
Test Case Generation and Optimization for
User Session-based Web Application Testing

Qian Zhongsheng

School of Information Technology, Jiangxi University of Finance and Economics, Nanchang, China
Email: changesme@163.com

Abstract—Web application testing is the process of
revealing errors that is used to give confidence that the
implementation of a Web application meets its original
specification. An approach to reducing and optimizing the
test cases generated from user request traces is presented.
A large volume of meaningful user sessions are obtained
after purging their irrelevant information by analyzing user
logs on the Web server. Most of the redundant user sessions
are also removed after reducing them. For test reuse and
test concurrency, it divides the user sessions obtained into
different groups, each of which is called a test suite, and
then prioritizes the test suites and the test cases of each test
suite. So, the initial test suites and test cases, and their
initial executing sequences are achieved. However, the test
scheme generated by the elementary prioritization is not
much approximate to the best one. Therefore, genetic
algorithm is further employed to optimize the results of
grouping and prioritization. Meanwhile, an approach to
generating new test cases is presented using crossover.

Index Terms—user session, genetic algorithm, test case, test
suite, reduction, prioritization, grouping, common prefix

I. INTRODUCTION

Web applications have been closely linked to health,
economies, finance, sales, retail, marketing, etc. Their
failure would cause great inconvenience or even may
result in great disaster. Therefore, a Web application
must be reliable enough and meets its original user
specifications. Web testing is one of the methods to
ensure the quality of Web applications.

Most original Web testing methods are repetitive and
inefficient, as results in low reliability and high risk in
developing Web applications. Many aspects regarding
Web testing have not been sufficiently investigated yet,
and many open questions still need to be addressed. This
work investigates a key problem in Web application
testing: test case generation and optimization†. It delves
into an approach to testing and optimizing Web
applications based on user sessions using genetic
algorithm. When converting a user session to a
corresponding test case, we preserve the user input data.

II. USER SESSION-BASED TESTING
User session-based testing is an automated approach

† Optimization means the process of grouping and prioritizing test
suites and test cases generated using genetic algorithm.

to enhancing an initial test suite with actual user data,
enabling additional testing during maintenance as well as
adding test data that represents usage as operational
profiles evolve [1]. When a new test case is added to the
test suite to test a new or changed requirement, or
perverse the adequacy of the test suite, the size of the test
suite increases, and the cost of running the test suite in a
modified Web application increases too.

In user session-based testing, each user session
begins when a user from a new IP address makes a
request from the server and ends when the user leaves
the Web site or the session times out, i.e., a user session
is a collection of user requests in the form of URL and
name-value pairs. To convert a user session into a test
case†, each logged request is changed into an HTTP
request that can be sent to a Web server. A test case
consists of a set of HTTP requests that are associated
with each user session. Different conversion strategies
from user sessions to test cases were proposed [2-3].

It often takes the testers too much to run all the tests
in the test suite. The researchers have presented two
methods of keeping the same coverage ratio as the
original test suite, to investigate the effectiveness† and
performance of a test suite. These two methods are the
reduction of test suites [4-6] and the prioritization of test
suites [7-8].

Reducing test suites is critical to the user
session-based testing. Generally, the reduction method
considers each test case one by one, discards those that
do not change or make an influence on the test
requirements, and guarantees that the resulting test suites
preserve the same properties as the original test suites,
such as the same test coverage ratio or fault detection
capabilities.

Zhang, et al. [9] proposed a test requirement-based
reduction model that can describe the interrelations
among test requirements precisely. Based on the model,
they presented a test requirement-based reduction
method to generate the reduced test requirement set,
which is the basis of test suite generation, reduction and
optimization. Sprenkle, et al. [1] proposed another
requirement-based reduction technique, which processes
in a cut-and-try method.

† Generally, we do not distinguish user session from test case unless
otherwise specified, for each user session processed is converted into a
test case, i.e., there is a one-to-one relationship between them directly.
† A test suite with higher effectiveness can satisfy test requirements
given as soon as possible.

JOURNAL OF COMPUTERS, VOL. 5, NO. 11, NOVEMBER 2010 1655

© 2010 ACADEMY PUBLISHER
doi:10.4304/jcp.5.11.1655-1662

Compared to the reduction of test suites, the
prioritization, which identifies the sequence of test suites
according to some criterion, adds the strongest test case
into new test suite. That’s to say, a test case, which plays
a most important role on the coverage ratio of test
requirements is added. The test cases of higher priorities
are executed earlier than those of lower priorities using
the prioritization technique to satisfy some requirements
as soon as possible. For example, testers may hope to
increase code coverage ratio for a Web application under
test more rapidly. They may also hope to enhance their
confidence in the reliability of a Web application earlier.
It is evident that the prioritization technique itself does
not discard any test case.

If the testing must be terminated earlier, the
prioritized test suites provide higher efficiency † in
detecting faults than those test suites, which are not
prioritized. Intuitively, if the probability of a test suite is
higher than others in detecting faults in a given time,
then it has better fitness.

In addition, test selection technique is also relevant to
the effectiveness and performance of test suites [10]. A
subset of test suites is used to process all the changes.
Generally, these test suites, however, can not provide the
same coverage ratio as the original test suites. This
method can be regarded as an incremental testing.

