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Abstract—How to optimally decide or select the radar 
waveform for next transmission based on the observation of 
past radar returns is one of the important problems in 
cognitive radar. In this paper, stochastic dynamic 
programming model is proposed. Then temporal difference 
learning method is used to realize the adaptivity of 
waveform selection. The simulation results show that the 
uncertainty of state estimation using temporal difference 
learning is less than that using fixed waveform. Temporal 
difference learning method approaches the optimal 
waveform selection scheme but has lower computational 
cost. Finally, the whole paper is summarized. 
 
Index Terms—waveform selection, stochastic dynamic 
programming, temporal difference learning, cognitive radar 
 

I.  INTRODUCTION 

Radar is the name of an electronic system used for the 
detection and location of objects. All early radars use 
radio waves, but some modern radars today are based on 
optimal waves and the use of lasers. With the 
development of modern technology, present-day systems 
are very sophisticated and advanced. We should consider 
focusing on optimizing the design of the transmitter, not 
only the receiver. That means there should be a feedback 
loop from the receiver to the transmitter. This is the core 
idea of cognitive radar. 

Cognitive radar is a new framework of radar system 
proposed by Simon Haykin in 2006. It can percept 
external environment real time, select optimal waveform 
and make transmitted waveform and target environment 
and information demand of radar working achieve 
optimum matching, and then multiple performance of 
searching, tracking, guidance and identification of friend 
or foe of multi-target can be realized. It builds on three 
basic gradients: Intelligent signal processing; Feedback 
from the receiver to the transmitter; Preservation of the 
information content of radar returns[1]. Now more and 
more people are doing research in this field. 

The obvious difference between cognitive radar and 

traditional radar is that cognitive radar can select 
appropriate waveforms according to different radar 
environment. So how to realize the adaptivity of the 
transmitter is an important problem in cognitive radar. 
The design of adaptive transmitter involves adaptive 
model and adaptive algorithm. Goodman have proposed 
and simulated a closed-loop active sensor by updating the 
probabilities on an ensemble of target hypotheses while 
adapting customized waveforms in response to prior 
measurement and compared the performance of two 
different waveform design techniques[2]. In [3], the 
author focuses on a cognitive tracking radar, the 
implementation of which comprises two distinct 
functional blocks, one in the receiver and the other in 
transmitter with a feed back link from the receiver to the 
transmitter. In [4], Arasaratnam have successfully solved 
the best approximation to the Bayesian filter in the sense 
of completely preserving second-order information, 
which is called cubature Kalman filters. In [5], Informax 
principle aimed at maximizing the mutural information is 
used for designing the transimitted signal waveform. In 
[6], an extention to the PDA tracking algorithm to include 
adaptive waveform selection was developed. In [7], it is 
shown that tracking errors are highly dependent on the 
waveforms used and in many situations tracking 
performance using a good heterogeneous waveform is 
improved by an order of magnitude when compared with 
a scheme using a homogeneous pulse with the same 
energy. The problem of waveform selection can be 
thought of as a sensor scheduling problem, as each 
possible waveform provides a different means of 
measuring the environment, and related works have been 
examined in [8], [9]. In [10], an adaptive waveform 
selective probabilistic data association algorithm for 
tracking a single target in clutter is presented. In [11], 
radar waveform selection algorithms for tracking 
accelerating targets are considered. In [12], genetic 
algorithm is used to perform waveform selection utilizing 
the autocorrelation and ambiguity functions in the fitness 
evaluation. In [13], Incremental Pruning method is used 
to solve the problem of adaptive waveform selection for 
target detection. The problem of optimal adaptive 
waveform selection for target tracking is also presented in 
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[14]. In [15], the author uses ADP method to solve the 
problem of adaptive waveform selection. 

In this paper, under the assumption of range-Doppler 
resolution cell, stochastic dynamic programming model 
for adaptive transmitter is proposed. We use temporal 
difference learning method to realize the adaptivity of 
waveform selection. The simulation results show the 
validity of our proposed algorithm. 

