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Abstract—Many applications today need to manage data 
that is uncertain, such as information extraction (IE), data 
integration, sensor RFID networks, and scientific 
experiments. Top-k queries are often natural and useful in 
analyzing uncertain data in those applications. In this paper, 
we study the problem of answering top-k queries in a 
probabilistic framework from a state-of-the-art statistical IE 
model-semi-Conditional Random Fields (CRFs)-in the 
setting of Probabilistic Databases that treat statistical 
models as first-class data objects. We investigate the 
problem of ranking the answers to Probabilistic Databases 
query. We present efficient algorithm for finding the best 
approximating parameters in such a framework to 
efficiently retrieve the top-k ranked results. An empirical 
study using real data sets demonstrates the effectiveness of 
probabilistic top-k queries and the efficiency of our method. 
 
Index Terms—probabilistic databases, uncertain data, 
information extraction, conditional random fields 
 

I.  INTRODUCTION 

In recent years, uncertain data management arises in 
many applications. The reasons for uncertainty in data are 
as various as the applications themselves: in sensor and 
RFID data, uncertainty as a result of measurement errors 
[1, 2]; in information extraction, uncertainty comes from 
the inherent ambiguity in natural-language text [3, 4]; and 
in business intelligence, uncertainty is used to decrease 
the cost of data cleaning [5]. The field of uncertain data 
management poses a number of unique challenges on 
several fronts. The two broad issues are those of 
modeling the uncertain data, and then leveraging it to 
work with a variety of applications. The second issue is 
that of adapting data management and mining 
applications to work with the uncertain data. The main 
areas of research in the field are including modeling of 
uncertain data, uncertain data management and uncertain 
data mining [6]. Unfortunately, traditional precise 
database management systems (DBMSs) do not support 
uncertain data due to data records are typically 
represented by probability distributions rather than 
deterministic values. Hence, it is necessary to develop 
data management techniques for managing probabilistic 
data. 

The goal of Information Extraction is to extract 
structured data from a collection of unstructured text 
documents. Usually the schema is given in advance by 
the user, and the extractor is tailored to that specific 
schema [7]. In information extraction, imprecision comes 
from the inherent ambiguity in natural-language text. 
Automatically extracting structured entities from 
unstructured text is a challenging problem, and has a 
history of attempts spanning early rule-based systems like 
Rapier [8] to the lately statistical methods like 
Conditional Random Fields (CRFs) [3]. Gupta and 
Sarawagi [9] recently describe how to use a probabilistic 
database to store the result of text segmentation with 
Conditional Random Fields. 

In this paper we introduce a state-of-art method called 
semi-CRFs for information extraction and provide a 
probabilistic framework enabling opportunities for top-k 
queries. Our technique is based on two major 
observations: First, All approaches to information 
extraction are imprecise, and most often can associate a 
probability score to item extracted. In the database 
community, information extraction has been a major 
motivating application for the recent groundswell of work 
on probabilistic database (PDB), which can model the 
uncertainty inherent in information extraction outputs, 
and enable users to get probabilistic answers. Second, 
top-k queries are often natural and useful in analyzing 
uncertain data, and CRFs can be very naturally modeled 
as first-class data in a relational database, in the spirit of 
recent PDB like BayesStore [10] and the work of Sen and 
Deshpande [11]. Similarly, text data can be captured 
relationally via the inverted file representation commonly 
used in information retrieval.  

This paper is organized as follows: In Section 2, we 
will examine the issue of uncertain data representation 
and modeling. In Section 3, we describe our problem and 
present a background of state of the art probabilistic 
models of information extraction. In section 4, we 
describe the design of a probabilistic database that can 
support probabilistic information extraction models, and a 
framework is presented for inference queries. In Section 5 
we present experimental evaluation of the accuracy and 
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efficiency of our model. The conclusions and future work 
are discussed in Section 6. 

II.  UNCERTAIN DATA REPRESENTATION AND 
MODELING 

A. Probabilistic Database Definitions 
A probabilistic database is defined [12] as follows: 
Definition1. A probabilistic-information database is a 
finite probability space whose outcomes are all possible 
database instances consistent with a given schema. This 
can be represented as the pair (X, p), where X is a finite 
set of possible database instances consistent with a given 
schema, and p (I) is the probability associated with any 
instance I∈X. We note that since p (·) represents the 
probability vector over all instances in X, we 
have .This representation is a formalism of 
the “possible world model” [13]. To represent the 
uncertainties in data, some approaches associate the 
uncertainties to tuples, while others associate them to 
values. 