III. TEST CASE GENERATION AND
OPTIMIZATION

User session-based testing reflects the actual usage
situation, as can not be predicted in the early
development stages. The user session data acquired from
actual users are a useful supplement for the testers to
generate test suites in-house [2]. We conduct user
session-based Web application testing using genetic
algorithm.

A. Collecting and Reducing User Sessions
In the logs on each Web server, each access record

corresponds to a request by a user each time. The
contents of the record include request source (user IP
address), request time, request mode (such as GET,
POST), the URL of requested information, data transport
protocol (such as HTTP), status code, the number of
bytes transferred and the type of client, etc. It needs to
scan the logs only once to resolve the original active
historic records from current access logs. However, it is
difficult to organize these original records directly, which
must be preprocessed. We first purge irrelevant data
including the records whose status codes are erroneous
(the code 200 for success, 400 for error), embedded
resources such as script files and multimedia files whose
extension names are .gif, .jpeg or .css, etc., to obtain the
set of user sessions for primitive analysis. Then, we
create user sessions through scanning the logs on Web
servers. Once a new IP address occurs, a new user
session is created. The sequential requests sent from this
IP address are appended to the new session under the

† Higher efficiency means less execution time or less test times to
satisfy the same test requirements.

condition that the time interval of two continuous
requests is not greater than max-session-idle-time
pre-determined, or else another new user session begins.
The set of all the user sessions is finally achieved.

There are often large volumes of user sessions
collected and a user session is converted to a test case
transmitted to Web server. Therefore, we can eliminate
redundant user sessions using reduction techniques, and
then preserve necessary user sessions. For the
convenience of discussion, some important concepts are
given first.

Definition 1 (URL trace) A URL trace is the URL
sequence requested by a user session.

Let α be a URL trace. Its length is the number of
URLs requested in the trace, denoted by |α|.

Definition 2 (prefix) A trace α is the prefix of
another trace β, if and only if α is the subsequence of β
and they have the same initial symbol.

Definition 3 (common prefix) If a trace is the
prefix of several traces, then this trace becomes their
common prefix.

Definition 4 (greatest common prefix) The longest
common prefix in all the common prefixes of two traces
is their greatest common prefix.

The longer the greatest common prefix of two traces
is, the more similar the two traces are, i.e., their
similarity is higher. Let we have four traces that are
γ1=abcdefg, γ2=abcdeh, γ3=abcd and γ4=cde. Then, γ3 is
the common prefix of γ1 and γ2, but not the greatest one.
The greatest common prefix of γ1 and γ2 is abcde.
Although γ4 is the subsequence of γ1 and γ2, it is not their
prefix, for the initial symbol of γ4 is not the same as that
of γ1 and γ2. We define a function isPrefix(α, β), which
decides whether or not α is the prefix of β, i.e., whether
or not the URL trace requested by a user session is
redundant corresponding to that requested by another
user session. If there is a prefix, then the function returns
a BOOLEAN value TRUE, or else returns FALSE. The
URL trace-based user session algorithm ReduceUSession
is shown in Fig. 1. Note that, an HTTP request here is
regarded as a symbol of a trace.

The ReduceUSession algorithm decides whether or
not a URL trace α requested by a user session is the
prefix of β requested by another user session. If it is true,
then the user session corresponding to α is removed. The
number of user sessions obtained using this algorithm
will be reduced greatly.
Algorithm: ReduceUSession
input:

The set of user sessions Λ={s1, …, sk}, where k is the number of
user sessions;
The URL trace U1, …, Uk, which are requested by s1, …, sk

respectively;
output:

The reduced set of user sessions denoted by Γ;
begin

Γ=Ф;
while (another user session that is not marked in Λ exists)

tag1=FALSE;
tag2=FALSE;
Select a user session si that is not marked in Λ, and then
mark it with “USED”;
for (the URL trace Uj requested by each user session sj in Γ)

1656 JOURNAL OF COMPUTERS, VOL. 5, NO. 11, NOVEMBER 2010

© 2010 ACADEMY PUBLISHER

 if isPrefix(Uj, Ui) //the URLs requested by si is
//more, so sj is redundant

 Γ=Γ-{sj};
tag1=TRUE;

 endif;
if isPrefix(Ui, Uj) //here, Γ keeps unchanged, and

 //si is redundant
tag2=TRUE;
break; //exit for cycle

 endif;
endfor;
if tag1 || (!tag1 && !tag2) //si is necessary

 Γ=Γ∪{si};
endif;

endwhile;
Output the reduced set of user sessions Γ;

end.

Figure 1. The user session reduction algorithm ReduceUSession

The ReduceUSession algorithm is different from
other user session reduction algorithms. Most other
reduction algorithms analyze each test case in the test
suites one by one and remove those test cases that cannot
change or affect test requirements, i.e., they distinguish
redundant and necessary test cases, as is too difficult to
manage in practice, for it is very intractable to
discriminate that the test requirements satisfied by some
test cases (i.e., redundant ones) are also satisfied by other
test cases before the test execution using the existential
algorithms. While our ReduceUSession algorithm
decides whether or not a URL trace requested by a user
session is the prefix of another URL trace requested by
another user session. Based on this, we can identify the
redundant test cases, as can be easily done in practice.
Besides, it covers all the URLs requested by the original
set of user sessions and keeps the sequence of URL
requests, i.e., it guarantees that the original test
requirements are satisfied.

