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Abstract—Based on the grey theory, grey characters of river 
environment system are analyzed, the velocity and 
dispersion coefficient and attenuation in river are 
considered as uncertainty parameters and expressed as gray 
parameters. A grey differential equation of contaminant 
diffusion in river is built. And the equation has special 
structure. The truncation error of finite differential method 
in solving the model is corrected. According to the model, 
distribution values of pollutant concentration under sudden 
pollutant discharged can be obtained directly, which can 
provide abundant and useful water quality information for 
the plan and control of water pollution. It is shown that the 
calculated results obtained from the gray model are reliable 
and reasonable. 

Index Terms—grey model; truncation error; finite 
differential 

I.  INTRODUCTION  
Gray systematic theory is proposed by Chinese 

professor Deng Jurong  in 1982 [1].  In the theory, there is 
not only a large amount of known information called 
white system, but also much unknown and uncertain 
information called black system. The system including 
white system and black system is called gray system. 
Contaminant transport in natural river system usually 
occurs in varied flow fields and in anisotropic and 
heterogenous media. Because the applicability of 
analytical solutions is extremely limited for such 
conditions, numerical techniques are essential for 
underground pollution simulation. Mecarthy [2], Li et al. 
[3],Li & Wang[4], Basha & El-Habel [5] made much 
work about the uncertain issues. Among the numerical 
techniques, the gray numerical method has become very 
popular and is recognized as a powerful numerical tool. 
The distribution and transport of pollutants mentioned  by 
Liu et al. [6], Chen & Wagenet [7], Xu et al. [8] in 
groundwater are controlled by physical chemistry and 
biology functions, which include advection, diffusion, 
dispersion, sorption, decay and biodegradation. In the 
courses, there is not only the known information but also 
uncertain information. Therefore, it can be seen as one 
gray system. Considering the above mechanism 
synthetically, two-dimensional gray model about river 
water pollution is built in this paper. It has the significant 
practical value for the research of gray simulation of river 
water pollution. 

II. MECHANISM OF CONTAMINANT TRANSPORT 
The contamination usually occurs at an isolated sites, 

and then infiltrates the soil and finally into groundwater. 
Following the groundwater flow, contaminants are 
transported and dispersed to the surrounding areas. 
Several processes are involved with this transport, 
including advection, diffusion, dispersion, sorption, decay 
and biodegradation. 

A. Advection 
Contaminant advection is defined as the movement of 

contaminants with the groundwater flow through the 
porous media. The gray advection flux is: 

xF v c⊗ = ⊗ ⋅⊗                                      (1) 

Where xF⊗  is the gray convection flux of pollutant in 

x direction ( 2/( )mg m s⋅ ); v⊗  is the velocity in x 
direction(m/s); c⊗ is the gray density of pollutant 
( 3/mg m ). 

B. Diffusion 
Diffusion is the process of molecular and ionic 

movements. Because of the irregular moving of molecule, 
solutes in groundwater move from high density to low 
density by diffusion. This course is called molecule 
diffusion. Even if in the static situation, materials can be 
transformed to make the interface between pollutant and 
groundwater gradually smudgy and gradually diffuse 
with time. The diffusion flux can be got through the first 
Fick law. 

1 m
cM D

x
∂⊗

⊗ = −⊗
∂

                            (2) 

Where 1M⊗ is the gray molecule spreading 

flux,( 2/( )g m s⋅ ); mD⊗ is Coefficient of molecule 

spreading( 2 /m s ).  

