
A Stochastic Combinatorial Optimization Model
for Test Sequence Optimization

Shuai Wang

1. Department of Automation, Tsinghua University
2. Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, China

wangshuai81@gmail.com

Yindong Ji1,2, Shiyuan Yang1
1. Department of Automation, Tsinghua University

2. Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, China
{jyd, ysy-dau}@tsinghua.edu.cn

 Abstract—Traditional FSM (finite state machine) based test
sequence generation methods have three problems: 1) fake
test results may occur; 2) unnecessary repetitive tests may
exist; 3) actual test coverage rate could be low. These
problems are mainly because of the dependences existing
between transitions of test sequences. In this paper, to solve
these problems, we defined a stochastic combinatorial
optimization model to describe the test sequence generation
problem from the dynamic viewpoint. Meanwhile, a
recursive algorithm is proposed to give one optimal solution
for the test sequence generation. This algorithm uses the
weighted finite state machine model for the software being
tested. At each test decision time, a test sequence will be
generated from this model. After the execution of one test
sequence and fault detecting, the weight value of this model
will be updated. Simulation results show that the effective
test efficiency and test coverage rate are evidently increased
using our method. Especially, the fake test results are much
less than transitional methods.

Index Terms—stochastic combinatorial optimization model;
test sequence optimization; test efficiency; test coverage rate

I. INTRODUCTION

Where software can be modeled as a finite state
machine (FSM), testing can be taken as checking the
output value of several sequences of input values. Such
sequences are called test sequences, which are usually
derived from its FSM model of specification. Usually an
input is given at an input port and the outputs associated
with the input can be observed at the output ports. The
outputs that are generated by the implementation of the
software will then be compared with the expected outputs
corresponding with the input.

Commonly, a test sequence can be divided into three
parts: a preamble sequence, the transition to be tested,
and a postamble sequence. The preamble sequence is a
sequence of inputs which can lead the software to the
head state of the transition to be tested. The postamble
sequence is a sequence of inputs verifying the tail state of
the transition to be tested.

Finite state machine based test has been widely applied
in where a system is state-based, communication systems,

protocol interoperability testing, protocol conformance
testing, etc.. And a considerable amount of works have
been devoted to test generation [1-6]. Several
optimization methods for test sequence generation have
been proposed [7-9]. The focus of these methods lies in
how to combine fewer test sequences to fulfill test criteria.
In the following test execution process, the execution is
carried out according to this fix set of test sequences.
Unfortunately, the test execution with fix test sequence
set will cause the following problems.

1) The effective test efficiency is low, because there
may exist unnecessary repetitive tests in the test
execution process.

2) The actual test coverage rate is low because of the
faulty premable sequence or postamble sequence. The
transition to be tested may not be executed and checked
at its expected conditions or even not be executed at all.

3) Fake test results may exist, because the fualty
transitions in the premable sequence or the postmable
sequence may interfere with the judgement of the
transition to be tested.

These problems are mainly because of the dependences
existing between transitions of test sequence. This means
that transitions which have been executed may affect the
testing and the judgments of final test results, even
though they are not the desired transitions to be tested.
That is, if the transitions in the preamble sequence and
postamble sequence of a test sequence are wrong, the
transition to be tested will be assigned a “fail” verdict
even though it has been implemented correctly.

In order to solve these problems, several approaches
have been designed. The abstract test case relation model
(ATCRM) was proposed by Chanson and Li, which
dynamically generated test cases [10]. However, it is
harder to localize errors because the unit to be tested is a
sequence of transitions rather than one transition.
Moreover, the number of tests is large because the test set
generated by ACTRM which consists of all possible
paths from the initial state covers all possible behaviors
of the implementation under test.

Another method called dynamic conformance test
method (DCTM) was proposed by Myungchul Kim,

1424 JOURNAL OF COMPUTERS, VOL. 5, NO. 9, SEPTEMBER 2010

© 2010 ACADEMY PUBLISHER
doi:10.4304/jcp.5.9.1424-1435

Sangjo Yoo and et al. [11]. This method dynamically
selects a test sequence using the test sequence tree, which
is a data structure that dynamically represents all test
sequences for a transition. In other words, it considers
dependencies between transitions in order to give a more
correct verdict to be tested. The advantages of DCTM
compared to the method ATCRM are that number of tests
is smaller with the same fault coverage and the ability to
localize errors is improved because this model focuses on
certain transition instead of test paths. But its fault
detection strategy may still generate a plenty of tests.

In this paper, considering the effects of the faulty
transitions in preamble sequence and postamble sequence
and the dependences between transitions in test sequence,
we propose a dynamic finite state machine (DFSM)
method. In this method, the software under test is
modeled as a finite machine assigned with weight value
and Boolean value for each transition. The weight value
and Boolean value may be changed during test execution
process. They are seen as parameter vector for FSM
model. The test sequence will be dynamically generated
at every decision time based on this model for the
transition with least test cost. When each test execution is
over, the parameter vector of FSM will be update based
on the execution result of this test and the history test data.

According to the simulation results in Section V, the
advantages of DFSM compared with the method DCTM
are:
1) The cost of tests is smaller than DCTM, when given

the same fault coverage.
2) The DCTM method selects test sequences using test

sequence tree. This tree represents all possible test
sequences for a transition, so its construction and
maintenance is a heavy work. Using our method, we
only need to maintain a dynamic FSM for software
under test, and it’s easy to achieve.

3) The DCTM method simply supposes that the faulty
transition will be detected after all the test sequences
for it are carried out. This usually cannot be fulfilled
in practice. Usually, after a serial of test sequences
for a transition are carried out, a diagnostic candidate
set is generated, which usually contains several
diagnostic candidates not a unique diagnostic result.
With this consideration, we use the faulty sub-
sequence to demonstrate the diagnostic result and the
fault information for the following test selection.

The rest of this paper is organized as follows. The
traditional FSM based test methods and the problems of
testing with the fix test set are discussed in Section II. In
section III a stochastic combinatorial optimization model
is introduced to describe the test sequence generation
problem after considering the dependences between
transitions. The recursive algorithm based on dynamic
finite state machine is discussed in Section IV to give an
optimal solution to the test sequence generation. The
simulation experiments for TCP test and comparison with
transitional method and related work are given in Section
V. Finally, the conclusion is presented in Section VI.

II. TEST WITH FSM AND PROBLEM ANALYSIS

Given an implementation I and a deterministic finite
state machine (FSM) M that models the required
behaviors of I , it is important to check I against M .
For the sake of convenience, we will first recall the basic
idea of testing with FSM, and then we will introduce the
fault model of FSM. At the end of this section, an
example will be discussed to demonstrate the problems
when testing with fix test sequence set.

A. Test with FSM
Usually the software under test can be modeled by

FSM that produces outputs on its state transitions after
receiving inputs.
Definition 1: A finite state machine (FSM) is a five-tuple

0(, , , ,)DFA Q qδ λ= Σ [12]
1) Q is the set of finite states;
2) Σ is the set of finite events which contains both the

input events and output events, I OΣ = ∪ ;
3) : Q Qδ ×Σ→ are the state transition functions;
4) 0q is the initial state;
5) : Qλ ×Σ→ Σ are the output functions.
When the machine is in a current state q Q∈ and
receives an input a , it moves to the next state specified
by (,)q aδ and produces an output given by (,)q aλ .