B. Grouping and Prioritizing User Sessions
The user sessions reduced by the ReduceUSession

algorithm are divided into subgroups, each of which is
regarded as a test suite. The goal of grouping is to reuse
test cases and the testing can be executed at different
platforms in parallel (or concurrently), to lessen test time
and improve test efficiency. Moreover, the interacting
test can be conducted between a pair of user sessions in
each group. We try our best to keep the property for the
user sessions in the same group that the URL traces
requested bear greatest common prefix of a certain
length. Several discontinuous integral threshold values,
denoted by ζ1, ζ2, …ζk (ζi≥1, 1≤i≤k), are defined. The
user sessions, the lengths of whose greatest common
prefix of URL traces requested fall in between a certain
threshold values, are grouped together. Fox example, let
we have three threshold values ζ1=2, ζ2=4 and ζ3=7, then
the user sessions are divided into four groups that are S1,
S2, S3 and S4, the lengths of whose greatest common
prefix (denoted by α) are |α|≤2, 2<|α|≤4, 4<|α|≤7 and
|α|>7 respectively. The test cases in these four groups can
be executed at different platforms in parallel (or
concurrently), and the greatest common prefix is also
reused in each group. Notice that this is not the unique

grouping way. For example, in the four traces
γ1=abcdefg, γ2=abcdeh, γ3=abcd and γ4=cde, we can
divide them into two groups {γ1, γ2} and {γ3, γ4}, the
lengths of whose greatest common prefix are 4<|α|≤7 and
|α|≤2 respectively, or another two groups {γ1, γ2, γ3} and
{γ4}, the lengths of whose greatest common prefix are
2<|α|≤4 and |α|≤2 respectively. Of course, it is
unnecessary to require that the greatest common prefix
of URL traces requested by any two user sessions in each
group fall in between a certain threshold values; it is
recommended that most of them satisfy this property (a
percentage can be pre-designed or generated randomly
for the measurement). A compromise way needs to be
found to classify these URL traces (or test suites), i.e., a
tradeoff should be found between grouping and
concurrent testing and test reuse. Suppose that N user
sessions are divided into K groups. In general, there is
almost the same number of user sessions in one group as
that in another, i.e., the number equals approximately to

N
K
⎡ ⎤
⎢ ⎥⎢ ⎥

. Additionally, this way of grouping is preparatory,
called elementary grouping.

The common prefix indicates the users’ common
events, or the same or similar operations. It also shows
that the users bear the same or similar interests. The
longer the common prefix is, the more evident it is, as is
the case of most users. In addition, there is a special
group of user sessions, the length of whose greatest
common prefix of URL traces requested is shortest. This
group of user sessions often indicates different URL
requests, which represent distinct requirements for a Web
application. In these sessions, many aberrant events often
occur with unwonted input data. They belong to
boundary cases, which are very easy to go wrong for the
Web application.

Herein, we prioritize test suites. The test suite with
shortest length of common prefix ranks first, then all the
other test suites are arranged according to their lengths of
common prefix in descending order. So, the test suite in
final position is that whose length of common prefix is
last but one. In the test suites S1, S2, S3 and S4, the
lengths of whose common prefixes are |α|≤2, 2<|α|≤4,
4<|α|≤7 and |α|>7 respectively, if we prioritize them, then
the test executing sequence for those test suites are S1, S4,
S3, S2. That is to say, the test cases in S1 are executed
first, then the test cases in S4 and S3 are executed
respectively and finally, the test cases in S2 are executed.
In each test suite, the test cases are prioritized according
to the coverage ratios of URLs requested, i.e., the test
case with longer URL trace requested is executed earlier.
If the lengths of URL traces of several test cases in the
same test suite are equal, then they are randomly
executed.

Our approach of prioritization is different from those
presented before. The existing methods of prioritization
add the strongest test case, which is of the maximal use
for the coverage ratio of test requirements, to the new
test suite. Those methods aim to execute earlier the test
cases of high priority than those of lower priority, to
satisfy some test requirements as soon as possible. These
methods, however, are often difficult to find the (nearly)

JOURNAL OF COMPUTERS, VOL. 5, NO. 11, NOVEMBER 2010 1657

© 2010 ACADEMY PUBLISHER

strongest test case each time before test run, while our
approach divides test cases into several groups according
to the idea of common prefix before prioritizing them. It
is more convenient for the testers to selectively execute
the test cases of some group by grouping all the test
cases first, to detect some types of faults, for the same or
similar types of errors are often detected by those test
cases in the same groups. In addition, test cases can be
reused by grouping and the testing can be executed at
different platforms in parallel (or concurrently), to lessen
test time and improve test efficiency. Moreover, we have
considered a special type of user sessions, the length of
whose greatest common prefix of URL traces is shortest.
This group of user sessions often contains specific
requests, which are the primary source for errors.

C. Testing Web Applications Using Genetic Algorithm
After the process of grouping and prioritization

above, we obtain several initial test suites and test cases
with the initial executing sequences. However, the test
scheme generated by the elementary prioritization is not
fast in finding faults and can not satisfy the requirements
earlier. Therefore, genetic algorithm is employed further
to optimize the grouping and prioritization.