1)( =∑ ∈XI
Ip

Probabilistic ?-tables [14], [15] are a simple way of 
representing probabilistic data. In this case, one models 
the probability that a particular tuple is present in the 
database. Thus, the probability of a particular 
instantiation of the database can be defined as the product 
of the probabilities of the corresponding set of tuples to 
be present in the database with the product of the 
probabilities of the complementary set of tuples to be 
absent from the database. 

A closely related probabilistic representation is that of 
probabilistic or-set tables. While the probabilistic ?-table 
is concerned with the presence or absence of a particular 
tuple, the p-or-set table is concerned with modeling the 
probabilistic behavior of each attribute for a tuple that is 
known to be present in the database. In this case, each 
attribute is represented as an “or” over various 
possibilities along with corresponding probability values. 
An instantiation of the database is constructed by picking 
each outcome for an attribute independently. The 
ProbView model presented in [13] is a kind of or-set 
table. The only significant difference is that the ProbView 
model uses confidence values instead of probabilities.  

III. MODELS FOR INFORMATION EXTRACTION  

A Conditional Random Fields (CRFs) models a single 
joint distribution Pr (y| x) over the predicted labels y = 
y1···yn of the tokens of x=x1···xn. The tractability of the 
joint distribution is ensured by using a Markov random 
field to express the conditional independencies that hold 
between elements yi of y. In typical extraction tasks, a 
chain is adequate for capturing label dependencies. This 
implies that the label yi of the ith token is directly 
influenced only by the labels of tokens that are adjacent 
to it. In other words, once the label yi-1 is fixed, label yi-2 
has no influence on label yi. 

The dependency between the labels of adjacent tokens 
is captured by a scoring function 　 (yi-1, yi, x, i) between 

nodes yi-1 and yi. This score is defined in terms of 
weighted functions of features as follows: 
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Where w is a weight vector for f that is learnt during 
training via a variety of methods. With these per-edge 
scores, the conditional distribution of a label sequence y 
given a token x is given as 
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The term Z(x) is a normalization factor and is equal 

to ∑ ⋅
y

exp ),( yxfw , where the 

sum of the feature vector over all token positions of the 
sequence. Some subset of these features can be simplified 
further to depend only on the current state and are 
independent of the previous state. We will refer these as 
state features and denote these by f (y

∑=
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i, x, i) when we 
want to make the distinction explicit. The term transition 
features refers to the remaining features that are not 
independent of the previous label. 

To extend CRFs to semi-CRFs model, in which the 
output is a sequence of segments, with each segment 
defining an entity, rather than a sequence of labels as in 
earlier CRFs models. More formally, a segmentation s of 
an input sequence of length n is a sequence of segments 
s1···sp such that the last segment ends at n, the first 
segment starts at 1, and segment sj+1begins right after 
segment sj ends. Each segment sj consists of a start 
position lj, an end position uj , and a label yj∈y.  

In a Semi-CRFs model, features are defined over 
segments comprising of multiple tokens forming an entire 
entity string. This allows for the use of more powerful 
features than token-level models because features can 
now capture joint properties over all the tokens forming 
part of an entity. Like in the case of sequence models, the 
label of a segment depends on the label of the previous 
segment and the properties of the tokens comprising this 
segment. Thus a feature for segment sj = (yj, lj, uj) is of 
the form f (yj, yj-1, x, lj, uj). 

A Semi-CRF models the conditional probability 
distribution over segmentation s for given input sequence 
x as follows: 
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During extraction, the goal is to find a segmentation 
s=s1···sp of the input sequence x=x1···xn such that Pr(s | x, 
w) as defined by Equation 3 is maximized, which implies 
that 
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The right hand side can be efficiently computed by 
dynamic programming. Let L be an upper bound on 
segment length. Let si:y denote set of all partial 
segmentation starting form 1(the first index of sequence) 
to i, such that the last segment has the label y and ending 
position i. Let V (i, y) denote the largest value of 
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calculation implement finds the best segmentation: 
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   The algorithm makes a forward scan of the input 
tokens, and for each token position i and entity label y 
computes the best segmentation from 1 to i by taking 
the maximum over all possible segment lengths of the 
last segment ending at i and all possible labels of the 
segment before the last. The best segmentation then 
corresponds to the path traced by maxy V (| x |; y). The 
probability of the best segmentation can be calculated 
using Equation 3. This requires O (nm2L) time where m 
=| y | and O (mnL) space. Since L and m are small 
integers, this makes the algorithm linear in the length 
of the input and has been traditionally considered to be 
a fast algorithm. 