A FSM can be represented by a directed graph
(,)G V E= , where the set 1{ , }nV v v= " of vertices

represents the set of specified states Q of the FSM and a
directed edge represents a transition from one state to
another in the FSM. An edge in G is fully specified by a
triple (, ;)i jv v L , where /k lL a o≡ , ()i

kL a≡ and ()o
lL o≡ .

In this paper, it is assumed that G is strongly connected.
The approach taken in this paper for checking I

against M is to test the implementation for the
correctness of every specified transition of I . The
procedure for testing a specified transition from state iq
to state jq with input/output /k la o takes place in three
steps.
1) The implementation is leaded into state iq
2) Input ka is applied and the output is checked to

verify that whether it is lo , as expected, or not.
3) The new state of implementation is checked to verify

that if it is jq , as expected, or not.
Suppose that there exist a reset action which is applied

to make the software return to its initial state. This
ensures that each test is applied in the same state of the
IUT. The reset action might involve some sequences of
inputs or a single action such as a reset, or the system
being closed off and then powered on again. We also
suppose that M has the following feature, called a status
message. For each state iq Q∈ , this message denotes the
state uniquely, such as the unique input/output (UIO)
sequence [6]. The tail state is verified by checking this
message.

JOURNAL OF COMPUTERS, VOL. 5, NO. 9, SEPTEMBER 2010 1425

© 2010 ACADEMY PUBLISHER

Figure 1. An example of finite state machine

In this paper, the test sequence for testing transition
(, ; /)i j k lq q a o , is constructed based on the U-method
introduced in [13] as follows:
1) Constructing the reset action r to I so that I can be

reset to the initial state.
2) Generating the shortest transition sequence that can

lead the machine from the state 0q to the state iq .
3) Applying the input ka which can enable the transition

to be tested.
4) Generating the tail state jq verifying sequence.

For the M with the status message feature, the test
sequence for each transition in I is of the form

; ; ;i pre postr ts t ts (1)
where ir is the reset action, prets is the preamble sequence
for the transition t , : (,)j i kt q q aδ= is the transition to be
tested, postts is the postamble sequence to check the tail
state of transition t .

Example 1. An example FSM is shown in Fig. 1. By
using the above method, one test sequence for transition

8 2 3: (,)t q q bδ= is 3 8 6 11; , , ,r t t t t , where 3t is the preamble
sequence that can lead the machine to the 3q , 8t is the
transition to be tested, 6 11,t t is the postamble sequence.
From the model, we can see that 2q is the unique state
after the input sequence ,b a is applied the outputs ,x z
are observed, so / , /b x a z is one UIO sequence for state

2q .

B. Fault model
In the area of test generation for software testing, all

existing generation methods should ensure full fault
coverage, so fault model serves as a basis for test
generation. A general survey on a variety of fault models
in testing was given in [14]. The behavior of software
under test can be formally defined as:

1 1 2 2{ / , / , , / }n ntrace I O I O I O= " . (2)
We use 0(, , , ,)M Q qδ λ= Σ stands for the required
behaviors of software and 0(', ', ', , ')I Q qδ λ= Σ stands
for the implementation behaviors of software. If

traceM I= , we say that I has no fault with respect to M;
and if traceM I≠ , we define the faulty types as follows:
1) Output fault: We say that a transition in I has a

output fault if there exists 'M such that ' traceM I= ,
and 'M can be obtained from M by changing the
output of certain transition.

' (,) '(',) (,) '(',)i i i i i iq q q a q a q a q aδ δ λ λ= ∧ = ∧ ≠ .
2) Transfer fault: We say that I has a transfer fault if

there exists 'M , such that ' traceM I= and 'M can be
obtained from M by changing the ending state of
certain transition.

' (,) '(',) (,) '(',)i i i i i iq q q a q a q a q aδ δ λ λ= ∧ ≠ ∧ = .
Based on these two faults, for a complete defined FSM,

there exist 1((1)(1) 1) (1)(1)npn q n q−− − + − − types faulty
situation. This is very large number, so fault diagnosis for
FSM is a difficult work.

C. Example analysis
With the method discussed in section II.A, we generate

the full set of test sequences for every transition in the
machine shown in Fig.1. The UIO sequence for each state
is shown in Table I.

The generated sequences are in Table II.
The test tree is shown in Fig. 2.
Among the test sequences in Table II, if test sequence

for transition i is included in test sequence j , the testing
for the transition i can be performed by the test sequence

TABLE I.
UNIQUE INPUT/OUTPUT SEQUENCES FOR EACH STATE

State UIO sequence State UIO sequence

0
q / , /b x b y

3
q / , /a x c z

1
q /b y

4
q /a z

2
q / , /c y a z

TABLE II.
TEST SEQUENCES FOR EACH TRANSITION

 Test aim Input Expected
output

Transition
sequence

1ts 1 0 0:t q q→ , , ,r a b b , ,x x y
1 2 4, ,t t t

2ts 2 0 1:t q q→ , ,r b b ,x y
2 4,t t

3ts 3 0 3:t q q→ , , ,r c a c , ,y x z
3 9 10, ,t t t

4ts 4 1 2:t q q→ , , , ,r b b c a , , ,x y y z
2 4 7 11, , ,t t t t

5ts 5 1 4:t q q→ , , ,r b a a , ,x x z
2 5 11, ,t t t

6ts 6 2 4:t q q→ , , , ,r b b b a , , ,x y x z
2 4 6 11, , ,t t t t

7ts 7 2 4:t q q→ , , , ,r b b c a , , ,x y y z
2 4 7 11, , ,t t t t

8ts 8 3 2:t q q→ , , , ,r c b c a , , ,y x y z
3 8 7 11, , ,t t t t

9ts 9 3 4:t q q→ , , ,r c a a , ,y x z
3 9 11, ,t t t

10ts 10 4 0:t q q→
, , ,

, ,

r c a

c b b

, , , ,y x z x

y
 3 9 10

2 4

, , ,

,

t t t

t t

11ts 11 4 3:t q q→
, , , ,

,

r c a a

a c

, , , ,y x z x

z
 3 9 11

9 10

, , ,

,

t t t

t t

1426 JOURNAL OF COMPUTERS, VOL. 5, NO. 9, SEPTEMBER 2010

© 2010 ACADEMY PUBLISHER

Figure 2. Test tree of finite state machine
j as well. This inclusion relation is directly shown in Fig.

2. The test sequences shown in Table II are reduced to 7
test sequences shown in Fig. 2.

Suppose that the implementation has a faulty transition
4t (e.g., generating the output ‘z’ for the input ‘b’ or the

ending state of this transition is 4q). In this situation,
when we execute the fix test sequence set shown in Fig. 2,
it may cause the following three problems.
1) The fake test results occur. Not only will the test for

the transition 4t be assigned a “fail” verdict,
transitions 2 6 7, ,t t t will also be assigned “fail”
verdicts. This will occur even though they were
implemented correctly. 4t is one of the transitions in
the preamble sequence for 6t and 7t , and 4t is one
of the transitions in the postamble sequence for 2t .
As a result, correct test results may not be produced.