In 1975, an American professor Holland first
proposed the idea of genetic algorithm systematically
[11]. It has attracted a large number of researchers and
extended into those aspects of optimization, search and
machine learning with a solid theoretic foundation. The
genetic algorithm, a global optimization search algorithm
of high efficiency, focuses on all the individuals in one
population, and uses random techniques to search
efficiently for a coded parameter space. Selection,
crossover and mutation are the basic operators in genetic
algorithm. And parameter coding, the setting of initial
population, the design of fitness function, the selection of
genetic operations and control parameters consist of the
critical part of genetic algorithm.

In the following, we test Web applications using
genetic algorithm to further optimize the initial test suites
and test cases, and their initial executing sequences, in
order to achieve better test suites and test cases that
satisfy test requirements. The process of yielding a
population of next generation using three basic operators
that are selection, crossover and mutation once is called
an iteration. To obtain a good result, much iteration is
repeated. The following introduces the process of
selection, crossover and mutation.
1) Selection

A pair of individuals is selected from a parent
population with the probability of ps. The probability that
an individual is selected is in direct proportion to its
fitness value, as is often implemented using the strategy
of roulette wheel [11]. In selecting, the individual of high
fitness value is duplicated into the population of next
generation directly. The higher the fitness value of an
individual is, the higher the probability of yielding its
offspring is, as shows that it is more appropriate to the
expected result. Let we get K test suites (constituting the
initial population), which are S1, S2, …, SK of the
descending order according to the prioritization

technique. In practice, we combine the error coverage
ratios of test suites and the cost of test run to design
fitness function. The fitness value is listed as f1, f2, …, fK
from high to low, where fi is the fitness of Si (1≤i≤K).
The probability that an individual is selected equals to
the resulting value that its fitness value divides the sum
of fitness values of all the individuals, i.e., the selected
probability of Si, denoted by ps

Si, is
1

K

i j
j

f f
=
∑ . Obviously,

the sum of the selected probabilities of all the K test
suites equals to 1.

According to the discussion above, the fitness f1 and
f2 corresponds to two special test suites S1 and S2, the
lengths of whose greatest common prefixes are shortest
and longest respectively. S1 and S2 are selected to be the
individuals of next generation directly (in practical use,
we can also select more than two individuals of high
fitness to become the next individuals); in case they do
not be selected. Now, we randomly yield two numbers
that are g1, g2∈[0, 1], and randomly select two test suites
that are Si and Sj whose probabilities are not less than g1
and g2 respectively. The two new test suites Si’ and Sj’
(the individuals of next generation) are generated
through crossovering and mutating their parents Si and Sj.
Repeat the process of selection, until adequate test suites
of next generation are yielded. One point should be
emphasized that some test suites of higher probabilities
may not be selected as parents, while others of lower
probabilities are selected. This case is reasonable and
accords with the theory of biological evolution in nature,
because any thing has its necessity and occasionality at
the same time.
2) Crossover

The genes chain of two parent individuals selected
are crossovered with the probability of pc using the
TSCrossover algorithm, where pc is a system control
parameter. The new individuals after crossovering are
used to replace their parents. The TSCrossover algorithm
is shown in Fig. 2.
Algorithm: TSCrossover
input:

Parent test suites Si and Sj;
The crossover probability of pc;

output:
Si’ and Sj’ of next generation;

begin
Si’, Sj’←Si, Sj;
Randomly generate a number g∈[0, 1];
if pc is not less than g

Randomly generate an integral number g’,
g’∈(0, min(|Si’|, |Sj’|)];
Interchange the test cases in Si’ and Sj’ from the position of
g’ one by one, until no more test case needs to be
interchanged in any of them;

endif;
Output Si’ and Sj’;

end.

Figure 2. The crossover algorithm TSCrossover for test suites

Let we have two test suites Si=<c1, c2, c3, c4, c5, c6, c7,
c8, c9>, which contains 9 test cases and Sj=<c10, c11, c12,
c13, c14, c15, c16>, which contains 7 test cases. If the
position of crossovering is 3, then two new individuals of

1658 JOURNAL OF COMPUTERS, VOL. 5, NO. 11, NOVEMBER 2010

© 2010 ACADEMY PUBLISHER

next generation after crossovering Si and Sj are: Si’=<c1,
c2, c12, c13, c14, c15, c16, c8, c9> and Sj’=<c10, c11, c3, c4, c5,
c6, c7>, where the test cases indicated in bold face are
those interchanged one by one from corresponding test
cases in parent test suites.
3) Mutation

Each bits of the genes chain of new individuals are
mutated with the probability of pm using the TSMutation
algorithm, where pm is a system control parameter. The
probability of mutation is often small, or else it will raise
questions over the system stability. The populations can
be prevented from stagnating through mutation. If there
is no mutation, then the test data of new populations will
be confined to the initial values. The mutation process is
conducted respectively using the TSMutation algorithm
for the test suites Si’ and Sj’ crossovered using the
TSCrossover algorithm. The new individuals after
mutating are employed to replace those before mutating.
The TSMutation algorithm is shown in Fig. 3.
Algorithm: TSMutation
input:

The test suites Si’ and Sj’ after using TSCrossover algorithm;
The mutation probability of pm;

Output:
The test suites Si’ and Sj’ after mutating;

begin
for each S in {Si’, Sj’}

for each c in S
Randomly generate a number g∈[0, 1];
if pm is not less than g

Interchange the positions of c and the test case
before c;

endif;
endfor
Output S;

endfor
end.