Ⅱ.  RANGE-DOPPLER RESOLUTION CELL 

The design of adaptive transmitter in cognitive radar 
involves adaptive model and adaptive algorithm. We first 
consider setting up adaptive model. Generally speaking, 
for a target, the most important parameters that a radar 
measures are range, Doppler frequency, and two 
orthogonal space angles. If we envision a radar resolution 
cell that contains a certain four-dimensional hypervolume, 
we may assume different targets fall in different 
resolution cells. That means if a target measured falls in a 
resolution cell, then another target fall in another 
resolution cell and does not interfere with measurements 
on the first. So as long as each target occupies a 
resolution cell and the cells are all disjoint, the radar can 
make measurements on each target free of interference 
from others. For a single radar pulse, we may give a 
general sort of definition by considering the resolution 
cell to be bounded in range by the compressed pulse’s 
duration, in Doppler by the reciprocal of the transmitted 
pulse’s duration, and in the two angles by the antenna 
pattern’s two orthogonal-plane beamwidths. 

For example, if a radar seeks to make measurements 
on targets resolved in Doppler frequency at the same time, 
it can provide a bank of matched filters operating in 
parallel. Each target will excite the filter which is 
matched to its Doppler frequency, and its response can be 
used for measurements. Targets resolved in the range 
coordinate can be seperated with range gates followed by 
measurements. Thus a radar can perform simultaneous 
measurements on targets unresolved in angle, provided 
the targets are resolved in range, or Doppler frequency, or 
both. However, it is difficult to simultaneously measure 
targets in angle coordinates. Such measurements require 
either a bank of main beams or the time-sharing of one 
main beam among the various targets. 

Through the preceding discussion, we can conclude 
that angle resolution can be considered independently 
from range and Doppler resolution in most circumstances. 
When considering this, the resolution properties of the 
radar in angle are independent of the resolution properties 
in range and Doppler frequency[16]. 

We define range-Doppler resolution cell for the 
waveform selection model. 

R denotes range resolution which is a radar metric 
that describes its ability to detect targets in close 
proximity to each other as distinct objects. Radar systems 
are normally designed to operate between a minimum 
range minR , and maximum range maxR . The distance 

between minR  and maxR  is divided into N  range bins, 

each of width R . 

max minR RN
R



                      （1） 

Targets seperated by at least R  will be completely 
resolved in range. 

Radars use Doppler frequency to extract target radial 
velocity (range rate), as well as to distinguish moving and 
stationary targets or objects such as clutter. The Doppler 
phenomenon describes the shift in the center frequency of 
an incident waveform. 

 
Figure 1.  Radar and target. 

Figure 1 is a picture of radar and target. In heavy 
clutter environments, it is an acute problem that we can 
not obtain good Doppler and good range resolution in a 
waveform tailoring simultaneously. So we need to 
consider the problem of adaptive waveform selection and 
make a trade-off decision between them. The basic 
scheme for adaptive waveform selection is to define a 
cost function that describes the cost of observing a target 
in a particular location for each individual pulse and 
select the waveform that optimizes this function on a 
pulse by pulse basis. 

We make no assumptions about the number of targets 
that may be present. We divide the area covered by a 
particular radar beam into a grid in range-Doppler space, 
with the cells in range indexed by 1,..., N   and those 
in Doppler indexed by 1,..., M  . There may be 0 
target, 1 target or NM  targets. So the number of 
possible scenes or hypotheses about the radar scene is 

. Let the space of hypotheses be denoted by 2NM  . The 

state of our model is tX x  where x  . Let 1tY   be 

the measurement variable. Let  be the control variable 
that indicates which waveform is chosen at time t  to 
generate measurement 

tu

1tY  , where . The 
probability of receiving a particular measurement 

tu U

tX x  will depend on both the true, underlying scene 
and on the choice of waveform used to generate the 
measurement. 
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We assume that the evolution of the state is governed 
by a Markov process and define x xa   is state transition 
probability where 

1( |x x t ta P x x x x     )           (2) 

,( )x x x xa   A  is the state transition matrix. 