2) The unnecessary repetitive tests exist. The test
sequence 2 4 6 11, , ,t t t t carried out for transition 6t is
unnecessarily, because it contains faulty transition 4t .
As a result, the “fail” test verdict is assigned to 6t
even though it was correctly implemented.

3) Actual test coverage rate is low. Some of transitions
are not executed acutually, such as 6t . Because of the
fault of 4t , the ending state after the execution of 4t
may not be 2q , so 6t may not be executed under the
test purpose in test design phase. This causes the
actual test coverage rate to be low.

III. STOCHASTIC COMBINATORIAL OPTIMIZATION MODEL

The traditional test method with FSM and its problems
were discussed in last section. From the discussion we
can see that with fix test sequence set, the faulty
transitions in the preamble sequences and the postamble
sequences may interfere with the execution and
verification of the transitions to be tested.

Traditional test sequence generating methods and
sequence optimization methods only concern the static

effect of each test sequence and generate fix sequence set
for testing. In order to solve the above problems, we
consider the test sequence generation and optimization as
a dynamic process. The result of each test sequence
execution becomes an uncertain outcome because of the
dependence between transitions in preamble and
postamble sequences and the transition to be tested. Base
on this idea, we construct the stochastic combinatorial
optimization model for test sequence optimization in this
section.

A. Uniform test generation and optimization model for
traditional methods

Both our method and traditional methods can be seen
as a programming problem, combining fewest test cost
for the software under test. In order to compare the
difference between our method and traditional methods,
we first give the uniform definition of formal model for
traditional methods.

This is achieved by the following hypotheses.
Hypothesis 1: Test sequences are executed one by one,

so time is discrete, and in one step, one test is executed.
Hypothesis 2: Test sequence selection also happens at

discrete time.
The first test sequence is applied to the software under

test at time 0t = . The kth test sequence is applied to the
software under test at time 1t k= − . {0,1,2, }T = " are
also test decision time. At each time, one test decision is
made and one test sequence is generated. The test
sequences generated at each time compose the optimal
test sequence set for the software.

In order to formally define this test decision process,
we define the following basic concepts.
Definition 2 Test sequence: one executable state
transition (input/output) path is defined as one test
sequence for software. All test sequences compose the
test sequence set Ts ,

1 2{ , , , }nTs ts ts ts= "
where n is the number of test sequences.
Definition 3 Test target space: the test target space is
determined by the test coverage rule. In this paper, the
target space is defined as the transition set. We assume
that the implementation of software contains m transitions.
Then the initial target space is

0 1{ }mT t t= " .
The value of the test target space at time t i= is the
transitions which have not been tested.

{ , [1,], [1,], }i i jT t t i m j m i j= ∈ ∈ ≠" . (3)
Definition 4 Test Decision Space: selecting one test
sequence at time i is defined as one decision. The value
of the decision is defined as the test sequence selected.

(, [1,])i j jd ts ts Ts j n= ∈ ∈ . (4)
All executable test sequences compose the decision space.

1 2{ , , }nD Ts Ts Ts= … . (5)
Definition 5 Test Revenue Function: it is a function
which is defined to compute the benefits that are get from
the execution of one test decision. In other words, its
value is the satisfaction level for test target.

JOURNAL OF COMPUTERS, VOL. 5, NO. 9, SEPTEMBER 2010 1427

© 2010 ACADEMY PUBLISHER

(), [1,]i iR r d i n= ∈ . (6)
In this paper, the value of iR is the transition which have
been tested through the executing of id .

1 2() { , , } , [1,]i i i i il iR r d t t t T i n= = ∈… ∩ .
Definition 6 Test Cost Function: this function is defined
to compute the cost generated from the execution of id .

(), [1,]i iC c d i n= ∈ . (7)
Where iC can stand for the money cost, time cost or other
cost of the executing of id . In this paper, the value of

iC is weight sum of the transitions which are contained in

id .

,() (()) |, [1,], [1,| |]i i i j iC c d sum w t i n j d= = ∈ ∈ (8)
where | |id means the number of transitions contained in

id .
Definition 7 Objective Function: 1f is defined as the
quantity of the transitions which have been tested. 2f is
defined as overall test cost generated from the execution
of history test decisions.

1

1 1

2
1 1

();

().

i i
i i

i i
i i

f R r d

f C c d

τ τ

τ τ

= =

= =

= =

= =∑ ∑

∪ ∪
 (9)

τ is the test ending time.
From 1t = to t τ= , all test decisions compose a test

decision sequence：
1 2(, ,)D d d dτ= … . (10)

Up to now, we get the test sequence set with the value
of decision sequence which can fulfill the test coverage
rule:

(, ,)i mTs ts ts tsτ= … .
Usually, when we carry out test, we want to fulfill test

coverage rule with least test cost. So, the test optimization
objective is finding the optimal D to make:

1 0 2() min()f T f= ∧ . (11)
The optimization model of traditional methods which

only consider the static effects of each test sequence can
be formally defined as:

1 2:: (, , ,)Model T D f f= . (12)
With this consideration, the test tree in Fig. 2 is one

optimal set of test sequence for FSM in Fig. 1.

B. Stochastic combinatorial optimization model
If considering the dependences between transitions, the

revenue and cost of one test sequence will become
uncertain, because at the test beginning we cannot get the
faults happening position and fault types. So the test
revenue function and test cost function are redefined as:

' '() () (),
' '() () (),

i i i i

i i i i

R r d a f r d
C c d b f c d

= =
= =

where (), ()a f b f are defined as the stochastic vectors in
probability space (, ,)F PΩ .

Take the test sequence 4ts for example. With traditional
method, 74 2 4'() { , , }R r ts t t t= = , 4'() 4C c ts= = . Using

our method, if 2t is wrong, 'R =∅ ; if 4t is wrong, 'R =∅ ;
if 7t is wrong, 2' { }R t= ; if 11t is wrong, 2' { }R t= .

Then the optimization model for the test sequence
generating is redefined as a stochastic combinatorial
optimization model:

1 2

1 1 2
1 1 1

2
1 1 1

1

2

:: (, , ' , ',);

' ' '() ()({ , , })

' ' '() () ();

max(');
min(').

i i i i i il i
i i i

i i i i
i i i

Model T D f f F

f R r d a f t t t T

f C c d b f c d

f
f

τ τ τ

τ τ τ

= = =

= = =

=

= = =

= = =∑ ∑ ∑

… ∩∪ ∪ ∪

 (13)

where, , (), ()F a f b f are defined as the stochastic vectors
in probability space (, ,)F PΩ .

Note: Because of the faults existing in preamble
sequences, some transitions may become unreachable, so
the full coverage may not be achieved. At this situation,
we use 1max(')f to stand for trying the best to fulfill the
test coverage aim.

IV. TEST SEQUENCE GENERATION

In practice, the fault probability and fault type of each
transition cannot be known before testing. So we cannot
solve this stochastic combinatorial optimization model
directly.