Figure 3. The mutation algorithm TSMutation for test suites

Let pm=0.015 and Si’=<c1, c2, c12, c13, c14, c15, c16, c8,
c9>, which is one of the test suites after using the
TSCrossover algorithm. We randomly generate some
data: g(c1)= 0.246, g(c2)= 0.580, g(c12)=0.025,
g(c13)=0.012, g(c14)=0.632, g(c15)= 0.073, g(c16)=0.431,
g(c8)=0.193 and g(c9)=0.059. For pm is not less than
g(c13), c13 is mutated, i.e., the positions of c13 and c12 are
interchanged. The test suite Si’ after mutating becomes
<c1, c2, c13, c12, c14, c15, c16, c8, c9>.
4) The interacting testing among user sessions

Some new test cases, which contain the requested
information of different users, can also be generated
using crossover. The goal of the new test cases is to
detect errors caused by the use of possible conflicting
data shared by different users. The crossover way shows
the idea of information interchange among different user
sessions. Let S be a test suite, the steps of generating a
test case using crossover are:

(1) for a test case c in S, randomly generate a number
g∈[0, 1], if a given crossover probability is not less than
g, then

① copy the requests from r1 to ri in c to an interim
test case, where i is a random number, i∈[1, |c|]; |c| is
the length of URL trace in c;

② select a test case d (different from c) in S
randomly, and then search rj in d reversely, which is the
first one to have the same URL as ri. If not found, then
another test case (also denoted as d) is selected, until it is
found or up to a given time;

③ if d is found, then all the requests after rj in d are
appended to the interim test case, which is just the new
test case generated; otherwise go (2);

(2) repeat (1) until each test case in the test suite is
processed.

We search the requests in test case d with an inverse
search method, for the length of greatest common prefix
of two test cases c and d in the same test suite is often
greater than 1; when the corresponding URL trace from
r1 to ri is the prefix of this greatest common prefix, we
can not obtain different test cases if using the sequential
search method. For example, given two URL traces
c=u1u2u4u3u5u6u8u7 and d=u1u2u4u3u7u4u5u9, we randomly
copy u1u2u4 from c to an interim test case t firstly (i.e., t
equals to u1u2u4 temporarily). Here, i=3 and ri=u4. Now,
we search rj in d reversely, which is the first one to have
the same URL as ri and then we have j=6 and rj=u4. So,
all the requests after r6 in d (i.e., u5u9) are appended to t
such that t=u1u2u4u5u9. If searching the requests in d with
a sequential search method, we have j=3 and rj=u4. This
time, if copying all the requests after r3 in d (i.e.,
u3u7u4u5u9) to t, we have t=u1u2u4u3u7u4u5u9, which
equals to d itself. And no new test case is generated. The
reason is that the corresponding URL trace (i.e., u1u2u4)
from r1 to ri (i=3) in c is the prefix of greatest common
prefix (i.e., u1u2u4u3) of c and d.

In addition, it is often not to mutate a test case, for
the new generated test case after exchanging the two
adjacent requests ri and ri+1 makes no sense. The possible
reason is that the former request ri-1 may never reach the
request ri+1 (note that, this time ri becomes the next
request of ri+1).

IV. EXPERIMENTAL ANALYSIS
Consider a typical miniature Web application that we

have developed to demonstrate our approach: the SWLS
(Simple Web Login System) shown in Fig. 4.

Starting at the first page (indicated by a dashed arrow,
reasonably, a blank page can be used to request for the
first page of a Web application), i.e., a home page (p1),
the user can enter into the news page (p2) to list the news
by clicking on the view link, or enter into the login page
(p3) by pressing the login button. In page p3, the user
enters the userid and password, and presses the submit
button. Upon this pressing, the userid and password are
sent to the Web server for authentication. A logged page
(p4) will be loaded if both userid and password are
correct. On the contrary, an error page (p7) containing an
error message is displayed if at least one of the submitted
values for userid and password is wrong. From the
logged page, it is possible to go to info page (p5) for
secure information viewing by just clicking on the
browse link. The user can click on the intra-page link
continue to view the different parts of the same page p5 if
it is too long. A logout page (p6) will be displayed when

JOURNAL OF COMPUTERS, VOL. 5, NO. 11, NOVEMBER 2010 1659

© 2010 ACADEMY PUBLISHER

the user presses the exit or logout button. The user may
come back to the home page for login again. Note that
each time the login page is displayed, both the userid and
password fields should be initialized to be empty.

Figure 4. A simple Web login system

We inject only one fault in each page respectively, so
at least 7 faults exist totally (there may be other faults in
the Web application originally). A set of user sessions are
obtained after scanning user logs on the Web server and
purging their irrelevant information; then 89 meaningful
user sessions are finally created after scanning them
again. Only 17 user sessions† are used to generate test
cases after the reduction of the meaningful user sessions
using the URL trace-based ReduceUSession algorithm;
and the reduction ratio reaches 80.9%. Impersonally,
more user sessions there are for a given Web application,
much higher is the reduction efficiency, for more user
sessions mean higher possibility that the URL trace
requested by a user session is the prefix of that requested
by another in the view of statistics. The set of 17 user
sessions (or test cases) is denoted by Γ1. After grouping
and prioritizing Γ1, an initial executing sequence <S1, S2,
S3> of test suites is obtained, which is denoted by Γ2,
where S1, S2 and S3 contain initial executing sequences
of 7, 6 and 4 test cases respectively. We achieve the final
executing sequence <S1’, S2’, S3’> of test suites using
genetic algorithm for further processing, which is
denoted by Γ3. That’s to say, S1’, S2’ and S3’ is obtained
through crossovering and mutating S1, S2 and S3.