Since conventional CRFs not consider maximizing 
over possible segment lengths d, inference for semi-CRFs 
is more expensive. However, Equation 4 shows that the 
additional cost is only linear in L. Since in the worst case 
L ≤ |x|, the algorithm is always polynomial. For fixed L, it 
can be shown that semi-CRFs are no more expressive 
than order-L CRFs. For order-L CRFs, however the 
additional computational cost is exponential in L. The 
difference is that semi-CRFs only consider sequences in 
which the same label is assigned to all L positions, rather 
than all | y |b · L length-L sequences. This is a useful 
restriction, as it leads to faster inference. 

Semi-CRFs are also a natural restriction, as it is often 
convenient to express features in terms of segments. For 
example, let dj denote the length of a segment, and let 
　be the average length of all segments with label I. Now 
consider the segment feature fk(j, x, s)=( dj -　)2·[[yi = I]], 
where [[ P ]]=1 when predicate P is true and 0 otherwise. 
After training, the contribution of this feature toward Pr 
(s| x) associated with a length-d entity will be 
proportional to . 

2)( δ−⋅ dwkexp

IV. SEMI-CRFS IN PROBABILISTIC DATABASES 
AND INFERENCE QUERIES 

Although information extraction has been cited as a 
key driving application for probabilistic database research, 
to date there has been a gap between probabilistic 
information extraction and PDB. 
In this section, we describe the design of a probabilistic 
database PDB=(R, F) that can support probabilistic 
information extraction models, such as semi-CRFs by (1) 
storing documents in an incomplete relation R as an 
inverted file with a probabilistic label-p attribute; and (2) 
storing the exact probability distribution F over the 
extraction possibilities from semi-CRFs through a factor 
table. A PDB consists of two key components: (1) a 
collection of incomplete relations R with missing or 
uncertain data, and (2) a probability distribution F on all 
possible database instances, which we call possible 
worlds, and denote pw (PDB). 

A. The Incomplete Relation R: Taken Table:  
The token table is an incomplete relation R in PDB, 

which stores documents as relations in a database, in a 
manner similar to the inverted files commonly used in 
information retrieval. As shown in Figure 1, each tuple in 
taken table records a unique occurrence of a token, which 
is identified by the document ID (docID), the start 
position (spos) and the end position (epos) the token is 
taken from. A token table has the following schema: 

TokenTable (docID, spos, epos, token, label-p) 
The token table contains one probabilistic attribute 

label-p, which can contain missing values, whose 
probability distribution will be computed from the semi-
CRF model. The deterministic attributes of the token 
table are populated by parsing the input documents D, 
with label values marked as missing by default. However, 
the token table can also be updated by users, who can 
provide deterministic label values for some of the records. 

docID spos epos token label-p

1 1 1 HouseNo

1 2 3 Area

1 4 4 City

1 5 5 Other

1 6 7 Zip  
Figure 1.  A sample of token table 

B. Indpendent tuples model 
We need an alternative model of representing 

imprecision in a database that captures the original 
distribution, while being easy to store and query. Our 
method to deal with the problem of extraction uncertainty 
is to require that each extracted entity be attached with 
confidence scores that correlate with the probability that 
the extracted entities are correct. The semi-CRFs can 
output not just a single best extraction but a ranked list of 
extractions where each extracted record is associated with 
a probability of correctness. Such probabilistic results can 
be stored in PDB for getting probabilistic answers. Figure 
2 illustrates four possible segmentations of address 
extractions together with their probabilities scores for an 
address database. Again, these four rows together provide 
a more informative summary of the imprecision in the 
data than possible with the highest probability row alone. 
We will denote each such extraction result by 
segmentation as it consists of labeled segments of the 
unstructured string; and call this representation the 
segmentation independent tuples model.  

HouseNo Area City Zip Prob

s1 52 Goregaon West Mumbai 400 062 0.1

s2 52-A Goregaon West Mumbai 400 062 0.2

s3 52-A Goregaon West Mumbai 400 062 0.5

s4 52 Goregaon West Mumbai 400 062 0.2  
Four possible sgementation s1, s2, s3, s4 Figure 2.  

C. P- Top-k  Queries On Semi-CRFs- based PDF 
In typical real-life extraction tasks the highest scoring 

extraction is not necessarily the correct extraction. 
Fortunately, unlike in earlier generative models like 
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HMMs, the probability of segmentation as output by 
semi-CRFs is sound in the sense that a probability of p 
denotes that there is a 100p% chance that the extraction is 
correct [4]. 