We define x xb   is the measurement probability where 

1( ) ( | , )x x t t t tb u P Y x X x u             (3) 

,( ) ( ( ))t x x t x xu b u   B

t

 is the measurement 
probability matrix. That means if state of our model is  
X x

1tY x 
 and we use the waveform , the probability of 

measurement  is 
tu

( )x x tb u . 

 
Figure 2.  Resolution cell and corresponding parallelogram. 

To handle the problem that when a combined 
waveform is used, we define as a practical resolution cell 
the parallelogram that contains the resolution cell 
primitive. Figure 2 is resolution cell and corresponding 
parallelogram. 

Let us consider calculating these probabilities. The 
matched filter is adpoted in the receiver. Assume the 
transmitted baseband signal is , and the received 
baseband signal is . The matched filter is the one 

with an impulse response , so an output 
process of our matched filter is 

( )s t

(s
( )r t

( ) )h t t

( ) ( ) ( )

( ) ( )

x t h t r t

s t r d  

 

 
                  (4) 

In the radar case, the return signal is expected to be 
Doppler shifted, then the matched filter to a return signal 
with an expected frequency shift 0  has an impulse 
response 

02*( ) ( ) jh t s t e t                       (5) 
The output is given by 

02 ( )( ) ( ) ( )j tx t s t e r d           (6) 

where 0  is an expected frequency shift. 
The baseband received signal will be modeled as a 

return from a Swerling target. 

At time  the magnitude square of the output of a filter 
matched to a zero delay and a zero Doppler shift is 

t

2
2

0
( ) ( ) ( )

t
x t r s t d             (7) 

Following we consider two situations: there is no 
terget and target is present. 

When there is no target 
0

0 00
( ) ( ) ( )x n s d


               (8) 

The random variable 0( )x   is complex Gaussian, with 
zero mean and variance given by 

 2
0 0 0( ) ( ) 2 0E x x N            (9) 

where   is the energy of the transmitted pulse. 
When target is present 

0 2
0 00

( ) ( ) ( ) ( )djx As e n s d
              (10) 

This random variable is still zero mean, with variance 
given by 

 
2 2

2 2 A
1 0 0 0 0 02

0

2( ) ( ) (1 ( , ))E x x A        


     (11) 

where ( , )A    is ambiguity function, given by 

 
2

2
22

1( , ) ( ) ( )
( )

jA s s e d
s d

    
 

 


 (12) 

Recall that the magnitude square of a complex 
Gaussian random variable 2~ (0, )ix N   is 
exponentially distributed, with density given by 

222
2

1~
2

i

y

i

y x e 





                (13) 

In the case when a target is present in cell ( , )  , 
assuming its actual location in the cell has a uniform 
distribution 

2 2
2
0 0 02

0

22 (1 ( , ))

( , )

1 A

a a

D

A

d aA
P e d

A

     


  ad 


  


  (14) 

where A  is the resolution cell centred on ( , )   with 

volume A . 

Ⅲ.  TEMPORAL DIFFERENCE LEARNING WAVEFORM 
SELECTION 

Define 0 1{ , ,..., }Tu u u   where  is the 
maximum number of dwells that can be used to detect 
and confirm targets for a given beam. Then 

1T 

  is a 
sequence of waveforms that could be used for that 
decision process. We can obtain different   according to 
different environment in cognitive radar. Let 

0
( ) [ ( , )]

T
t

t t t t t
t

V X E R X u


                   (15) 
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where ( , )t t tR X u  is the reward earned when the scene 

tX  is observed using waveform  and tu   is discount 
factor. Then the aim of our problem is to find the 
sequence    that satisfies 

0
( ) max [ ( , )]

T
t

t t
t

V X E R X u






  t t          (16) 

However, knowledge of the actual state is not available. 
Using the method of [17], we can obtain that the optimal 
control policy    that is the solution of (16) is also the 
solution of 

