 8 of TSSP. 

Then, 
sum = (Dsk2

(yg)¡ s) (mod m num)sum = (Dsk2
(yg)¡ s) (mod m num)

 
  = (

hX
t=1

nt +

hX
t=1

rt) (mod m num)= (

hX
t=1

nt +

hX
t=1

rt) (mod m num). 

In the step 4 of TSSP, C1C1 sets 
r1 = max num¡Dsk1

(zh) + r (mod m num)r1 = max num¡Dsk1
(zh) + r (mod m num). 

Thereby, r1 + Dsk1
(zh) ´ r (mod m num)r1 + Dsk1
(zh) ´ r (mod m num). 

Since zh = Epk1
(r +

Ph
t=2 rt)zh = Epk1

(r +
Ph

t=2 rt), thus, 
hX

t=1

rt ´ 0 (mod m num)

hX
t=1

rt ´ 0 (mod m num). 

  Therefore, sum =
Ph

t=1 ntsum =
Ph

t=1 nt holds while every client 
correctly obeys the protocol. 
The Security Analysis of TSSP: When each client is 
semi-honest, that is, they strictly follow the protocol and 
no clients collude, a single client can’t find out any other 
client’s private data since each number is masked and 
messages in the first round and second round are 
encrypted by different public key. We present the 
security analysis of TSSP while potential collusion 
occurs in the sub-section below. In the process of TSSP, 
C1C1  and C2C2  hold larger amount of information than 
other clients. Specifically speaking, C1C1  has sk1sk1  and 
m numm num; C2C2 holds sk2sk2, m numm num and ss. 

Given that CjCj is corrupted, to figure out private data 
nini of client CiCi, the malignant client CjCj has to obtain 
sk1sk1, sk2sk2 and collude with the immediate predecessor 
and immediate successor of client CiCi in first round and 
second round. There are two cases as below. 

1) CiCi is one of C1C1 and C2C2. It’s impossible for CjCj 
to determine nini  because CiCi  privately holds sk1sk1  or 
sk2sk2;  

2) CiCi  is one of C3; C4; :::; ChC3; C4; :::; Ch . CjCj  could collude 
with C1C1  (for sk1sk1 ), C2C2  (for sk2sk2 ), the immediate 
predecessor and immediate successor of client CiCi  in 
first round (for riri) and second round (for ri + niri + ni) to 
work out nini. Then CjCj has to collude with other 2 (at 

least) to 4 (at most) clients except C1C1 and C2C2 to derive 
the private number nini of CiCi. Therefore, our scheme has 
 
Two-Round Secure Sum Protocol (denoted as TSSP)
Require: There are h(h > 3)h(h > 3)  clients C1; C2; :::; ChC1; C2; :::; Ch , 
and Ci(i = 1; 2; :::; h)Ci(i = 1; 2; :::; h) has a private integer nini. They 
intend to securely calculate the sum 

Ph
i=1 ni

Ph
i=1 ni and no 

confidential number is revealed at the same time. 
Given m numm num, privately owned by C1C1 and C2C2, is a big 
enough integer which is much larger than 

Ph
i=1 ni

Ph
i=1 ni. We 

assume that gg denotes the largest odd number in the 
closed interval [1; h][1; h] and ff  denotes the maximal even 
integer in the closed interval [1; h][1; h]. 
Process: 
// First Round 
Step1: C1C1 generates a cryptographic key pair (pk1; sk1)(pk1; sk1) 

of a semantically secure homomorphic encryption 
system (see section 2.2) and creates a random 
number rr. He sends public key pk1pk1 to all the 
participants. Then, he computes z1 = Epk1

(r)z1 = Epk1
(r) 

and sends z1z1 to C2C2. 
Step2: for i = 2; 3; :::; h¡ 1for i = 2; 3; :::; h¡ 1 
          CiCi selects a private random number riri and 

computes zi = zi¡1 £ Epk1
(ri)zi = zi¡1 £ Epk1
(ri), namely, 

zi = Epk1
(r +

iX
j=2

rj)zi = Epk1
(r +

iX
j=2

rj). 