C. Dispersion  
Dispersion is a mixing process during the computation 

of contaminant advection. The mean velocity and density 
represent the distribution value for simplicity. Generally, 
dispersion is recognized as an irreversible course. By 
analysis, the gray flux can also be described by the first 
Fick law, that is: 

2 o
cM D

x
∂⊗

⊗ = −⊗
∂

                            (3) 

Where 2M⊗ is dispersion flux in x direction 

( 2/( )g m s⋅ ), oD⊗ is Coefficient of dispersion 
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( 2 /m s )  

D. Radioactive decay 
Substances containing radioelement in the groundwater 

will have disintegration with time so as to reduce density. 
The rule of Radioactive decay can be described as 
follows 

0 0exp( )c c tλ⊗ = ⊗ −                                (4) 

So    
0

( ) ( )c c
t

λ∂ ⊗
= − ⊗

∂
                                   (5) 

E. Adsorption and desorption 
Absorption and desorption is an appearance which 

occurs in the cross section between solid and liquid 
phase. Solute in liquid phase may be absorbed by solid 
phase, while, solute in solid phase can enter liquid phase 
by the effect of solute and ion exchange. Here, we use 
Henery absorption constant temperature formula to 
calculate: 

( )( )s k C⊗ = ⊗ ⊗                                      (6) 
Where s⊗ is gray concentration of solid when 

equilibrium of absorption arrives ( /ug g ), k⊗  is 
experience constant, which is relevant to factors such as 
water temperature and nature of pollutant and so on; 

c⊗ is gray concentration of pollutants in groundwater 
environment when absorption equilibrium arrives. 

F. Biodegradation 
Organic contaminants in groundwater system degrade 

into inorganic matters and synthesize new cell under the 
effects of microbial population gradually, which makes 
the concentration of organic contaminants decreased. 
Degradation velocity of microbes and pollutants is 
relevant to biochemical action. The velocity has a vital 
and common sense to anticipate and control of organic 
contaminants. 

Biodegradation velocity of organic contaminants can 
be described as follows: 

   ( )( )
( )

m

c

v Cd C X
dt K C

⊗⊗
= −

+ ⊗
                               (7) 

Where X is concentration of microbes at present time 
(mg/l), cK  is constant, Concentration of organic 
contaminants in groundwater is generally low, that’s to 
say, C⊗  is much smaller than cK , the formula above 
can be transformed to: 

  ( ) ( )m

c

v Xd C C
dt K
⊗

= − ⊗                                   (8) 

Because microbes are short of food under the 
environment of low contaminant concentration, 
increment speed of organic contaminants is rather little, 
which means that concentration of microbes is turning 

balanced population. 1
m

c

v k
K

= , here, 1k can be treated as 

a constant, so  

1
( ) ( )( )d C k C
dt
⊗

= − ⊗ ⊗                              (9) 

G. Retardation 
Sorption results in retardation which is the 

phenomenon that the contaminant solute does not move 
as fast as the general groundwater flow. Transportation of 
organic chemicals in geological medium is influenced by 
groundwater flow, adsorption and desorption, ion 
exchange, chemical precipitation/solution, mechanical 
filtration and many other physico-chemical reactions. The 
transportation way is nearly the same with the way of 
groundwater flow. Transportation velocity of 
contaminants has the relationship with the velocity of 
groundwater flow as follows: 

     ' / dv v R⊗ = ⊗ ⊗                                     (10) 

Where dR⊗  is the gray retardation coefficient of 
pollutants in porous medium. 

III. ESTABLISHMENT OF FINITE DIFFERENTIAL 
EQUATION OF RIVER WATER POLLUTION 

Assuming pollutant particles and river environment 
particles have the same hydromechanics characteristics. 
On the basis of discussing parameters and variables, the 

finite differential equation of air pollution is educed 
according to the principles of mass conservation and 

energy conservation. The process is as follows. 