0
0

( ) max [ ( , )]
T

t
t t t

t
V E R






 p p u           (17) 

where  is the conditional density of the state given the 

measurements and the controls and  is the a priori 
probability density of the scene. 

tp

0p
p  is a sufficient statistic 

for the true state tX . So we need to solve the following 
problem 

0
max [ ( , )]

T
t

t t t
t

E R u




 p                     (18) 

The refreshment formula of  is given by tp

1 '
t

t
t

 
BApp

1 LAp
                           (19) 

where  is the diagonal matrix with the vector B
)( ( )x x tb u  the non-zero elements and 1  is a column 

vector of ones.  is state transition matrix. A
We write the expected profits using policy   from t  

onward 
1

( ) { ( , ) ( ) | }
T

t t t t t T T t
t t

G E R u C


  


 p p p p

t

   (20) 

where  under policy ( )tu U 
  p  . 

( )t tG p

tp
 is the expected total contribution if we are in 

state  in time , and follow policy t   from time  
onward. However, it seems much more natural to 
calculate  recursively using 

t

tV

1 1( ) ( , ) { ( ) | }t t t t t t t tV R u E V   p p p p        (21) 
Now we will establish the relationship between the 

original optimization problem and the optimality 
equations. Clearly, . Next, 

assume that it holds for . We want to 
show that it is true for t . This means that we can write 

( ) ( ) ( )T T T T T TG V R p p
1, 2,...,t t T 

p

p p

Because the random variables are discrete and finite, 
we can obtain that 

)

)

t

t      (23) 

Hence 

1 1

1 1

1

1
1

( ) ( , ) { ( ) | }
( , ) [ ( )]

( , ) { [ ( , ) ( ) | ] | }

t t t t t t t t

t t t t t

T

t t t t t t t T t t
t t

V R u E V
R u E G

R u E E R u R

 

 



   
 

 
 

  

p p p p
p p

p p p

(22) 

1

1

1

1 1 1

1 1 1

1

, ) ( |

( | , ) ( |

( , | )

( | )

[ | ]

t

t

t

t t t t t
g G

t t t t t
g G

t t t
g G

t t
g G

t t

g P

gP G g P

g P G g

gP G g

E G







   
 

   
 

 
 






  

  

 

 



 

 

 



p p

p p

p p

p p p p p

p p p p p

p p

p

p

1{ [ | ] | }

( |
t t tE E G

gP G
 p p

1

1
1

1

1
1

1
1

( )

( , ) { [ ( , ) ( ) | ] | }

( , ) [ ( , ) ( ) | ]

[ ( , ) ( , ) ( ) | ]

[ ( , ) ( ) | ]

( )

T

t t t t t t t T t t
t t

T

t t t t t t t T t
t t
T

t t t t t t t T t
t t

T

t t t t T t
t t

t t

V

R u E E R u R

R u E R u R

E R u R u R

E R u R

G



   
 



  
 



  
 



  


  

  

  

 











pt t

p p p p p

p p p p

p p p p

p p p

p

(24) 

Using equation (21), we have a backward recursion for 
calculating ( )t tV for a given policy at  p   . Now that 
we can find the expected reward for a given  , we 
would like t best o find the  . That is, we wa t to find 

*( ) max ( )t t t tG G


p p                     (25) 

n



  If the set is infinite, we replace
“sup”. We solve this problem by solving the optimality 
eq se

First, we show by induction that

al

 the “max” with 

uations. The  are 

1( ) max( ( , ) ( | , ) ( ))t t t t t tu U
V R u P u V 

  p p p p p (26) 
p p

 *( ) ( )t t t tV Gp p  for 

l t p p  and 0,1,..., 1t T  . that 
the rev equ  gives us the result. 