Send zizi to Ci+1Ci+1. 
      endforendfor 
Step3: ChCh generates a private stochastic natural number 

rhrh and computes zh = zh¡1 £Epk1
(rh)zh = zh¡1 £Epk1
(rh). Send 

zhzh to C1C1. 
Step4: C1C1  decrypts zhzh . Then he sets 

r1 = max num¡Dsk1
(zh) + r (mod m num)r1 = max num¡Dsk1
(zh) + r (mod m num)

 and keeps r1r1 secret. 

//Second Round 
Step5: C2C2 generates another public and private key pair 

(pk2; sk2)(pk2; sk2) of Pallier’s homomorphic encryption 
scheme and sends public key pk2pk2  to other 
parties. Then he selects a secret random 
parameter ss and sets y0 = Epk2

(s)y0 = Epk2
(s). //initialize y0y0

for i = 2; 4; :::; f ¡ 2for i = 2; 4; :::; f ¡ 2 
CiCi calculates yi = yi¡2 £ Epk2

(ni + ri)yi = yi¡2 £ Epk2
(ni + ri). 

Send yiyi to Ci+2Ci+2. 
endforendfor 

Step6: CfCf  evaluates yf = yf¡2 £Epk2
(nf + rf )yf = yf¡2 £Epk2
(nf + rf )  and 

sends y¡1 = yfy¡1 = yf  to C1C1. 
Step7: for i = 1; 3; 5; :::; g ¡ 2for i = 1; 3; 5; :::; g ¡ 2 
         CiCi  computes yi = yi¡2 £ Epk2

(ni + ri)yi = yi¡2 £ Epk2
(ni + ri) 

and sends yiyi to Ci+2Ci+2. 
      endforendfor 
Step8: CgCg  evaluates yg = yg¡2 £ Epk2

(ng + rg)yg = yg¡2 £ Epk2
(ng + rg)  and 

sends ygyg to C2C2. 
Step9: C2C2  computes sum = (Dsk2

(yg)¡ s)sum = (Dsk2
(yg)¡ s) 

=
Ph

t=1 nt (mod m num)=
Ph

t=1 nt (mod m num) and broadcasts 
sumsum to C1; C3; C4; :::; ChC1; C3; C4; :::; Ch. 
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strong capability of prevent the disclosure of privacy. For 
one thing, it’s hard to persuade 4 to 6 coconspirators 
because of high cost and high risk; for another, a 
malicious client can’t learn other clients’ private data 
while C1C1 or C2C2 does not collude with CjCj. Besides, we 
can adopt measures below in the real world to implicitly 
preclude collusion. 

(A) Set two adversaries as C1C1 and C2C2  respectively, 
such that they will not be corrupted simultaneously. 

(B) Let a client with high credibility be C1C1 or C2C2, 
then he holds high loyalty to refuse collusion with any 
corrupted party. 

(C) Breaking rules and losing reputation will be 
severely punished, which will hold back potential 
collusion to a great extent. 
Figure 6 indicates that the average number of clients 

needed to collude with in order to  slinkingly infer the 
private data of CiCi increases with the total number of 
clients and nearly runs up to 88 when the total number of 
clients is larger than 2020; the lower bound of number of 
clients needed to collude with is 44  (while the total 
clients are more than 55 clients) or h¡ 1h¡ 1 (when there 
are hh  (h = 3; 4)(h = 3; 4)  clients in total). Therefore, TSSP, 
which increases level of difficulty to collude, can 
effectively reduce the risk from potential collusion. 

According to the above fact, our protocol TSSP is 
quite secure to against underlying collusion. Thus, it has 
stronger security than the semi-honest assumption [3]. 
 

 
Figure 6. Number of clients needed to collude with in order to 

slinkingly infer a private data 

The Complexity Analysis of TSSP: In the first round, 
there is the generation of one asymmetric key pair, hh 
encryptions, h¡ 1h¡ 1 multiplications, one decryption, two 
additions (including subtractions) and one modular 
arithmetic. In the second round, there is the generation of 
one asymmetric key pair, h + 1h + 1  encryptions, hh 
multiplications, one decryption, one subtraction and one 
modular arithmetic. Hence, the computation complexity 
of TSSP is O(h)O(h) and the overall computation cost is 
about 14h14h. While a cipher-text is b0b0 bits long, the total 

bit-wise communication overheads are 2b0h2b0h (b0hb0h in the 
first round and b0hb0h in the second round). 