 We now describe probabilistic top-k queries over a 
probabilistic database PDB supporting the semi-CRF 
model. It determines the segmentations with the top-k 
highest probabilities given a token sequence x from a 
document.  

We consider an approach for representing the 
uncertainty of extraction in a database system and show 
how to return probabilistic answers to a project query of 
the form 

SELECT   y1···yk 
FROM T 
LIMIT k 
WHERE source=x 

Where T is an imprecise table in PDB and each yi 
refers to one of the k column c1···ck of T. Probabilistic 
results for such a query will return k rows where each row 
r consists of l segments of x ={(l1, u1), ···, (ll, ul)}and a 
probability value pr = Pr(s1=( l1, u1), ···, sl=( l1, u1)| x). We 
also allow a segment (lj, uj) to be NULL so as to 
incorporate missing labels. 

A straightforward representation is to first extract from 
the original model all segmentations with non-zero 
probability and represent each segmentation s as a 
separate row with a tuple-level uncertainty value equal to 
the probability Pr (s|x) of that segmentation. Thus, each 
unstructured source record r will give rise to a variable 
number of rows in the database; all rows of the same 
record are linked via a shared key that constraints their 
probabilities to sum to 1, such a representation appears in 
figure3. In independent tuples model the probability of a 
query result is calculated by summing over all 
segmentations that match the result row as follows: 

∑
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We study a slight variation of Top-k queries, namely, 
the probabilistic top-k or simply P-top-k, that return k 
tuples with the highest probabilities being one of the top-
k ranked tuples in a random possible world pw(PDB). 
Formally, the probabilistic top-k is defined as follows: 
Definition2. Probabilistic top-k query: A probabilistic k 
top-k query on PDB return a set of k tuples S= {s1, · · ·, 
sk}, satisfying Pr (si | x) ≥Pr (sj | x), for any and 

. 
Ss ∈i

Ss ∉j

The P-top-k queries return the k most probable 
segmentation of being the top-k among all. The dynamic 
programming algorithm is a key implementation 
technique for top-k inference in information extraction 
applications. It is feasible to extend sequence models like 
semi-CRFs to return a set of k highest probability 
extractions instead of a single most likely extraction. We 
need to adjust the dynamic programming algorithm to 
maintain top-k highest scoring solution at each position. 
To implement this algorithm, we define a new V matrix 
of quadruple V (i, y1, j, y2), where each cell contains the 
top-k partial segmentation between position i and position 

j, where y1 is assigned to position i and y2 is assigned to 
position j.  
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Figure 3.  Illustration of computation of V matrix in the dynamic 

programming algorithm 

As illustrated in Figure 3, we project the four 
dimensions matrix V to two-dimensional one V’ for 
computing the top-k segmentation using dynamic 
programming data structure called V’ matrix. The first 
row contains the possible labels y = y1···yn and the first 
column contains the position from 1 to n for tokens of 
x=x1···xn. Let us show that we are computing top-k quires. 
Each cell in V’ (i, y) stores the score and the path of top-
k .partial segmentation up until position i ending with 
label y.  The V’ matrix at position 0, i.e. V’ (0, y, k) is 
initialized as 0 referring to the equation 7, and if i <0 
denotes that the previous label is NULL. The V’ matrix at 
position i >0 is recursively defined form the V’ matrix at 
position i-1 by picking the partial segmentation with 
ranking k scores. The path of the top-k partial 
segmentation are may be corresponds to the k edges of 
path traced. Our algorithm for finding the best m-row 
model in Algorithm2, it extends maintained states based 
on each seen tuple. When a new tuple is retrieved, it is 
used to extend all states causing all possible ranks of this 
tuple to be recognized 

D. Processing Framework 
In this section, we propose a processing framework in 

Figure 4 that leverages PDB storage, indexing, and query 
processing techniques to compute uncertain P-top–k 
query answers. Our proposed processing framework 
consists of two main layers: 

Storage Layer: The main functionalities provided in 
this layer including: tuple retrieval, indexing, query 
processing (including score-based ranking) and 
generation rules for uncertain data.  In addition, different 
data access methods are provided to allow the upper 
processing layer to retrieve uncertain tuples. 