 
Figure 1.  Mass balance in a volume element 

     As shown in Fig.1, pollutant inputting of each volume 
element in X direction at unit time is 

( )[ ( ) ]x x x
cu c D y z
x

∂
⋅ + − ⋅ ∆ ∆

∂
 

     Pollutant outputting of each volume element in X 
direction at unit time is 

 

( ) ( ) ]x
x xx xx

u c c cu c x D D x y z
x x x x

∂ ⋅ ∂ ∂ ∂
⋅ + ∆ + − + − ⋅ ∆ ∆ ∆

∂ ∂ ∂ ∂
 

     So the pollutant change quantity in X direction at unit 
time is 

[ ( )] ( ) ( ) ]

( ) ( )[ ( )]

x
x xx x xx xx

x
xx

u cc c cu c D y z u c x D D x y z
x x x x x

u c cD x y z
x x x

∂ ⋅∂ ∂ ∂ ∂
⋅ + − ⋅ ∆ ∆ − ⋅ + ∆ + − + − ⋅ ∆ ∆ ∆

∂ ∂ ∂ ∂ ∂
∂ ⋅ ∂ ∂

=− + − ⋅ ∆ ∆ ∆
∂ ∂ ∂  
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Similarly, the pollutant change quantities in Y,Z 
direction at unit time respectively are 

( ) ( )( ) ( )[ ( )] [ ( )]y z
yy z

u c u cc cD x y z E x y z
y y y z z z

∂ ⋅ ∂ ⋅∂ ∂ ∂ ∂
− + − ⋅ ∆ ∆ ∆ − + − ⋅ ∆ ∆ ∆

∂ ∂ ∂ ∂ ∂ ∂
 

If pollutant takes place attenuation reactions and 
contains sources and sinks in the volume element, 
corresponding pollutant change quantity will be 

zyxcks ∆∆∆⊗⋅⊗−⊗ )( . Thereupon, in the unit time 
pollutant change quantity of the volume element is 

( )( ) [ ( )]

( ) ( )( )[ ( )] [ ( )]

( )

x
x

y z
y z

u cc cx y z E x y z
t x x x

u c u cc cE x y z E x y z
y y y z z z

s k c x y z

∂ ⋅∂ ∂ ∂
∆ ∆ ∆ =− + − ⋅ ∆ ∆ ∆

∂ ∂ ∂ ∂
∂ ⋅ ∂ ⋅∂ ∂ ∂ ∂

− + − ⋅ ∆ ∆ ∆ − + − ⋅ ∆ ∆ ∆
∂ ∂ ∂ ∂ ∂ ∂

− − ⋅ ∆ ∆ ∆  
In a homogeneous flow field, xu and yE are the non-

dynamic volumes, which can be taken as constants. Order 
the volume element 1=∆∆∆ zyx , then the following 
equation can be obtained 

2 2 2

2 2 2  

              

x y z x

y z

c c c c cE E E u
t x y z x

c cu u s k c
y z

∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅ + ⋅ − ⋅

∂ ∂ ∂ ∂ ∂
∂ ∂

− ⋅ − ⋅ + − ⋅
∂ ∂

（11） 

Where ， c ——the concentrations of pollutants ，
3/ mmg ； 

yE
——the grey diffusion coefficients in the 

landscape orientation，
2 /m s ;  

xu ——the grey wind speed in the predominant 
direction (vertical)， /m s ； 

s ——the sources and sinks of air pollutants，
smmg ⋅3/ ； 

k ——the attenuation coefficient of air pollutants，
1−s ; 

t ——the migration time of air pollutants， s ; 
 

2 2

2 2

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )xx yy
C C C CD D u k C
t x y x

∂⊗ ∂ ⊗ ∂ ⊗ ∂⊗
= + ⊗ − ⊗ − ⊗ ⊗

∂ ∂ ∂ ∂
         (12) 

According to the above analysis, the governing gray 
equation of groundwater pollution is: 

2 2

2 2

( ) ( ) ( )( ) ( )

( )( ) ( )( )

xx yy
C C CD D
t x y

Cu k C
x

∂ ⊗ ∂ ⊗ ∂ ⊗
= + ⊗

∂ ∂ ∂
∂ ⊗

− ⊗ − ⊗ ⊗
∂

           (13) 

The initial and boundary condition: 