Now, we run the test suites (and test cases) in Γ1, Γ2
and Γ3 for the Web application respectively, and find all
the 7 faults injected as well as an additional fault (i.e.,
the user may browse p2 just by directly entering its
address in the URL address bar). The executing time of
Γ2 and Γ3, however, is much shorter than that of Γ1, and
it takes less time of Γ3 than that of Γ2 too. This means
that the test suites (and test cases) grouped and
prioritized run faster than those, which are not grouped
and prioritized; and that the test suites (and test cases)
processed further by genetic algorithm are much faster.
Table I contrasts some features of Γ1, Γ2 and Γ3. It is
predictive that the test approach proposed will yield
more evident positive effects for larger Web applications.

† For the convenience of test run, we have preprocessed the user
sessions appropriately.

Table I. The feature contrast of Γ1, Γ2 and Γ3

 Γ1 Γ2 Γ3
reduced yes yes yes
grouped and
prioritized no yes yes

optimized by
genetic algorithm no no yes

execution sequence randomly <S1, S2, S3> <S1’, S2’, S3’>
execution time long short shorter
fault detection
ability weak strong stronger

V. DISCUSSION AND EXPLANATION
The above experimental results show that the test

cases generated by applying our algorithms do not
increase the number of faults detected. It takes, however,
less time to find the same faults by our approach. In this
respect, the approach in this work is of higher fault
detection ability than others. After obtaining a large
volume of user sessions from Web servers, we eliminate
redundant user sessions using the URL trace-based
ReduceUSession algorithm and preserve necessary user
sessions, to cut down the number of test cases. Then, we
group and prioritize similar user sessions according to
their common prefix, to achieve different initial test
suites and test cases, and their initial executing sequences.
The test scheme generated by the elementary
prioritization is not much approximate to the best one.
Therefore, genetic algorithm is employed to optimize the
grouping and prioritization. Applying genetic algorithm
to the optimization of the test cases reflects the random
access property of user requests. So, this approach
should improve the quality of test cases.

We can crossover the genes chain of two parent
individuals selected with the probability of pc using the
TSCrossover algorithm to yield two new next
generations and mutate each bits of the genes chain of
new individuals with the probability of pm using the
TSMutation algorithm. The two new next generations
crossovered are used to replace their parents; and the
new individuals after mutating are used to replace those
before mutating. The reasons are:

(1) the new individuals (test suites) crossovered and
mutated are better; they can find errors in less time when
being executed; and

(2) whether the crossover or mutation of the test
suites do not change the test cases; only their executing
sequences are changed. The executing sequences of test
cases can, however, make an influence on whether or not
we find errors earlier and what types of errors.

Therefore, the process of crossovering and mutating
test suites optimizes the final coverage ratio of errors.
The process also do not yield more test suites and test
cases. However, it can increase the test executing
efficiency. As for the interacting test of user sessions
using crossover, although the number of test cases will
increase, the new test cases can detect errors caused by
the use of possible conflicting data shared by different
users. That’s to say, the types of errors detected are
different, the coverage ratio of errors increases and the
quality of test cases improves.

view

browse login continue

logout

return submit

submit

exit

home

login
page

p3

logge
d page

p4

logout
page

p6

error
page

p7

info
page

p5

home
page

p1

news
page

p2

1660 JOURNAL OF COMPUTERS, VOL. 5, NO. 11, NOVEMBER 2010

© 2010 ACADEMY PUBLISHER

In testing, we choose to run the test suite and test
case with higher priority and then those with lower
priority. We can also run the test suites concurrently.
Once some test case in some test suite is executed and
test requirements are satisfied, the remainder test suites
and test cases are not executed yet. This lessens the
executing time greatly. Note that, there is an executing
precedence relationship among different test suites and
test cases in each test suite. The user sessions (test cases)
are grouped, therefore, the testers can choose to run
several test suites first to find some types of errors in
greater probability and in less time. So, our approach is
sound and flexible.

VI. RELATED WORK
Some methods and techniques were presented [12-17]

to test Web applications. Cynthia, et al. [12] attempted to
show the merits of traditional software testing as applied
to the domain of Web accessibility, and to make the case
for a shift of focus from post hoc validation to proactive
testing as the preferred means of assuring accessibility
for Web applications. Jukka [13] discussed common
concepts, practices and tools that lie at the heart of Web
application performance testing. Jiang, et al. [14]
presented a quick testing model of Web performance
based on testing flow. They also contributed a testing
method of the testing model combining with LoadRunner
testing tool. Zhu, et al [15] addressed an approach to
discovering possible inconsistencies caused by
interactions with Web browser buttons and the property
of a Web page related to Web browser buttons. Zeng, et
al. [16] proposed a new automation testing framework
based on the concept of object feature set and dynamic
searching policy. Umar, et al. [17] discussed the
interoperability and integration testing of Web-based
applications. Most of these methods are achieved
through extending the testing methods for traditional
software. Additionally, none of these methods yields test
data according to user sessions in practice.