Based on the model in Figure 1, the novel scheme for 
privacy-preserving OLAP over horizontally partitioned 
data contains two stages: Local Computation and 
Cooperative Computation. In the Local Computation 
stage, each client separately performs local computation 
on his private sub-database. Then, TSSP is invoked in the 
Cooperative Computation stage. Obviously, it will return 
accurate result count aggregate query on the global table 
SS  based on the sub-protocol TSSP, instead of the exact 
value’s maximum likelihood estimator in [1]. Besides, in 
the new scheme, the additional computation cost and 
communication overheads of cooperatively computing in 
a privacy-preserving way, which fully come from the 
Cooperative Computation stage: invoking TSSP, both are 
O(h)O(h) (hh is the number of participant clients). 

IV. PRIVACY PRESERVING AGGREGATE QUERY OF 
OLAP ON VERTICALLY PARTITIONED DATA 

In this section, we study the count aggregate query of 
OLAP over heterogeneous data in an efficient and 
privacy preserving way. We consider the setting that the 
data is vertically distributed between two clients C1C1  and 
C2C2, in which C1C1  and C2C2  respectively hold a private 
sub-table S1S1   and S2S2  (displayed in Figure 7) with 
different attributes of all the records in the global table 
SS . An attribute is held by a single client; we assume that 
C1C1  privately owns the values of former kk  attributes 
A1; A2; :::; AkA1; A2; :::; Ak and C2C2 has the values of other m¡ km¡ k 
attributes Ak+1; Ak+2; :::; AmAk+1; Ak+2; :::; Am. The two clients want to 
collaborate to accurately answer count aggregate query 
without disclosing any individual data in their private 
sub-table to each other. 

Based on the efficient scalar product protocol [5], we 
present a solution to privacy-preserving count aggregate 
query on vertically partitioned data. Given that the 
conditions P1; P2; :::; Pca

P1; P2; :::; Pca
 are over the attributes of 

client C1C1 and Pca+1; Pca+2; :::; PcPca+1; Pca+2; :::; Pc  over the attributes 
of client C2C2, they conduct sub-query from respective 
private sub-table and then work out the answer to the 
primordial aggregate query on global table SS  by some 
secure multiparty computation protocol. First, we 
definite two binary vectors a = (a1; a2; :::; an)a = (a1; a2; :::; an) 
(privately owned by C1C1 ) and b = (b1; b2; :::; bn)b = (b1; b2; :::; bn) 
(privately held by C2C2) where the value of aiai (resp. bibi, 
i = 1; 2; :::; ni = 1; 2; :::; n) is 00 or 11. The value of aiai  (resp. bibi , 
i = 1; 2; :::; ni = 1; 2; :::; n) is set to 11 if the i-th record in sub-table 
S1S1  (resp. S2S2 ), “ ai1; ai2; :::aikai1; ai2; :::aik ” (resp. 
“ ai;k+1; ai;k+2; :::ai;mai;k+1; ai;k+2; :::ai;m ”), meets the condition 
P1 and P2 and ::: and Pca
P1 and P2 and ::: and Pca

 (resp. 
Pca+1 and Pca+2 and ::: and PcPca+1 and Pca+2 and ::: and Pc ) and aiai  (resp. bibi , 
i = 1; 2; :::; ni = 1; 2; :::; n) is set to 00 otherwise. In this way, the 
accurate answer to aggregate query on global table SS  is 
the scalar product a ¢ ba ¢ b  which can be computed by 
employing scalar product protocol (see section 2.3) on 
private binary vector aa of C1C1 and secret binary vector 
bb from client C2C2. 
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A1 A2 ... Ak

1 a11 a12 ... a1k

2 a21 a22 ... a2k

... ::: ... ... ...

n an1 an2 ... ank

A1 A2 ... Ak

1 a11 a12 ... a1k

2 a21 a22 ... a2k

... ::: ... ... ...

n an1 an2 ... ank

 