  
0

( , 0) 0 0
(0, ) 0
( , 0) 0 0

c x x
c t c t
c t

⊗ = >
⊗ = ≥
⊗ ∞ = =

                      (14) 

Using finite difference equation to replace differential 
equation as followings: 

1( ) ( )( ) n n
i ic cc

t t

+⊗ − ⊗∂ ⊗
=

∂ ∆
 

2
1 1

2 2

( ) 2( ) ( )( )
( )

i i ic c cc
x x

+ −⊗ − ⊗ + ⊗∂ ⊗
=

∂ ∆
 

1( ) ( )( ) i ic cc
x x

+⊗ − ⊗∂ ⊗
=

∂ ∆
 

Because the finite difference approach uses limited 
developments of derivatives, it is only an approximation 
of partial differential equations leading to truncation 
errors. Truncation errors affect the accuracy of numerical 
simulations. A Taylor series expansion of c about any 
grid point is used to determine the form of truncation 
errors [7], [9], [10]. If terms of third and higher orders are 
neglected, then: 

2 2
1

, , 2

( ) ( )( ) ( )
2

n n
i j i j

c t cc c t
t t

+ ∂ ⊗ ∆ ∂ ⊗
⊗ ≈ ⊗ +∆ +

∂ ∂
              (15) 

2 2
3

1, , 2

( ) ( )( ) ( ) 0( )
2

n n
i j i j

c x cc c x x
x x±

∂ ⊗ ∆ ∂ ⊗
⊗ ≈ ⊗ ±∆ + + ∆

∂ ∂
            (16) 

2 2
3

, 1 , 2

( ) ( )( ) ( ) 0( )
2

n n
i j i j

c y cc c y y
y y±

∂ ⊗ ∆ ∂ ⊗
⊗ ≈ ⊗ ±∆ + + ∆

∂ ∂
                (17) 

The second-order temporal derivative of c is written in 
terms of spatial derivatives using the differentiated form 
of  [11]. The transport parameters are assumed to be 
constant within each combination of time and space 
increments in the finite difference calculations. Thus to 
second order accuracy:  

2 2
2

2 2

2

2

2

( ) ( )[( ) 2( )( )]

( )2( )( )

( )2( )( ) ( ) ( )

xx

yy

C Cu k D
t x

Ck D
y

Cu k k C
x

∂ ⊗ ∂ ⊗
= ⊗ − ⊗ ⊗ −

∂ ∂
∂ ⊗

⊗ ⊗ +
∂

∂ ⊗
⊗ ⊗ + ⊗ ⊗

∂

          (18) 

Equation (8) may then be written as: 
2

2
2

2

2

2

( ) ( )( ) [( ) 2( )( )]
2

( ) ( )[( ) ( )( )] [( ) ( )( )]

[( ) ( ) ]( ) ( , , )
2

xx xx

yy yy

C t CD u k D
t x

C CD t k D u t u k
y x

tk k C s x y t

∂ ⊗ ∆ ∂ ⊗⎧ ⎫= ⊗ − ⊗ − ⊗ ⊗ +⎨ ⎬∂ ∂⎩ ⎭
∂ ⊗ ∂ ⊗

⊗ +∆ ⊗ ⊗ − ⊗ +∆ ⊗ ⊗ −
∂ ∂

∆
⊗ + ⊗ ⊗ +

     (19) 

namely: 
* 2( ) ( ) [( ) 2( )( )]

2xx xx
tD D u k u∆

⊗ = ⊗ − ⊗ − ⊗ ⊗  

*( ) ( ) ( )( )yy yy yyD D t k D⊗ = ⊗ + ∆ ⊗ ⊗  
*( ) ( ) ( )( )u u t k u⊗ = ⊗ + ∆ ⊗ ⊗  

* 2( ) ( ) ( )
2
tk k k∆

⊗ = ⊗ + ⊗  

Equation (9) can be simplified as 
2 2

* *
2 2

* *

( ) ( ) ( )( ) ( )