In this paper, a recursive algorithm is proposed to
generate the optimal test sequences. The core idea of our
method is combining the test executing process and test
verifying process as a close loop. Different from previous
work [10-11], we will not generate all test sequences at
the beginning. At each test decision time, one test
sequence will be generated. After one test execution, we
will get more detailed knowledge on the implementation
and reconfigure its FSM model. We name this dynamic
finite state machine (DFSM) method. In DCTM method,
it supposes that the faulty transition can be detected after
all test sequences for one transition are carried out, but
this cannot usually be met even though with single fault
assumption[15-17] which is usually also not true.
Considering this, DFSM uses the faulty sub-sequence to
describe the fault information after one test sequence
execution. This makes our method have more wide
application areas. In this section we will first introduce
the basic fault detection process after the execution of test
sequence and then we will describe the test sequence
generating process using DFSM method.

A. Fault detection process
The faulty transition information can be detected with

the execution of one test sequence and test history data.
The test analysis process may be a six-step process.
Step1: Generation of the expected outputs

As discussed in section II, a test sequence its consists
of im transitions 1 2, , ,

imt t t" . Its corresponding sequence

of expected outputs is written as 1 2, , ,
imo o o" , where io is

expected after transition it happening.

1428 JOURNAL OF COMPUTERS, VOL. 5, NO. 9, SEPTEMBER 2010

© 2010 ACADEMY PUBLISHER

Step2: Generation of the observed outputs
After applying test sequence to the implementation of

software, a corresponding observed sequence is written as
1 2ˆ ˆ ˆ, , ,

imo o o" for each test sequence its .
Step3: Generation of the symptoms

Compare observed outputs with expected ones and
identify all symptoms. Any difference ˆj jo o≠ represents
a symptom that is denoted as ,i js . The symptom set for
test sequence its execution is

 ,1 ,2 ,{ , , }i i i i mS s s s= " .
Step4: Generation of the conflict set

For each symptom , ˆ|i j j js o o≠ of test sequence its ,
determine its corresponding conflict set

, , 1 ,{ , }i j j m j miFC fc fc= " , (14)
where, ,j mlfc can be single transition with either output
fault or transfer fault, and it also can be the combination
of faulty transitions. A conflict set for a given symptom is
defined to be the set of components which are supposed
to be faulty to explain the generation of this symptom.
Step5: Generation of the diagnostic candidates

Diagnostic candidates are components which are
suspected to be faulty to explain the observation of test
execution its . This is achieved by three steps:
5A) Computing the initial diagnostic candidate set
“ IDS ” of test sequence its :

,1 ,2 ,i i i i mIDS FC FC FC= ∩ ∩"∩ . (15)
It will be formed by the intersection of conflict sets for
every symptom, so each element in it can explain all the
symptoms caused by the execution of its .
5B) Removing the candidates which conflict with history
data. A processing method will be done for each
candidate in IDS .
1) For each diagnostic candidate ,i jdc which has faulty

transition with output fault, check the history test
data for all outputs of this transition it . If for all
found executions of it , their corresponding observed
outputs are equal to output in this sequence its
execution, which means this faulty it can explain all
observations, then this candidate is reserved.
Otherwise, it will be deleted from the IDS .

2) For each diagnostic candidate ,i jdc which has faulty
transition with transfer fault, check the history test
data for all ending states of it . If for all found
executions of it , their corresponding ending states
are equal to it in this sequence its execution, which
means this faulty it can explain all observations, then
this candidate is reserved. Otherwise, it will be
deleted from the IDS .

5C) After reducing the IDS , we get the final diagnostic
candidate set “ FDS ”.

Depending on the elements in the FDS , the following
different actions might be chosen:

Case 1: If the FDS has single element, this candidate is
the faulty implementation.
Case 2: If the FDS is not a singleton element set, we will
describe the fault information using a faulty sub-sequence.
The details will be discussed in Algorithm 2.

B. Test sequence generation
The test sequences are generated one by one from the

DFSM model of software at test decision time. The
DFSM model is finite state machine model with weight
value and Boolean value for each transition. With the
fault information get from the execution of test sequence,
the DFSM model will be reconfigured after each test
execution through updating the weight value and Boolean
value.

A FSM model can be represented by a directed graph
(,)G V E= . We use the weight value for each edge to

describe the test cost of this transition execution. The
initial value for each transition is 1iw = . We suppose
that there are m transitions in FSM model, and all the
weight values compose a weight vector as one parameter
of the FSM model,

1 2[, , ,]mW w w w= " . (16)
Its value will be changed after one test execution. The
change rule will be discussed with the Algorithm 1.

We define • as the transition concatenation operation,
such as 1 2t t• stands for transition 2t is carried out after 1t .

1 2t t• is denoted as a compound transition. Its value is
computed through summing the weight value of every
transition. E.g., the weight value for 1 2,t t is assumed as

1 2,w w , such that the value of 1 2t t• is 1 2w w+ .
At same time, we use a Boolean value to mark each

transition have been tested or not. The value 0 is assigned
to transition means that this transition has been tested.
But 1 means it has not been tested. The Boolean value for
all transitions compose another parameter vector of the
FSM model,

1 2[, , ,]mB b b b= " . (17)
Algorithm 1: The algorithm for test sequence generation
is described as follows.
Step1: Generation of the initial FSM model for
software.

We construct the FSM model for software to describe
the behaviors of the software using the trace of events
that record significant changes in the state of software.
Step2: Given the initial weight value and the Boolean
value for each transition.

The initial test cost value vector is
1 2[, , ,] [1,1, ,1]nC c c c= =" " .

The initial Boolean value vector is
[1,1, ,1]B = " .

Then the FSM become a valued directed graph.
Step 3: We will do the following steps recursively.
Step 3.1: Generating test sequence at time k.

Generate the test sequence for the untested transition
which is the nearest one to the initial state on the FSM
graph (least cost from the initial state to the head state of

JOURNAL OF COMPUTERS, VOL. 5, NO. 9, SEPTEMBER 2010 1429

© 2010 ACADEMY PUBLISHER

the transition to be tested). The test sequence kt is
composed of the preamble sequence, the transition to be
tested, and the postamble sequence. The expected outputs

1 2, , ,
imo o o" of this sequence are generated from the FSM

model.
The preamble sequence is

1 2(, ,)jt t t" .

1 2 1((,),)j j j j jt t q i i− − − is the initial state of the transition to
be tested. The weight value for each transition is kw , the
shortest preamble sequence is the sequence which has the
least test cost, 1 2min()jw w w+ + +" .

The UIO sequence for the tail state is generated
according to the method in section II.
Step3.2: Executing the test sequence.