Processing Layer: The processing layer converts 
queries to immediate form, optimizes queries and devises 
an execution plan for retrieving most probable top–k 
answers from the underlying storage layer. 
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Figure 4.  Processing Framework 

V. EXPERIMENTS 

In this section, we will present an empirical evaluation 
of our method of constructing probabilistic database from 
statistical models of structure extraction. We  
implemented a probabilistic database supporting the 
semi-CRF model and conducted a systematic empirical 
study using two data sets on a PC computer with a 3.0 
GHz Intel Pentium4 CPU, 1.0 GB main memory, and a 
160GB hard disk, running the Microsoft Windows XP 
Professional Edition operating system. Our algorithms 
were implemented in Microsoft Visual C++ 6.0. All 
experiments are run 3 times and take the average running 
time. 

A. DataSets 
We use two datasets in the evaluation. The first dataset 

is Address that consists of 770 home addresses of 
students in IIT Bombay India. There are 5 possible labels 
used to tag this dataset, such as street names, area, city 
name, state name and zipcode, respectively. Indian 
addresses are less regular than others, and extracting even 
fields like city names is challenging. A subset of 385 
addresses was used as the test-set. The second dataset is 
Cora citations data set that consists of 500 bibliography 
entries from academic papers. There are 13 possible 
labels for each token in each entry: author, book title, 
date, editor, institution, journal, location, note, pages, 
publisher, tech, title, and volume. Although bibliography 
entries are generally short and follow some conventions, 
they are interesting because they can display large 
variations in total length and the length of each section 
within an entry. In addition, each entry does not always 
include all possible sections, and there can be differences 
in the ordering of sections. We use a subset of 350 
citations as our test-set. Three example sequences are 
shown in Figure 5. 

 

 
Figure 5.  Three example items from the Cora citations data set 

B. Setup 
For each dataset, we train a strong and a weak semi-

CRF model by varying the amount of training data. To 
train the strong model, we use 30% of the data for Cora 
and 50% for Address. To train both the weak models, we 
use 10% of the data. In each experiment, we retrieve 
enough segmentation to cover a sufficient probability 
mass (0:93 in the case of Cora and 0:96 for the Address 
dataset). This forms our test set and the divergence of a 
model is computed over this test set. A fixed value of L 
was chosen for each dataset based on observed entity 
lengths. This ranged between 4 and 6 for the two different 
datasets. 

Features: We used indicator features for the word 
itself and various surface patterns (capturing 
capitalization, digit pattern and delimiters) at the word 
and one position to its left and right. These features apply 
on the start, end and in-between part of segments to get 
features equivalent to those in SequenceBCEU. 
Transition features are used with a history size of 1. 
These are all word-level features. The segment-level 
features we added were length feature for each possible 
segment-length value and for each available external 
lexicon we added features corresponding to the highest 
match with whole entities in the lexicon. We measure 
similarity using the popular TF-IDF similarity function 
which is known to work well for name-matchingin 
between two text records r1 and r2. The TF-IDF similarity 
is defined as follows: 
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In the above, the IDF term makes the weight of a token 
inversely proportional to its frequency in the database and 
the TF term makes it proportional to its frequency in the 
record. Intuitively, this assigns low scores to frequent 
tokens (stop-tokens) and high scores to rare tokens. We 
use a threshold 　 to limit matches only to values greater 
than because features with very low scores are not useful 
and unnecessarily increase running time and have even 
been found to reduce accuracy in some cases. Even 
distinctly dissimilar record pairs have non-zero positive 
similarity scores due to the presence of stop-tokens. For 
the benefit of the sequence models we also added word 
level dictionary match features using the same similarity 
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functions. Thus, we believe that an equivalent set of 
features are available to the sequence and semi-CRFs 
models.  

The observation features that we used included 23 
regular expression features and list-based features (such 
as person and place names), as well as 1,374 vocabulary 
features created by extracting whole words from the 
training data. The regular expression and list-based 
features that we used are shown in Figure 6. All features 
are binary and, except for the “EndsIn” features, ignore 
trailing commas, periods, colons, and semicolons. The 
observation feature set is fairly simple and could be 
developed further. 

C. Results 
We first propose experiments to verify that 

representing the imprecision of extraction is an available 
approach to promote the quality of answers returned by 
the database. That is to say, we show that the current 
practice of storing the topmost extraction in a 
conventional database can cause higher error than a 
database that acquires extraction uncertainty. Our queries 
project various subsets of the column labels and we 
survey the error in the query results with reference to the 
correct segmentation. We report the square error Se, 
which is (1-pc) 2, where pc is the probability of the correct 
answer according to the stored model. 