( )( ) ( ) ( ) ( , , )

xx yy
C C CD D
t x y

Cu k C s x y t
x

∂ ⊗ ∂ ⊗ ∂ ⊗
= ⊗ + ⊗

∂ ∂ ∂
∂ ⊗

− ⊗ − ⊗ ⊗ +
∂

          (20) 

To remove the induced truncation errors from the 
finite difference model, the model can be rewritten as 
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1 1 1
1, , 1,*

2

1 1 1
, 1 , , 1*

2

1 1
1, 1,*

1
, ,* 1

,

( ) 2( ) ( )
( )

( )
( ) 2( ) ( )

( )
( )

( ) ( )
( )

2
( ) ( )

( ) ( )

n n n
i j i j i j

xx

n n n
i j i j i j

yy

n n
i j i j

n n
i j i jn

i j

C C C
D

x
C C C

D
y

C C
u

x
C C

k C
t

+ + +
− +

+ + +
− +

+ +
+ −

+
+

⊗ − ⊗ + ⊗
+

∆

⊗ − ⊗ + ⊗

∆

⊗ − ⊗
− ⊗ −

∆
⊗ − ⊗

⊗ ⊗ =
∆

          (21) 

Where 
*

2

( )
( )

xE t A
x

⊗ ⋅∆
= ⊗

∆

*

2

( )
( )

yE t
B

y
⊗ ⋅∆

= ⊗
∆

  

*( )
2
u t M

x
⊗ ⋅∆

= ⊗
∆

 

1
,

1
1,

1
1,

1 1
, 1 , 1 ,

[2( ) 2( ) ( ) 1]( )

[( ) ( )]( )

[( ) ( )]( )

( )( ) ( )( ) ( )

n
i j

n
i j

n
i j

n n n
i j i j i j

A B k t C

A M C

A M C

B C B C C

+

+
−

+
+

+ +
− +

⊗ + ⊗ + ⊗ ⋅∆ + ⊗

− ⊗ + ⊗ ⊗

− ⊗ − ⊗ ⊗

− ⊗ ⊗ − ⊗ ⊗ = ⊗

                (22) 

Adopting the same picking-number with the gray 
number, the two following equations can be obtained [3]. 

1 1
, 1,

1 1 1
1, , 1 , 1 ,

(2[ ] 2[ ] [ ] 1)[ ] ([ ] [ ])[ ]

([ ] [ ])[ ] [ ][ ] [ ][ ] [ ]

n n
b b b b i j a a a i j

n n n n
a b a i j a a i j a a i j a i j

A B k t C A M C

A M C B C B C C

+ +
−

+ + +
+ − +

+ + ⋅∆ + − +

− − − − =
      (23) 

 
1 1

, 1,

1 1 1
1, , 1 , 1 ,

(2[ ] 2[ ] [ ] 1)[ ] ([ ] [ ])[ ]

([ ] [ ])[ ] [ ][ ] [ ][ ] [ ]

n n
a a a a i j b b b i j

n n n n
b a b i j b b i j b b i j b i j

A B k t C A M C

A M C B C B C C

+ +
−

+ + +
+ − +

+ + ⋅∆ + − +

− − − − =
        (24) 

The equation has the special structure, which can be 
solved by the special method[3][11].  

1

2

3

...11 1 12 2 13 3 1

...21 1 22 2 23 3 2

...31 1 32 2 33 3 3
...... ...

...1 1 2 2 3 3

a

a

a

la

a C a C a C a Cb a a l la f
a C a C a C a C fa b a l la

fa C a C a C a Ca a b l la

fa C a C a C a Cl a l a l a ll lb

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

  （25-1 

... 111 1 12 2 13 3 1

... 221 1 22 2 23 3 2

... 331 1 32 2 33 3 3
...... ...