W rt ag f by induction. Since 
( ) ( ) ( )V R G p p p p

Then, we show 
erse in ality is true, which

e reso ain to our proo

T T t T T T  for all T  and all 

  , we get that ( )T T

( )t tV

* ( )T Tp ume that 
*( )t tG

V Gp . Ass

 p p  t t   for T1, 2,...,t    , and let   

be an arbitrary policy. For t t  , the optimality equatio  

( ) max( ( , ) ( | , ) ( ))t tV R u u V   

n
tells us 

1t t t tu U
P

 

p p

p p p p p (27) 

, *
1 1( ) ( )t tG V p pWith the induction hypothesis

we get 
, so 

*
1| , ) ( ))t t t tu U

V u G  

 ( ) max( ( , ) (t t R u P  
p P

pp p p (28) p
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We have that  for an arbitrary *
1 1( ) ( )t tG G
 p p  . 

Also let  be the decision that would be chosen 

by policy 

( tU  p )
  when in state . Then tp

1

1

( ) max( ( , ) ( | , ) ( ))

( , ( )) ( | , ( )) ( )

( )

t t t t t tu U

t t t t t t

t t

V R u P u G

R U P U G

G



 



 




  

 






p P

p P

p p p p p

p p p p p p

p

 

p

(29) 

This means  for all ( ) ( )t t t tV Gp   . 
Next we are going to prove the inequality from the 

other side. Specially, we want to show that for any 
0   there exists a policy   that satisfies 

( ) (tG T t V    p )t t

p

                  (30) 
To do this, we start with the definition 

1( ) max( ( , ) ( | , ) ( ))t t t t t tu U
V R u P u V  

 
p p

p p p p (31) 

We may let  be the decision rule that solves 
(31). This rule corresponds to the policy 

( )t tu p
 . In general, 

the set U  may be infinite, whereupon we have to replace 
the “max” with a “sup” and handle the case where an 
optimal decision may not exist. For this case, we know 
that we can design a decision rule u  that returns a 
decision u  that satisfies 

(t p )t

1( ) ( , ) ( | , ) ( )t t t t t tV R u P u V 


   
p P

p p p p p 

 p



 (32) 

We can prove (32) by induction. We first note that (30) 
is true for t  since . Now assume 

that it is true for t   already know 
that 

T ( ) ( )T t T TG V p p
1, 2,...,t t T  . We

1( ) ( , ( )) ( | , ( )) ( )V
t t t t t t t tG R U P U G 




  
p P

p p p p p p (33) 

We can use our induction hypothesis which says 

1 1( ) ( ) ( ( 1))t tG V T t     p p   to get 

1

1

1

( ) ( , ( )) ( | , ( ))[ ( ) ( ( 1)) ]

( , ( )) ( | , ( )) ( ) ( | , ( ))[( 1) ]

{ ( , ( )) ( | , ( )) ( ) } ( )

t t t t t t t t

t t t t t t t t

t t t t t t

G R U P U V T t

R U P U V P U T t

R U P U V T t

  

  

 





 





  




     

     

     



 



p P

p P p P

p P

p p p p p p p

p p p p p p p p p

p p p p p p



( )p

(34) 

Now, using equation (32), we replace the term in 
brackets with the smaller V  t t

( ) ( ) ( )t t t tG V T t   p p                   (35) 

which proves the induction hypothesis. We has shown 
that 

* *( ) ( ) ( ) ( ) ( ) ( )t t t t t t t tG T t G T t V G       P P P P (36) 

This proves the result. So we can use  to solve 
our problem[18]. 

( )t tV p

This is stochastic dynamic model of adaptive 
waveform selection. Then we can use dynamic 
programming algorithms to solve the problem. Backward 
dynamic programming algorithm is a basic dynamic 
programming method. It can be viewed as an optimal 
adaptive algorithm for waveform selection. When state 
space and action space are large, it is hard to use this 
method. Than means we hardly find optimal solution for 
waveform selection. So approximate solutions are 
necessary. 

Generally speaking, reward function can be different 
forms according to different problems. It represents the 
value that we stand in certain place and take some certain 
action. In the problem of adaptive waveform selection, 
two forms of reward function are usually used. They are 
linear reward function and entropy reward function. 