We execute the test sequence generated by step 3.1,
and observe the outputs generated by each transition.
Step 3.3: Generating the diagnostic candidates

We follow the fault detection discussed in last section
to do the step 3, 4, 5.
Step 3.4: Updating the model

Based on diagnostic candidates, the following three
actions might be chosen:
Case 1: If no fault was detected, the Boolean value for
transitions which have been verified through executing
this test sequence is assigned 0. As stated in section II: if
test sequence of transition i is included in test sequence j ,
the testing for the transition i can be performed by the
test sequence j as well. So, more than one transition can
be verified by one test execution,

1 2
{ 0, 0, , 0}

it t tb b b= = =" .
The test revenue for this execution is the transitions to

be verified through this sequence which has 1 value
before the execution of this test. Such as sequence

2 4 7 11, , ,t t t t can verify transition 2 4 7, ,t t t . If the observed
outputs after execution of this test is equal to the expected
ones, such that

2 4 7
{ 0, 0, 0}t t tb b b= = = . The test revenue

of this test is 2 4 7{ , , }t t t .
Case 2: If we can confirm the fault position, then the
weight of corresponding transition is assigned infinitude,

infiw = , to demonstrate that this transition is fault and
cannot be carried out rightly to verify other transitions.
With the infinitude value, it will not be selected as part of
test sequence. In practice, we usually assign a number
large enough to implement this approach in computer,
such as 1000iw = .
Case 3: If the FDS contains more than one diagnostic
candidates, we use the faulty sub-sequence to describe the
fault information for next test decision making.
Definition 8: faulty sub-sequence. If we can be sure that
the symptoms were resulted in by sequence of transitions

, , 1 ,, ,i l i l i jt t t+ " ,
which is part of the test sequence, we called it faulty sub-
sequence.

Usually, we cannot get the confirm fault information
after one test execution. In this paper we use the faulty

sub-sequence to describe the fault information which is
applied to decide following test sequence. The faulty sub-
sequence contains the fault position of implementation,
but not the exact position. The length of the sub-sequence
is more short the fault isolation more accurate. The
detailed method for getting shortest faulty sub-sequence
is discussed in Algorithm 2. We assume that after this,
the faulty sub-sequence is reduced as

, , 1 ,, , ,i l i l i l jt t t+ +" .
The weight and Boolean values for each transition stay
the same at this situation. But the weight value of this
sub-sequence become infinitude, infl l jw w ++ + =" , to
demonstrate that this sub-sequence has one fault at least
and cannot be carried out rightly to verify other
transitions. So in the following test, all test sequences
cannot contain this sub-sequence as part of themselves.
Step 3.5: Updating the faulty sub-sequence set

Two operations will be done for the faulty sub-
sequence set to get the newest ones:
1) Add the new faulty sub-sequence obtained from last
step in it.

1 { }i i iFssS FssS Fss+ = ∪ .
2) Cut the history faulty sub-sequence in it

If this test execution successes, we can cut each
element in the faulty sub-sequence set FssS according to
the right transition information supplied by this test based
on the two cutting rules. If new confirm faulty transition
information can be get from the faulty sub-sequence set,
we will update the weight value of transitions.
Step 3.6: Stopping dynamic test process.

If for all transitions, 0
it

b∀ = or for all executable test

paths, 0
iTsr∀ = ,the additional test might be no meaningful.

So we can stop test generation.
Step 4: Additional test for diagnostic candidates.

With current observable events and controllable events,
we may not get the unique diagnostic for software. At this
situation, different points of observation and control
might be needed in order to reduce the number of
diagnostic candidates.

Now we will discuss the method of getting shortest
faulty sub-sequence. FSM is a determinate machine, then
we have:
Theorem 1: In two different executions, if the FSM will
both arrive at state iq , and the same input for this state is
applied, such that the same end state will be arrived. At
same time, the same output is observed when state is
transferred to jq , This is independent of the preamble
sequence of state iq .

Based on this, we have the following two cutting rules.
Rule 1: T is a faulty sub-sequence, and | | 1T > . If

1 'T t T= • and 1t is a right transition, then 'T is a shorter
faulty sub-sequence with same faults which exist in T .
Proof. We suppose that et is the first faulty transition in T .
If 1e = , then 1t is the faulty implementation. This
conflicts with the precondition 1t is a right transition. So

'et T∈ , and 'T is a faulty sub-sequence.

1430 JOURNAL OF COMPUTERS, VOL. 5, NO. 9, SEPTEMBER 2010

© 2010 ACADEMY PUBLISHER

Figure 3. Simplified FSM for TCP

Rule 2: T is a faulty sub-sequence, and | | 1T > . If
' lT T t= • and lt is a right transition, then 'T is a shorter

faulty sub-sequence.
Proof. We suppose that et is the last faulty transition. If
e l= , then lt is the faulty implementation. This conflicts
with the precondition lt is a right transition. So 'et T∈ ,
and 'T is a faulty sub-sequence.
Algorithm 2: In order to get the shortest faulty sub-
sequence after one test execution fails, we do the
following operations.
1) We first generate the initial faulty sub-sequence after
the execution of certain test sequence

,1 ,2 ,, , ,i i i mt t t" .
The set , , , ,ˆ ˆ{ , , }i j i j i j m i j mo o o o+ +≠ ≠" is the symptom set
generated by the execution of this sequence. , ,ˆi j i jo o≠ is
the first symptom generated by transition ,i jt . Such that
the sub-sequence

 ,1 ,2 ,, , ,i i i jt t t"
has faulty transition implementation is the unique confirm
information, when we cannot get the confirm fault
information for the observation of this test. And it is the
initial faulty sub-sequence.
2) Then we check the head and end transition of this sub-
sequence by means of the two cutting rules based on
history data. We will do this in the faulty sub-sequence
until there are no head transitions or end transitions to be
proved to be right implementation by history data.

From the previous discussion, we can see that in each
test decision and test execution step, with the current
cognition, a test sequence having the least test cost for
certain transition is generated. With the execution of this
test sequence, we have more information about the
implementation of software and the model of software is
updated dynamically. At the end of test, we might get the
implementation model of software which has its faulty
implementation information.

The test history is one optimal test sequence set:
1 2{ , , , }opt mTs ts ts ts= … .

This recursive process is formally defined as:
1 2

0 0
0 0

0 1 2

1

1 1 1 1

1 1 1 1 1
1

1 1 1

:: (, , , ,);
[1,1, ,1]; [1,1, ,1];

; 0; 0;

min(| () |); (,);
(,); (,);

(,); (,);

(

k k
k s k

k d k k k k k

k k k k k k
k k

k

Model Ts D f f M
W B

FssS f f

t preamble t ts T t M
FssS F FssS ts W W W ts
B B B ts M M W B

f f r ts

+

+ + + +

+ + + + +

+
+

=
= =

= ∅ = =

= =
= =

= =

=

" "

∪ 1
2 2 1); ().k k

kf f c ts+
+= ∪

 (18)

Where, min(| () |)preamble t is a function to compute the
transition which is the nearest one to the initial sate;

(,)k
s kT t M is a function to compute the optimal test

sequence for transition kt at time k; 1(,)d k kF FssS ts + is a
function to compute the faulty sub-sequence set after test
execution for transition kt ; 1(,)k kW W ts + is a function to
compute the new weight value vector of FSM; 1(,)k kB B ts +

is a function to compute the new Boolean value vector of
FSM; 1 1(,)k kM W B+ + means updating the parameter of FSM.