...1 1 2 2 3 3

fb C b C b C b C ba b b l lb
fb C b C b C b C bb a b l lb
fb C b C b C b C bb b a l lb

b C b C b C b C fl b l b l b ll la lb

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥=⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

    (25-2) 

Where l m n= ×  

( ) ( )
yb, , 1 b xb

2 2

t Et t E1 2 2i j n
b

ka t
x x y

+ ∆ ⋅∆ ⋅ ∆ ⋅
= + + + ∆

∆ ∆ ∆

, 1, 1
2( )

i j n a
a

t Ea
y

+ + ∆ ⋅
= −

∆
； , 1, 1

2( )
yai j n

a

t E
a

y
− + ∆ ⋅

= −
∆

 

1, , 1
2( )

2
i j n a a
a

t E u ta
x x

− + ∆ ⋅ ∆
= − +

∆ ∆
 

( ) ( )
ya, , 1 a xa

2 2

t Et t E1 2i j k
a

kb
x x y

+ ∆ ⋅∆ ⋅ ∆ ⋅
= + + +

∆ ∆ ∆

, 1, 1
2( )

i j k b
b

t Eb
y

+ + ∆ ⋅
= −

∆
   , 1, 1

2( )
ybi j k

b

t E
b

y
− + ∆ ⋅

= −
∆

 

1, , 1

2
i j k b b
b

t u t ub
x x

− + ∆ ⋅ ∆ ⋅
= − −

∆ ∆
 

, , , ,i j k i j k
a a af c t s= + ∆ ⋅   , , , ,i j k i j k

b b bf c t s= + ∆ ⋅  
The two equations can be solved by turns as 

followings, the gray concentration of groundwater 

quality [ ]ai bic c  can be got. 
2 1 20 1 2 3

(15 1) (15 2)0 1 2 3

ai bi ai bi

bi ai bi ai

c c c c

c c c c− −

⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→

LL

LL

（15- ） （15- ） （15- ）

（15-1）  (26). 

 

A. Grey numerical model for one-dimensional water 
quality 

The mathematic model of solute transport equation 
can be got as followings 

2

2

( ) ( ) ( )( ) ( ) ( )( )c c cE u k c
t x x

∂ ⊗ ∂ ⊗ ∂ ⊗
= ⊗ − ⊗ − ⊗ ⊗

∂ ∂ ∂
 

Where c⊗ — grey concentration of pollutant in 
section, /mg l ; E⊗ —the grey diffusion coefficients in 

the landscape orientation, 2 /m s ; u⊗ —grey velocity in 
section, /m s ； t — time, s ; x ——distance, m  

To any differential equation, its solution only can be 
solved in special initial condition and boundary 
condition. In this paper, the constraint condition can be 
described as followings: 

0

( ,0) 0 0
(0, ) 0
( , ) 0 0

c x x
c t c t
c L t t

⊗ = >
⊗ = ≥
⊗ = =

 

Using finite difference equation to replace 
differential equation as followings 

1( ) ( )( ) n n
i ic cc

t t

+⊗ − ⊗∂ ⊗
=

∂ ∆
 

2
1 1

2 2

( ) 2( ) ( )( )
( )

i i ic c cc
x x

+ −⊗ − ⊗ + ⊗∂ ⊗
=

∂ ∆
 

1( ) ( )( ) i ic cc
x x

+⊗ − ⊗∂ ⊗
=

∂ ∆
 

      The transport parameters are assumed to be constant 
within each combination of time and space increments in 
the finite difference calculations. Thus to second order 
accuracy: 

1 1 1 1 1 1
11 1 1

2

( ) ( ) ( ) 2( ) ( ) ( ) ( )( ) ( ) ( )( )
( )

n n n n n n n
ni i i i i i i

i
c c c c c c cE u k c

t x x

+ + + + + +
++ − +⊗ − ⊗ ⊗ − ⊗ + ⊗ ⊗ − ⊗

= ⊗ − ⊗ − ⊗ ⊗
∆ ∆ ∆

2

( )
( )
E t A

x
⊗ ⋅∆

= ⊗
∆

  ( )u t B
x

⊗ ⋅ ∆
= ⊗

∆
 

1 1 1
1 1[( ) ( )]( ) [1 2( ) ( ) ]( ) ( )( ) ( )n n n n

i i i iB A c A k t c A c c+ + +
+ −⊗ − ⊗ ⊗ + + ⊗ + ⊗ ∆ ⊗ − ⊗ ⊗ = ⊗
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Adopting the same picking-number with gray number, 
so the two following equations can be obtained. 