(1) Sub-table S1S1 

Ak+1 Ak+2 ... Am

1 a1;k+1 a1;k+2 ... a1m

2 a2;k+1 a2;k+2 ... a2m

... ::: ... ... ...

n an;k+1 an;k+2 ... anm

Ak+1 Ak+2 ... Am

1 a1;k+1 a1;k+2 ... a1m

2 a2;k+1 a2;k+2 ... a2m

... ::: ... ... ...

n an;k+1 an;k+2 ... anm

 

(2) Sub-table S2S2 

Figure 7. Vertically Partitioned Data (1 6 k < m)(1 6 k < m) 

According to the above-mentioned, our method of 
dealing with privacy-preserving count aggregate query 
on heterogeneous data is illustrated as following. 

1. Local Computation: C1C1  and C2C2  separately 
compute private binary vectors aa and bb based 
on their confidential sub-table S1S1  and S2S2  at 
respective local site. 

2. Cooperative Computation: They cooperatively 
perform scalar product protocol (see section 2.3) 
to compute the scalar product of confidential 
binary vectors aa and bb, such that C1C1 obtains uu 
and C2C2  receives vv, which meet u = a ¢ b + vu = a ¢ b + v . 
Then they publish u¡ vu¡ v which is the accurate 
answer to original count aggregate query on the 
table SS . 

The Correctness Analysis: To illustrate u¡ vu¡ v  is the 
exact answer to count aggregate query on the table SS , 
we need to consider the following factors. 

As can be seen from Table I, the value of aibiaibi is 1 if 
and only if ai ^ biai ^ bi  is true, as a result, 
a ¢ b =

Pn
i=1 aibia ¢ b =

Pn
i=1 aibi is the exact count of rows of the table 

SS  which satisfy the global selecting condition  
P1 and P2 and ::: and PcP1 and P2 and ::: and Pc. 

  Therefore, u¡ vu¡ v , equal to a ¢ ba ¢ b , is the accurate 
answer to count aggregate query on the table SS  when 
each party exactly follows the steps. That is, the scheme 
for privacy-preserving count aggregate query of OLAP 
over heterogeneous data is correct and it is able to return 
the accurate result rather than the exact value’s 
maximum likelihood estimator in [1]. 

TABLE I. ai ^ biai ^ bi AND aibiaibi 

ai 0 0 1 1

bi 0 1 1 0

ai ^ bi false false true false

aibi 0 0 1 0

ai 0 0 1 1

bi 0 1 1 0

ai ^ bi false false true false

aibi 0 0 1 0

 

The Security Analysis: The novel scheme is secure if and 
only if each participant’s privacy will be well preserved 
and no one can find out other party’s confidential 
information. 

Since scalar product protocol [5] we employ is secure 
based on the security of Paillier’s homomorphic 

encryption scheme [17], therefore, the private data of 
neither of participants will be disclosed and our approach 
to privacy-preserving count aggregate query on vertically 
partitioned data is secure. 
The Complexity Analysis: The communication overhead 
of the above scheme is about nb0nb0 where b0b0 is the bit 
length of an encrypted item and the computation cost in 
the cooperative computation is less than 7n7n. 

To sum up, it is clear that the novel scheme for 
privacy-preserving count aggregate query of OLAP over 
vertically partitioned data will return accurate result 
based on scalar product protocol [5], which is superior to 
the exact value’s maximum likelihood estimator in [1]. 
Besides, the foregoing analysis of complexity shows our 
new scheme is efficient in computation cost and 
communication overheads. 

V. CONCLUSION AND FUTURE WORK 

In the paper, we have proposed a new model based on 
SMC protocols for PPOLAP. According to the new 
model, we put forward approaches to privacy preserving 
count aggregate query of OLAP over both horizontally 
partitioned data and vertically partitioned data. 
Additionally, we proved the security and correctness by 
theoretical analysis and we also analyzed communication 
overheads and computation complexity of our methods. 
No privacy loss and exact accuracy are two main 
advantages of our schemes. 

For the future work, we will develop other privacy 
preserving aggregate operations except count according 
to the PPOLAP model based on SMC protocols. 
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