Linear reward function is usually used in the 
circumstance that ( , )R up  is required to be a piecewise 
linear function. The form of this function is simple and 
easy to calculate. However, it can not reflect the whole 
value sometimes. The form of linear reward function is 

1( , ) ' 1R u  p p p                         (37) 
Entropy reward function is usually used in the 

circumstance that ( , )R up  is not required to be a 
piecewise linear function. It comes from information 
theory. It can reflect the whole value accurately. But it is 
more complex than linear reward function. The form of 
entropy reward function is 

2 ( , ) ( ) log( ( ))x x
x

R u p k p k


p           (38) 

We can choose different form of reward function 
according to different problems. 

The foundation of approximate dynamic programming 
is based on an algorithmic strategy that steps forward 
through time. If we wanted to solve this problem using 
classical dynamic programming, we could have to find 
the value function  using ( )t tV p

1 1( ) max( ( , ) { ( ) | })
t

t t t t t t tu U
V C u E V  

 p p p p (39) 

Assume  is an unbiased sample estimate of the value 
of being in state  and the policy is 

v
tp  . The definition 

of v  is 

1 1 1( , ) ( , ) ... ( , )n n n n
t t t t t t t T T Tv C u C u C u  

     p p p (40) 
Standard stochastic gradient algorithm is used to 

estimate the value of being in state tX  
1 1( ) ( ) [ ( ) ]n n n

t t t t n t t tV V V   p p p nv  (41) 
The temporal differences is 

1 1
1 1( , ) ( ) ( )n nD C u V V       
 
   p p p (42) 

So 
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1( )
T

n n
t t t

t

v V D






 p               (43) 

Substituting (43) into (41), we can obtain 

1
1( ) ( )

T
n n

t t t t n
t

V V D







  p p       (44) 

The temporal differences are the errors in our estimates 
of the value of being in state p . These errors are 
stochastic gradients for the problem of minimizing 
estimation error. The discount form is 

1
1( ) ( ) ( )

T
n n t

t t t t n
t

V V  D


  




  p p    (45) 

Through this formular, we can use this method to 
update the value of V . 

Our algorithm is described as follows: 
1 Give an initial state  and value function 

approximations  for all  and , set 

1
0p
p0 ( )t tV p t t 1n  . 

2    Choose a sample path. 
3   For , do optimization and simulation. 

Optimization is to compute a decision  and 

find the next state using 

0,1, 2,...,t  T

t( )n
t tu U  p

1 '
t

t

p
Apt 

BAp
1 L

. 

4  Update the value function approximation to obtain 
 for all . ( )n

t tV p t
5   If we have not met our stopping rule, increase  and 
go to the first step. Else, stop. 

n

Ⅳ.  SIMULATION 

In this section, we make three experiments. In order to 
explain the necessity of waveform selection, we make the 
curve of measurement probability versus SNR of three 
different waveforms and measurement probability versus 
SNR with different targets. Curve of uncertainty of state 
estimation demonstrates validity of our proposed 
algorithm. We also plot the figure of value space versus 
state and waveform. 

We adopt linear frequency modulation (LFM) signal in 
the transmitter. The formular of LFM is 

22 ( )
2( ) ( ) c
Kj f t tts t rect

T e                     (46) 

where cf  is carrier frequency and  is rectangular 
signal 

rect

1
( )

0 ,

t
trect T
T

elsewise


  

  
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Figure 3.  Real part of chirp signal. 
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Figure 4.  Magnitude spectrum of chirp signal. 

Fiure 3 is real part of chirp signal and figure 4 is 
magnitude spectrum of chirp signal. 
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Figure 5.  Measure probability versus SNR with three different 

waveforms. 
1                   (47) Figure 5 is curve of measurement probability versus 

SNR with three different waveforms. From this figure we 
can see that measurement probability is becoming large 
with the increase of SNR. Under the same SNR, using 
different waveform corresponds to different measurement 
probability. So measurement can be improved through 
appropriately scheduling waveform in cognitive radar. 