1 1 1
1 1([ ] [ ])[ ] (1 2[ ] [ ] ][ ] [ ][ ] [ ]n n n n

a b a i a a a i b b i b iB A c A k t c A c c+ + +
+ −− + + + ∆ − =

 
1 1 1
1 1([ ] [ ])[ ] (1 2[ ] [ ] ][ ] [ ][ ] [ ]n n n n

b a b i b b b i a a i a iB A c A k t c A c c+ + +
+ −− + + + ∆ − =

The equation has an special structure as followings: 
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（27） 
From the equation （27） , 1n

aic +  can be 
obtained as followings: 

1 1 1
1 1( 1) 1 1( 2) 2 1( )( ) /n n n n

ia i b i i i b i i i b i ic c b c b c b+ + +
+ + + + + + + += − −  

So the equation （27） can be changed as 
the followings: 
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   (28) 

The equation (17) is a five-diagonal matrix , Solving 

the equation, 
1n

biC +

(i=1,2…..m) can be easily got, then put 

it into the below equation , 
1n

aiC +

can be also obtained. 
B. Application 

To one-dimensional river water pollution problem, 
the governed equation and constraint condition can be 
described as equation1 and equation2.  in order to 
verificate the model, the grey result will be compared 
with classic numerical solution. For information input, 

relationship of decay coefficient k  and [ , ]a bk k  with 

pollutant concentration c and [ , ]a bc c , velocity u  and 

[ , ]a bu u  with pollutant concentration c and [ , ]a bc c  is 
needed to be considered. In order to analysis the 
sensitivity, when analyzing one parameter’s influence on 
pollutant concentration, other parameters remains 
unchanged, grey parameter can float its lower and upper 
value 10%. The parameters are as followings 

 
0.2k =  0.18ak =  0.22bk = ； 4 /u m s=  

3.6 /au m s=  4.4 /bu m s= ； 400E =  

360aE =  440bE =  
The calculate result can be seen in figure 1 to 3 

0

1

2

3

4

5

6

0 10 20 30 40

Time/d

Co
nc

en
tra

tio
n/

m
g/

l
Classic solution

Grey solution

observed data

 
Figure 2.  Influence of grey dispersion coefficient on pollutant 

migration  
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Figure 3.  Influence of grey velocity  on pollutant migration 
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Figure 4.  Influence of grey attenuation coefficient on pollutant 

migration 

Seen From Fig1 to fig.3 ,we can see that the curve of 
contaminant transport by grey numerical model is one 
“gray strip”. That is to say the value of gray numerical 
model changes in some ranges, but not one certain value. 
While the analytical solution is within the ranges, this 
reveals that the method is reliable. In present, the data of 
hydraulic and water quality in river water system is 
absent, so the grey mathematic can be applied to the 
fields. Influence scope of Decay coefficient is lager than 
other parameters. 