V. EXPERIMENT AND COMPARISONS

In this section, our method will be compared with the
traditional test method with FSM (TFSM) and DCTM in
terms of test cost, test coverage rate and the number of
fake test results after applying them to transfer control
protocol (TCP) test. The DCTM method applying for
TCP has already been discussed in [11].

A. Finite state machine model of TCP
FSM of TCP that appeared in paper [18] is adopted for

illustration. The simplified FSM contains a part of
transmission control (i.e., connection setup and release)
of TCP except data transmission (i.e., fragmentation and
duplication) and the timer part. In case of a transition
with no output, “null” is added for the output set. For
simplicity, identifiers for states, inputs, and outputs are
replaced with natural numbers. The state mapping and
event mapping were generated in Tables III, respectively.
Based on this, the TCP FSM is shown in Fig 3. There are

TABLE III.
STATE AND EVENT MAPPING OF TCP FSM

State Number Event Number
Closed 1 close 1
Listen 2 closed 2
SYN_Revd 3 active_open 3
Estab 4 SYN 4
SYN_Sent 5 passive_open 5
FIN_Wait1 6 send_data 6
Closing 7 SYN_ACK 7
Close_Wait 8 FIN 8
FIN_Wait2 9 ACK 9

established 10
FIN_ACK 11

Last_ACK 10

null 12

JOURNAL OF COMPUTERS, VOL. 5, NO. 9, SEPTEMBER 2010 1431

© 2010 ACADEMY PUBLISHER

a total of 10 states and 19 transitions in the TCP FSM.
With the traditional method shown in Section II, the

UIO sequences for every state are shown in Table IV.

B. Simulation results and comparison
Test sequences generated with the U-method are

shown in Table V.
Considering the fault types discussed in Section II.B,

faults for a FSM can be classified into the following three
cases [19]:
1) Produce an unexpected output for a given input and

move to an expected state;
2) Produce an expected output for a given input and

move to an unexpected state;
3) Produce an unexpected output for a given input and

move to an unexpected state.
For simplicity of simulation, the faults given by case 2)

and case 3) are considered in this paper, because the
unexpected output is usually easy to be detected and it
usually does not influence the corresponding observation
of the other transitions.

 Let us study one faulty transition situation and assume
that 6t is the unique faulty transition with transfer fault
(the ending state of this transition is implemented as

'(3,1) 7δ =).
As discussed in Section II, when we use the traditional

method to test the implementation, we will get the
following test result: 1 2 3 4 5 7 8 9 10 11 12 17 19, , , , , , , , , , , ,t t t t t t t t t t t t t
are assigned “pass” verdicts; 6 13 14 15 16 18, , , , ,t t t t t t are
assigned “fail” verdicts. 13 14 15 16 18, , , ,t t t t t are fake results
because of dependence between 6t and them. At the same
time, they were not covered actually.

With our method, for transition 1t , test sequence

1 1 3,ts t t= was generated based on 0M and it passed test.
Update the Boolean value of transition 1t as 0. Then we
generated the test sequences for 2 3 4 5, , ,t t t t , they all
passed tests. Then the Boolean vector of FSM was

[0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1]B = .
But when we applied 6 1 5 6 13,, ,ts t t t t= , we observed the
conflict

6,4 6,4ˆ(12) (2)o o= ≠ = .
With step 4 of the fault detection method, more than one
diagnostic candidate can explain this observation, such as

6,1 : (6,9) 2DC λ = , 6,2 : (3,1) 7DC δ =
and etc. So we use the faulty sub-sequence to describe the
fault information. The initial faulty sub-sequence was

1 1 5 6 13,, ,Fss t t t t= .
With the cutting rules for faulty sub-sequence, because

1 5,t t have been verified to be right, the shortest faulty
sub-sequence was

1 6 13,Fss t t= .
Then the weight value for sub-path 6 13t t• was assigned
infinite, and the following test sequences should not
contain this sub-path in them.

We generated the test sequences for 7 8 9 10 11 12, , , , ,t t t t t t ,
and all of them pass tests. With the model 12M , the test
sequence 13 2 12 8 13 18, , , ,ts t t t t t= for transition 13 was
generated. This is different from the generation with
traditional method 13 1 5 6 13 18' , , , ,ts t t t t t= . The sub-path

6 13t t• had infinite weight, so 13'ts is not least cost test
sequence for 13t . 13ts passed test. With this result, the
faulty sub-sequence 1 6 13,Fss t t= was cut to one transition

6t . With the execution data of 11ts , we can conclude that

6t has right output. So 6t has a transfer fault, two
diagnostic candidates can explain the observation of 6ts ,

6,1 6,1{ : (3,1) 7, : (3,1) 10}FC FCδ δ= =
Up to now, the unique faulty transition was confirmed,

TABLE IV.
UNIQUE INPUT/OUTPUT SEQUENCES FOR EACH STATE

State UIO sequences
1 1 : 5 / 12t

2 3 : 1 / 2t

3 6 : 1 / 8t

4 9 : 8 / 9t

5 11 : 4 / 7t

6 13 : 9 / 12t

7 16 : 9 / 2t

8 17 19: 1 / 8, : 9 / 2t t

9 18 : 8 / (9, 2)t

10 19 1: 9 / 2, : 5 / 12t t

TABLE V.
TEST SEQUENCES FOR TCP

Transition Test sequences
1 1 3,t t

Transi
tion Test sequences

2 2 11,t t 11 2 11 6, ,t t t

3 1 3 1, ,t t t 12 2 12 9, ,t t t

4 1 4 11, ,t t t 13 1 5 6 13 18, , , ,t t t t t

5 1 5 6, ,t t t 14 1 5 6 13 18, , , ,t t t t t

6 1 5 6 13, , ,t t t t 15 1 5 6 15 16, , , ,t t t t t

7 1 5 7 9, , ,t t t t 16 1 5 6 16 1, , , ,t t t t t

8 2 12 8 13, , ,t t t t 17 2 12 9 17 19 1, , , , ,t t t t t t

9 2 12 9 17 19, , , ,t t t t t

18 1 5 6 13 18 1, , , , ,t t t t t t

10 2 10 1, ,t t t

19 2 12 9 17 19 1, , , , ,t t t t t t

TABLE VI.
TEST RESULTS WITH 6t FAULT

TFSM DFSM DCTM C P F W C P F U C P F W

6t 72 13 6 5 72 18 1 0 98 18 1 0
Note: C stands for test cost which is measured by the weight value sum
of transitions have been executed. P stands for the number of transitions
pass tests. F stands for the number of transitions fail tests. W stands for
the number of transitions with fake test results. U stands for the number
of transitions which have not be tested.

1432 JOURNAL OF COMPUTERS, VOL. 5, NO. 9, SEPTEMBER 2010

© 2010 ACADEMY PUBLISHER

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

position of faulty transition

te
st

 c
ov

er
ag

e
ra

te

TFSM
DCTM
DFSM

Figure 4. Test coverage rate

so the weight value for transition 6t was assigned infinite.
The character vectors for FSM were

[1,1,1,1,1, inf,1,1,1,1,1,1,1,1,1,1,1,1,1]C = ,
[0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1]B = .