In Figure 7, we illustrate the errors for two situations:  
there are Top-1 and Top-k queries, respectively. For the 
first condition we store the single best extraction, where 
if the single stored segmentation is correct, we get an 
error of 0, otherwise it is 1. In the second case we store 
all segmentations with their probabilities so as to acquire 
the Semi-CRF distribution exactly. This allows us to 
compare the best possible probabilities model with the 
current practice of storing extractions. We report errors 
for weakly as well as strongly trained extraction models. 

The models were compared using two metrics: the 
average per-sequence prediction accuracy and the 
average F1 score. Per-sequence accuracy is defined to be 
the number of correctly labeled elements divided by the 
total number of elements: 

T

yy
YYaccuracy

T

t tt∑ =
=

=′ 1
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The F1 score or F measure is defined to be the 
harmonic mean of the precision and the recall. With 
respect to a specific label l, let A be the number of true 
positives, B is the number of false negatives, C is the 
number of false positives, and D is the number of true 
negatives. Precision is the fraction of tokens identified as 
l that really are l. 

                                   
CA
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The recall of a method is the number of true positives 
divided by the total number of positive examples: 
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=    (11) 

 

 
Figure 6.  Observation Features of  Cora Dataset 

1 2 3 4

Top-1 0.16 0.29 0.38 0.45

Top-k 0.11 0.2 0.27 0.32

Top-1 0.07 0.13 0.18 0.21

Top-k 0.06 0.11 0.13 0.16

Top-1 0.31 0.48 0.59 0.66

Top-k 0.25 0.34 0.38 0.41

Top-1 0.1 0.17 0.22 0.26

Top-k 0.08 0.12 0.18 0.19
Address

(Strong Model)

Cora
(Weak Model)

Cora
(Strong Model)

The number of label in P-top-k
Dataset Query Schema

Address
(Weak Model)

 
Figure 7.  Se on projection of varying models over top-k queries  

The F1 score is thus 

CBA
A

RP
PRF

++
=

+
=

2
221   (12) 

F1 is one when B = C = 0. It essentially measures the 
number of true positives compared to the number of true 
positives plus mistakes, ignoring the number of true 
negatives. 

We next evaluate our method for typical named entity 
recognition (NER) problem. In Figure 8 we compare our 
model with the popular sequential labeling model with 
the begin-continue-end-unique (BCEU) encoding of 
labels (SequenceBCEU). We observe that the average of 
recall, precision and running time of our model for 
diffident L outperforms SequenceBCEU method. This 
supports the conclusions in earlier work that our model is 
better suited for information extraction tasks. 

Figure 9 shows the results of recall, precision and F1 
reference L = 4, L = 5 and L = 6, respectively for two 
datasets. We observe that the maximum length 6 for the 
Address dataset with higher recall, precision and F1, and 
another one corresponding Cora is 5. 
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Dataset Model Recall(%) Precision(%) F1(%) Time(msec)

SequenceBCEU 81.8 84.6 83.1 397

OurModel(Top1) 85.6 88.1 86.8 289

SequenceBCEU 90.9 90.7 90.8 696

OurModel(Top2) 91.5 91.1 91.3 592

Address

Cora
 

Comparison of models  on three information extraction tasks Figure 8.  

Recall(%) Precision(%)

 L=4      L=5      L=6  L=4      L=5       L=6

Address 84.8      85.6      86.4 86.1      88.1      86.6 86.8

Cora 91.5      92.7      90.3 91.1      92.4      89.8 91.3

Dataset F1(%)

 
Results of recall, precision, F1 for different L Figure 9.  

VI. CONCLUSIONS AND FUTURE WORK 

In this paper we develop a probabilistic database 
approach to statistical models-based information 
extraction. We investigated a model of representing 
imprecision in a database: an independent tuples model 
that allows row-level uncertainty. Our work here 
incorporates a specific family of probabilistic modes–
linear-chain semi-CRFs models- as a first-class citizen in 
a probabilistic database. We proposed a framework for 
efficient computation of probabilistic top-k queries in 
uncertain databases. The algorithms in this paper take 
advantage of this specific model’s structure to allow 
features which measure properties of segments, rather 
than individual elements. Empirical results on real-life 
datasets show that the performance of our framework is 
efficient. 

In future work we hope to extend our study to in this 
topic, including handing of multi-table imprecision, 
extending imprecision to not just information extraction 
but also integration, and designing fast algorithms in each 
case. 
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