IV. GRAY MATHEMATIC MODEL AND NUMERICAL 
SOLUTION  ON TWO-DIMENSIONAL RIVER MODEL 

According to the above analysis, the governing gray 
equation of groundwater pollution is: 

2 2

2 2

( ) ( ) ( )( ) ( )

( )( ) ( )( )

xx yy
C C CD D
t x y

Cu k C
x

∂ ⊗ ∂ ⊗ ∂ ⊗
= + ⊗

∂ ∂ ∂
∂ ⊗

− ⊗ − ⊗ ⊗
∂

           (11) 

The initial and boundary condition: 

  
0

( , 0) 0 0
(0, ) 0
( , 0) 0 0

c x x
c t c t
c t

⊗ = >
⊗ = ≥
⊗ ∞ = =

                      (12) 

Using finite difference equation to replace differential 
equation as followings: 

 
As a discussion in theory, the contaminant transport 

in straight river is discussed as an example. Supposing 
instant point source is in river center. The parameters are 
as followings:  

M ，100kg，velocity 1.0m/s ；  k ，0；  xE ，

100m2/s  yE ,1.0 m2/s. 295 /xaE m s= ，

2105 /xbE m s= ；  20.95 /yaE m s= ，

21.05 /ybE m s= 0.95 /au m s= ， 1.05 /bu m s= . 

The influence of reflection of bank can be ignored 
for simple. The known data is put into Eq.11 and Eq.12, 
the distribution of contaminant in river can be simulated. 
The location below instant point source 1000km is 
considered as governed section. The coordinate is
（1000，0），（1000，20），（1000，40）.When 
t=3600s, the contaminant density in this three point can 
be seen in table1  

TABLE I.   THE POLLUTANT CONCENTRATION VALUES IN THE 
SECTION X0 AT TIME T 

coordinates Contaminant 
value 

Upper value 
of grey model 

Lower value 
of grey model 

（1000，0） 0.00604 0.00674 0.00521 

（1000，20） 0.00587 0.00651 0.00509 

（1000，40） 0.00541 0.00606 0.00474 

 

Seen from table1, the calculated value according to 
the certainty model is among the grey belt which is 
proved that the grey model is feasible. Under the goal of 
water quality, water quality of the governed point can be 
analyzed and evaluation. 

V. SO THE CONTAMINANT GRAY DENSITY 
1 1[ ]n n

ai bic c+ + CAN BE SOLVED. 

VI. APPLICATION  
As a discussion in theory, the contaminant transport 

in straight river is discussed as an example. Supposing 
instant point source is in river center. The parameters are 
as followings:  

M ，100kg，velocity 1.0m/s ；  k ，0；  xE ，

100m2/s  yE ,1.0 m2/s. 295 /xaE m s= ，

2105 /xbE m s= ；  20.95 /yaE m s= ，

21.05 /ybE m s= 0.95 /au m s= ， 1.05 /bu m s= . 
The influence of reflection of bank can be ignored 

for simple. The known data is put into Eq.11 and Eq.12, 
the distribution of contaminant in river can be simulated. 
The location below instant point source 1000km is 
considered as governed section. The coordinate is
（1000，0），（1000，20），（1000，40）.When 
t=3600s, the contaminant density in this three point can 
be seen in table1  

TABLE II.   THE POLLUTANT CONCENTRATION VALUES IN THE 
SECTION X0 AT TIME T 

coordinates Contaminant 
value 

Upper value 
of grey model 

Lower value 
of grey model 

（1000，0） 0.00604 0.00674 0.00521 

（1000，20） 0.00587 0.00651 0.00509 

（1000，40） 0.00541 0.00606 0.00474 
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Seen from table1, the calculated value according to the 
certainty model is among the grey belt which is proved 
that the grey model is feasible. Under the goal of water 
quality, water quality of the governed point can be 
analyzed and evaluation. 

VII. CONCLUSIONS 
• A differential model of two-dimensional river 

water quality is proposed according to grey theory 
and water quality model. The distribution of 
contaminant below the gage of pollutant can be 
got. 

• The model in this paper is clear in concept and 
feasible, which reflects the influence of grey 
parameters on contaminant distribution. 

• Comparison with classic numerical model, the 
results of grey model is a “grey belt” ,not a 
precison value.  

• As a discussion of theory, only the contaminant 
transport in straight river is studied. To the 
complex river, it should be further studied. 
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