Then we generated test sequences for the remaining
transitions, and they all passed tests. The test history is:

1 1 3 2 2 11 3 1 3 1 4 1 4 11 5 1 5 6

6 1 5 6 13 7 1 5 7 9 8 2 12 8 13

9 2 12 9 17 19 10 2 10 11 11 2 11 6

12 2 12 9 13 2 12 8 13

, ; , ; , , ; , , ; , , ;
, ; , ; , ;

, , ; ; ;
; , , , ,

, , , , , ,
, , , , , ,
, ,

ts t t ts t t ts t t t ts t t t ts t t t
ts t t t t ts t t t t ts t t t t
ts t t t t t ts t t t ts t t t
ts t t t ts t t t t t

= = = = =

=

= = =
= = =
= 18 14 2 12 8 14 1

15 2 12 8 15 16 16 2 12 8 15 16 1

17 2 12 9 17 19 1 18 2 12 8 13 18 1

19 2 12 9 17 19 1

; , , , , ;
, , , , ; , , , , , ;

, , , ; , , , , , ;
, , ,

, ,
, ,

ts t t t t t
ts t t t t t ts t t t t t t
ts t t t t t t ts t t t t t t
ts t t t t t t

=
= =

==
=

This is one optimal test sequence set for software

implementation with fault '(3,1) 7δ = . The comparison
with traditional method is shown in Table VI.

From the test results shown in Table VI, we can see
that our DFSM method has higher test coverage rate and
expends same test cost compared with the TFSM method.
In 6t fault situation, the test coverage rate is closer to the
ideal with DFSM method. The same test coverage rate is
obtained by DCTM, but its test cost is higher than DFSM.
We study all single fault situations, and the simulation
results are shown in Table VII.

Considering one fault situation, the number of “pass”
transitions is 17.4 by the method DFSM or DCTM. But
only 15.9 transitions pass when we use TFSM method.
We will compare DFSM with DCTM and TFSM from
three aspects: test coverage rate, effective test efficiency
and number of fake test results.
Test coverage rate: From the simulation experiments, in
average view, DFSM has same test coverage rate with
DCTM but with less test cost. They both have higher test
coverage rate than TFSM. The test coverage rate with
DCTM and DFSM are closer to the ideal. The test
coverage rate is computed by

/c at t ,
where, ct means the number of covered transitions; at
means the number of all transitions. With the simulation
results, the test coverage rate in each fault situation is
figured in Fig. 4. The lines for DFSM and DCTM are
superposition in the figure, because they have same test
coverage rate.
Effective test efficiency: We use the following equation
to compute the effective test efficiency:

/ct TC ,
where, TC means test cost and ct stands for transitions
which are covered. The average effective test efficiency
of the three methods are:

/ 321/1368 0.235
/ 350 /1356 0.258

/ 350 /1466 0.239

a c all

a c all

a c all

TFSM t TC
DFSM t TC
TFSM t TC

= = =
= = =
= = =

.

We can see that DFSM has highest average effective test
efficiency, in average view. Compared with DCTM,
DFSM has less redundant tests, because DCTM detect

TABLE VII.
TEST RESULTS WITH SINGLE FAULT

TFSM DFSM DCTM C P F W C P F U C P F W

1t 72 8 11 10 63 15 4 3 61 15 4 3

2t 72 11 8 7 81 18 1 0 59 18 1 0

3t 72 18 1 0 72 18 1 0 46 18 1 0

4t 72 18 1 0 72 18 1 0 57 18 1 0

5t 72 11 8 7 72 18 1 0 57 18 1 0

6t 72 13 6 5 72 18 1 0 98 18 1 0

7t 72 18 1 0 72 18 1 0 12
9 18 1 0

8t 72 18 1 0 72 18 1 0 14
4 18 1 0

9t 72 16 3 2 72 16 3 2 92 16 3 2

10t 72 18 1 0 72 18 1 0 54 18 1 0

11t 72 18 1 0 72 18 1 0 81 18 1 0

12t 72 14 5 4 84 18 1 0 85 18 1 0

13t 72 17 2 1 66 17 2 1 64 17 2 1

14t 72 18 1 0 72 18 1 0 65 18 1 0

15t 72 17 2 1 66 17 2 1 64 17 2 1

16t 72 18 1 0 72 18 1 0 10
1 18 1 0

17t 72 16 3 2 66 16 3 2 54 16 3 2

18t 72 18 1 0 72 18 1 0 10
1 18 1 0

19t 72 16 3 2 66 16 3 2 54 16 3 2

E 72 15
.9

3.
1

2.
1

70.
9

17.
4

1.
6

0.
6

77.
2

17.
4

1.
6

0.
6

I ⁄ 18 1 0 ⁄ 18 1 0 ⁄ 18 1 0
Note: E stands for the average value of each line. I stands for the ideal
value of each line. The faulty implementation is assumed as follows:

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

: '(1,5) 5; : '(1,3) 2; : '(2,1) 4; : '(2, 6) 4;

: '(2, 4) 4; : '(3,1) 7; : '(3, 9) 5; : '(4,1) 7;

: '(4,8) 7; : '(5,1) 4; : '(5, 4) 4; : '(5, 7) 3;

: '(6,9) 1; : '(6,11) 9; : '(6,8)

t t t t

t t t t

t t t t

t t t

δ δ δ δ

δ δ δ δ

δ δ δ δ

δ δ δ

= = = =

= = = =

= = = =

= = = 16

17 18 19

1; : '(7, 9) 10;

: '(8,1) 4; : '(9,8) 7; : '(10,9) 7.

t

t t t

δ

δ δ δ

=

= = =

JOURNAL OF COMPUTERS, VOL. 5, NO. 9, SEPTEMBER 2010 1433

© 2010 ACADEMY PUBLISHER

0 5 10 15 20
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

position of faulty transition

ef
fe

ct
iv

e
te

st
 e

ffi
ci

en
cy

TFSM
DCTM
DFSM

Figure 5. Effective test efficiency

0 5 10 15 20
-5

0

5

10

15

position of faulty transition

nu
m

be
r

of
 fa

ke
 r

es
ul

ts

TFSM
DCTM
DFSM

Figure 6. Number of fake test results

faults based on all executable paths for one transition fail.
But DFSM reasons with history data to detect fault and
uses faulty sub-sequence to describe fault information.
The effective test efficiency in each fault situation for
every method is shown in Fig. 5.
Number of fake test results: With DFSM and DCTM
methods, the fake test results are much less than TFSM.
The DFSM method uses U to denote the transitions which
have not been tested. In future testing activity, we can
employ more sensors to test these transitions to get the
confirm fault information. But with DTCM method, when
the executable test sequences for certain transition are all
wrong, the “fail” verdict is assigned to this transition.
This may cause fake test results also, such as 17t in

9t fault situation. Non preamble sequence can lead the
state8 of FSM, so 17t had not been tested from beginning
to end. It is inappropriate to assign a “fail” verdict to it.
The number of fake test results is shown in Fig. 6 for
every method. The number in this figure for DFSM is the
number of transitions which have not been tested which is
same with the fake test result number caused by DTCM
method.