Elbaum, et al. [18] demonstrated the fault detection
capabilities and cost-effectiveness of user session-based
testing. They found that user session techniques uncover
certain types of faults but not faults associated with
rarely entered data. They showed that increasing the
number of collected user sessions helps to improve the
effectiveness, but it also increases test cost. Increment
concept analysis [19] is used to analyze user sessions
dynamically and minimize continuously the number of
user sessions maintained. In ref. [20], the genetic
algorithm and formal concept analysis are combined to
trace the relationship between test data and
corresponding test run.

Sthamer [21] analyzed deeply the test case
optimization efficiency of different coding schemes and
fitness functions of genetic algorithm for different
structure-based software in his doctoral dissertation, as
provides much valuable experience for other researchers.
Some researchers also studied on test case generation
techniques using genetic algorithm [22-24]. However,
Most of them aimed for simplex optimization focusing

on one-off optimization computation, while the testing is
continuous and iterative. So, dynamically continuous
optimization computation is more propitious to improve
test performance. Jia, et al. [25] discussed the key
problems of producing test data of covering designated
paths using genetic algorithm, and introduced deeply the
factors of influencing the genetic algorithm’s efficiency
through experimental results. Krishnamoorthi, et al. [26]

proposed a new test case prioritization technique using
genetic algorithm. It prioritizes subsequences of the
original test suite so that the new suite, which is run
within a time-constrained execution environment, will
have a superior rate of fault detection when compared to
rates of randomly prioritized test suites. These studies
[18-26] use genetic algorithm to analyze test problems
with the exception of refs. [18] and [19], but not focusing
on Web application testing. In ref. [18], the authors
discussed user session-based Web application testing, but
not concerning deeply the optimization of test cases,
while Godin, et al. [19] used increment concept analysis
to analyze user sessions, not using genetic algorithm.

Different from theirs, the approach in this work
generates and optimizes test cases for Web application
testing based on user sessions using genetic algorithm.
We begin to analyze user logs on Web server to obtain
user sessions, and then conduct a deep investigation into
Web application testing. Our approach bears a certain
guiding value whether in theory or in practice.

VII. CONCLUDING REMARKS AND FUTURE
WORK

Generating test cases of high quality is the premise of
Web application testing. Our approach captures a series
of user events, i.e., the sequences of URLs and
name-value pairs in Web server (s). It then employs the
reduction, grouping, prioritization and genetic algorithm
to yield test cases and optimizes them. Compared to the
methods of capturing user events in clients, our approach
is very effective when a large volume of users exist, and
it is a Web application testing method of high efficiency.
The main contributions include:

(1) an approach to generating and optimizing test
cases is proposed for Web application testing based on
user sessions using genetic algorithm. The testing
process relates more to functional testing.

(2) a URL trace-based reduction algorithm is
designed. The user sessions acquired are lessened greatly
using the algorithm. However, it covers all the URLs
requested by the original set of user sessions and keeps
the sequence of URL requests.

(3) an approach to grouping and prioritizing user
sessions is presented, as can improve the efficiency of
test run.

(4) an approach to generating new test cases is
proposed using crossover. The new test cases generated
include information requested by different users and can
detect errors caused by the use of possible conflicting
data shared by different users. That’s to say, the
crossover indicates the idea of information interchange
among different user sessions, which helps to test the

JOURNAL OF COMPUTERS, VOL. 5, NO. 11, NOVEMBER 2010 1661

© 2010 ACADEMY PUBLISHER

interacting of user sessions. The interaction testing
relates more to usability and performance testing.

(5) a strategy of test reuse and concurrence is
provided, as can decrease the time of test run greatly as
well as lessen test cost.

Some characteristics of Web applications can be
analyzed using user session-based testing approaches.
Fox example, if the connections included in most
sessions identified are very little in a Web application. It
means that the users may usually obtain their necessary
data using less TCP connections and the outer objects
requested are also limited, or it takes the users enough
time to accomplish some task in some Web page.

Web application testing is much complex systems
engineering. It is not easy to acquire an effective and
practical test scheme. Our approach only evaluates a test
case according to its test coverage ratio. However, many
factors need to be considered, such as the running cost of
each test case itself (e.g., CPU time), including the actual
running time, loading time, time to save test state, and
the influence of different test criteria on a test case. All
these questions need to be answered in future research.

ACKNOWLEDGMENT

This work was supported in part by the Science and
Technology Plan Project of the Education Department of
Jiangxi Province of China under Grant No. GJJ10120
and the School Foundation of Jiangxi University of
Finance & Economics of China under Grant No.
04722015.

REFERENCES
[1] Sprenkle S, Sampath S and Gibson E, et al., “An Empirical

Comparison of Test Suite Reduction Techniques for
User-session-based Testing of Web Applications”, Technical
Report 2005-09, University of Delaware, 2005.

[2] Elbaum S, Karre S, and Rothermel G, “Improving Web Application
Testing with User session Data”, Proc. of the 25th Int’l Conf. on
Software Engineering, Portland, Oregon, May 2003, pp. 49-59.

[3] Sampath S, Mihaylov V and Souter A, et al., “A Scalable Approach
to User-session Based Testing of Web Applications through
Concept Analysis”, Proc. of the Automated Software Engineering
Conference, Sept 2004.

[4] Yoo S, Harman M, “Using Hybrid Algorithm for Pareto Efficient
Multi-objective Test Suite Minimisation”, Journal of Systems and
Software, 2010, 83 (4), pp. 689-701.