JOURNAL OF COMPUTERS, VOL. 5, NO. 9, SEPTEMBER 2010 1399

© 2010 ACADEMY PUBLISHER



Generally speaking, the wider the pulse duration is, the 
larger the measurement probability is. However, wide 
pulse duration means large energy of the transmitted 
pulse. We should make a balance between pulse duration 
and energy of the transmitted pulse and appropriately 
schedule waveform in order to obtain large measurement 
probability. 
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Figure 6.  Measurement probability versus SNR with different targets. 

Figure 6 is curve of measurement probability versus 
SNR with different targets. From this figure we can see 
that under the same SNR, measurement probability is 
different to different targets. So according to different 
targets we should select different waveforms. In actuality, 
path of target is so complex. We should change 
waveform according to different environment. 

We will use the function 
( ) ' 1R  p p p                               (48) 

as the basis for our reward function. The formula 
 can be considered as the uncertainty in the 

state estimation.  
(1 ' )E p p

We consider a simple scenario. The state space is 
. We consider 5 different waveforms where for 

each waveform u , and each hypotheses for the target 
4 4

x , 
the distribution of x is given in tableⅠ. The discount 
factor 0.9  . 

TABLE I.   

MEASUREMENT PROBABILITIES FOR THE EXAMPLE SCENARIO 

 
x=1 

x’=1,2 
3,4 

x=2 
x’=1,2 

3,4 

x=3 
x’=1,2 

3,4 

x=4 
x’=1,2 

3,4 

U=1 0.97,0.01 
0.01,0.01 

0.96,0.01
0.01,0.02

0.01,0.01 
0.96,0.02 

0.01,0.95
0.02,0.02

U=2 0.96,0.01 
0.02,0.01 

0.02,0.95
0.01,0.02

0.01,0.01 
0.01,0.97 

0.02,0.96
0.01,0.01

U=3 0.02,0.95 
0.02,0.01 

0.02,0.02
0.01,0.95

0.02,0.96 
0.01,0.01 

0.01,0.02
0.02,0.95

U=4 0.96,0.01 
0.01,0.02 

0.01,0.96
0.02,0.01

0.97,0.01 
0.01,0.01 

0.03,0.95
0.01,0.01

U=5 0.01,0.02 
0.04,0.03 

0.01,0.97
0.01,0.01

0.02,0.01 
0.96,0.01 

0.04,0.94
0.01,0.01

 
The matrix  is given by A

0.96 0.02 0.01 0.01
0.01 0.93 0.03 0.02
0.02 0.03 0.95 0.02
0.01 0.02 0.01 0.95

 
 
 
 
 
 

A         (49) 
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Figure 7.  Curve of uncertainty of state estimation 

Figure 7 is curve of uncertainty of state estimation. 
Form this figure, we can see that the uncertainty of state 
estimation is becoming lower with the increase of time. 
The uncertainty of state estimation using optimal 
scheduled waveform is lower than using fixed waveform. 
The uncertainty of state estimation using temporal 
difference learning algorithm approaches that of using 
optimal scheduled waveform. In the simulation, the 
optimal scheduled algorithm takes 55 seconds, while 
temporal difference learning algorithm takes 35 seconds. 
So our algorithm is efficient than the optimal algorithm.  
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Figure 8.  Value space versus state and waveform 

Figure 8 is the figure of value space versus state and 
waveform. Value of different state-waveform pair can be 
obtained in this figure. We can see that the proposed 
algorithm has lower computational cost. 

 

Ⅴ.  CONCLUSIONS 

Adaptive waveform selection is an important problem 
in cognitive radar and the problem of adaptive waveform 
selection can be viewed as a stochastic dynamic 
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programming problem. In this paper, under the 
assumption of range-Doppler resolution cell, stochastic 
dynamic programming model for adaptive transmitter is 
set up. Then temporal difference learning is used to solve 
this problem. The simulation results show that the 
uncertainty of state estimation using temporal difference 
learning is less than that using fixed waveform. Temporal 
difference learning method approaches the optimal 
waveform selection scheme but has lower computational 
cost. Research on algorithms which approach the optimal 
waveform selection scheme and has lower computational 
cost is an important issue. 
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