VI. CONCLUSION

Traditional FSM based test methods carry out tests
based on fix test sequence set and the test execution
process is independent with test analysis process. This
causes the problems shown in section II. In this paper,
considering the fault effects on testing and the
dependences between transitions, we propose a stochastic
combinatorial optimization model to describe the test
sequence generation problem. At same time, a recursive
algorithm is proposed to give one optimal solution for the
test sequence generation. In our method, the software test
execution process and fault detection process compose a
close-loop process. Moreover, a weighted FSM is
modeled for the software under test, and the weight value
and Boolean value of each transition may be changed
after the test execution and fault detection. We call this
method dynamic finite state machine (DFSM). At each
time a test sequence is generated according to the current
weighted FSM model.

The simulation results in Section V show that the
DFSM method is an efficient approach to solve the three
problems. It has higher test coverage rate and more
effective test efficiency than traditional FSM based test
methods. Specially, the fake test results are much reduced.
Compared with related work DCTM, the DFSM method
has less test cost in average view. At same time, the fault
assumption and detection method are more close to real
application. The DCTM only needs to maintain a
weighted finite state machine but doesn’t need to
generate all possible preamble and postamble sequences
for every transition which is the way adopted by DCTM.
So it is easy to be implemented.

In short, the DFSM method provides a convenient way
for testing with finite state machine.

ACKNOWLEDGMENT

This work was supported in part by the National Key
Technology R&D Program under Grant 2009BAG12A08,
the R&D Foundation of the Ministry of Railways under
Grant 2009X003 and the Research Foundation of Beijing
National Railway Research and Design Institute of Signal
and Communication.

REFERENCES
[1] T. S. Chow, “Testing software design modeled by finite-

state machines,” IEEE Trans. Software Eng., vol. SE-4,
Issue 3, pp. 178-187, 1978.

[2] G. Gonenc, “A method for the design of fault detection
experiments,” IEEE Trans. Computers, vol. 19, issue 6, pp.
551-558, June 1970.

[3] A. Petrenko and N. Yevtushenko, “Test suite generation
from a FSM with a given type of implementation errors,’’
Proc. IFIP 12th Int. Symp. Protocol specification. Testing,
and Verification XII, North-Holland, pp. 229-243, 1992.

[4] D. P. Sidhu and T. K. Leung, “Formal methods for
protocol testing: A detailed study,” IEEE Trans. Software
Eng., vol. 15, Issue 4, pp. 413-426, Apr. 1989.

[5] M. P. Vasilevskii, “Failure diagnosis of automata,”
Cybernetics, Vol.9, No. 4, pp. 653-665, 1973.

1434 JOURNAL OF COMPUTERS, VOL. 5, NO. 9, SEPTEMBER 2010

© 2010 ACADEMY PUBLISHER

[6] Gregor v. Bochmann and Alexamdre Petrenko, “Protocol
testing: review of methods and relevance for software
testing,” Proceedings of the 1994 ACM SIGSOFT
international symposium on Software testing and analysis,
pp.109-124, 1994.

[7] Yanghee Choi, Dongkyun Kim, Jaecheol Kim, and et al.,
“Protocol test sequence generation using UIO and BUIO,”
1995 IEEE International Conference on communications,
pp. 362-366, 1995.

[8] S. Fujiwara, G von Bochmann, F.Khendek and et al., “Test
selection based finite state models,” IEEE Transactions On
Software Engineer, Vol.17, Issue 6, pp.591-603, 1991.

[9] S. C. Pinto Ferraz Fabbri, M. E. Delamaro, J. C.
Maldonado and et al., “Mutation analysis testing for finite
state machine,” Proceedings of 5th International
Symposium on Software Reliability Engineer, pp.220-229,
1994.

[10] Chanson, S.T. and Li, Q., “On static and dynamic test case
selections in protocol conformance testing,” In: The 5th
Int’l Workshop on Protocol Test Systems, pp.225-267,
1992.

[11] Myungchul Kim, Sangjo Yoo, and et al., “A dynamic
protocol conformance test method,” The Journal of
Systems and Software, 67, pp.31-43, 2003.

[12] John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman.
“Introduction to automata theory, languages, and
computation (2nd Edition),” Pearson Education. ISBN 0-
201-44124-1, 2000.

[13] Krishan Sabnani and Anton Dahbura, ‘‘A protocol test
generation procedure,’’ Computer Networks and ISDN
Systems, vol. 15, no. 4, pp. 285-297, 1988.

[14] G. v. Bochmann, A. Das, R. Dossouli, M. Dubuc and et al.,
“Fault model in testing”, Proceedings of the IFIP
TC6/WG6.1 Fourth International Workshop on Protocol
Test Systems IV, pp.17-30, October 15-17, 1991.

[15] Ghedamsi A., and Bochmann G. Von, “Test result analysis
and diagnostics for finite state machines,” Proceeding of
the 12th international Conference on Distributed
Computing Systems, pp.244-251, 1992.

[16] Miller R E. and Arisha K A., “Fault identification in
networks by passive testing,” Proceeding of the 34th
Annual Simulation Symposium, pp.277-284, 2001.

[17] Miller R E. and Arisha K A. “On fault location in networks
by passive testing,” Proceeding of the IEEE international
Performance, Computing, and Communications
Conference, pp.281-287, 2000.

[18] Seol, S., Kim, M., Kang, S., Park, Y., and Choe, Y.,
“Interoperability test suite derivation for the TCP,” IFIP
Joint International Conference on Formal Description
Techniques for Distributed Systems and Communication
Protocols (FORTE XII) and Protocol Specification,
Testing and Verification (PSTV XIX), pp.357-376, 1999.

[19] Sidhu, D.P., Leung, T.K., “Formal methods for protocol
testing: a detailed study,” IEEE Trans. Software Eng., Vol.
15, Issue 4, pp.413-426. 1989.

Shuai Wang was born in Changchun, Jilin
Province, China, on April 3, 1981. He received
his B.S. degree in control science and
engineering from Beijing Institute of
Technology University, Beijing, China in 2004.
Currently, he is a direct PH.D research
candidate with control science and
engineering at Tsinghua University since

2004. He major in system test, fault diagnosis and reliability
analysis.

Yindong Ji was born in Beijing, China in
1962. He received his B.S. and M.S. all
from the Department of Automation, at
Tsinghua University, in 1985 and 1989,
respectively. His main research areas are
digital signal process, fault diagnosis,
modeling & simulations. He is a member of
IEEE.

Prof. JI is with the Department of Automation, and
Tsinghua National Laboratory for Information Science and
Technology, Tsinghua University, Beijing, China. He has
published over 60 papers in journals. His current research
interest is in the area of train control system of high speed
railway.

Shiyuan Yang was born in Shanghai, China,
in 1945. He received his B.S. and M.S degree
from Tsinghua University in 1970 and 1981,
respectively.

Currently, he is a Professor in automation
of department in Tsinghua University. He is
an Associate Director of the FTC

committee, China. His main research interests are home
automation network, test technology, electronic technology
application, system fault diagnosing.

JOURNAL OF COMPUTERS, VOL. 5, NO. 9, SEPTEMBER 2010 1435

© 2010 ACADEMY PUBLISHER