[5] Jose C B R, Mario A Z R and Francisco F de V, “Test Case
Evaluation and Input Domain Reduction Strategies for the
Evolutionary Testing of Object-Oriented Software”, Information
and Software Technology, 2009, 51 (11), pp. 1534-1548.

[6] Zhong H, Zhang L and Mei H, “An Experimental Study of Four
Typical Test Suite Reduction Techniques”, Information and
Software Technology, 2008, 50 (6), pp. 534-546.

[7] Zhang L, Hou S S and Guo C, et al., “Time-aware Test Case

Prioritization Using Integer Linear Programming”, Proc. of the 18th
Int’l Symp. on Software Testing and Analysis, 2009, pp. 213-224.

[8] Korel B, Koutsogiannakis G and Tahat L, “Application of System
Models in Regression Test Suite Prioritization”, Proc. of ICSM,
2008, pp. 247-256.

[9] Zhang X F, Xu B W and Nie C H, et al., “An Approach for
Optimizing Test Suite Based on Testing Requirement Reduction”,
Journal of Software, Apr. 2007, 18 (4), pp. 821-831 (in Chinese
with English abstract).

[10] Engstrom E, Runeson P and Skoglund M, “A Systematic Review
on Regression Test Selection Techniques”, Information and
Software Technology, 2010, 52 (1), pp. 14-30.

[11] Holland J H, “Adaptation in Natural and Artificial System”,
University of Michigan Press, Michigan, USA, 1975.

[12] Cynthia C S, Mike B, “Application of Traditional Software Testing
Methodologies to Web Accessibility”, Proc. of the 2010 Int’l Cross
Disciplinary Conf. on Web Accessibility, ACM, USA, 2010.

[13] Jukka P, “Web Application Performance Testing”, Master’s Thesis,
Department of Information Technology, University of Turku, 2009.

[14] Jiang G Z, Jiang S J, “A Quick Testing Model of Web Performance
Based on Testing Flow and its Application”, Proc. of the 6th Conf.
on Web Information Systems and Applications, 2009, pp. 57-61.

[15] Zhu B, Miao H K and Cai L Z, “Testing a Web Application
Involving Web Browser Interaction”, Proc. of the 10th ACIS Int’l
Conf. on Software Engineering, Artificial Intelligences, Networking
and Parallel/Distributed Computing, 2009, pp. 589-594.

[16] Zeng W D, Jiang N K and Zhou X B, “Design and Implementation
of a Web Application Automation Testing Framework”, Proc. of the
9th Int’l Conf. on Hybrid Intelligent Systems, 2009, pp. 316-318.

[17] Umar F, Usman A, “Testing Challenges in Web-based Applications
with Respect to Interoperability and Integration”, Master Thesis,
Blekinge Institute of Technology, Ronneby, Sweden, 2009.

[18] Elbaum C, Rothermel G and Karre S, et al., “Leveraging User
Session Data to Support Web Application Testing”, IEEE
Transaction on Software Engineering, May 2005.

[19] Godin R, Missaoui R and Alaoui H, “Incremental Concept
Formation Algorithms Based on Galois (concept) Lattices”,
Computational Intelligence, 1995, 11(2), pp. 246-267.

[20] Khor S and Grogono P, “Using a Genetic Algorithm and Formal
Concept Analysis to Generate Branch Coverage Test Data
Automatically”, Proc. of the Int’l Conf. on Automated Software
Engineering, 2004, pp. 346-349.

[21] Sthamer H H, “The Automatic Generation of Software Test Data
Using Genetic Algorithms”, PhD Thesis, University of Glamorgan,
Wales, UK, 1996.

[22] Ahmed M A, Hermadi I, “GA-based Multiple Paths Test Data
Generator”, Computers & Operations Research, 2008, 35 (10), pp.
3107-3124.

[23] Srivastava P R, Gupta P and Arrawatia Y, et al., “Use of Genetic
Algorithm in Generation of Feasible Test Data”, ACM SIGSOFT
Software Engineering Notes, 2009, 34 (2), pp. 1-4.

[24] Mateo F, Sovilj D and Gadea R, “Approximate k-NN Delta Test
Minimization Method Using Genetic Algorithms: Application to
Time Series”, Neurocomputing, 2010, 73 (10-12), pp. 2017-2029.

[25] Jia X X, Wu J and Jin M Z, et al., “Some Experiment Analysis of
Using Generic Algorithm in Automatic Test Data Generation”,
Journal of Chinese Computer Systems, 2007, 28 (3), pp. 520-525
(in Chinese with English abstract).

[26] Krishnamoorthi R, S A Sahaaya Arul Mary, “Regression Test
Suite Prioritization Using Genetic Algorithms”, Int’l Journal of
Hybrid Information Technology, 2009, 2 (3), pp. 35-52.

Qian Zhongsheng was born in 1977. He
received his M.S. degree from Nanchang
University of China in 2002, and Ph.D in
Computer Science at Shanghai University of
China in 2008. He has also been with the
School of Information Technology at Jiangxi
University of Finance & Economics of China
since 2002. His current research interests
include software engineering and Web
application testing, etc.

1662 JOURNAL OF COMPUTERS, VOL. 5, NO. 11, NOVEMBER 2010

© 2010 ACADEMY PUBLISHER

