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Abstract—The road icing is an adverse weather condition 
lead to dangerous driving conditions with consequential 
effects on road transportation.  A numerical road icing 
predication approach is employed for automatic prediction 
of road icing conditions in three cities of Hubei Province, 
viz., Wuhan, Shiyan and Xianning. The approach is derived 
from the support vector machine (SVM). To improve the 
classification accuracy for road icing prediction, a modified 
particle swarm optimization (PSO) is employed to 
simultaneously optimize the SVM kernel function 
parameter and the penalty parameter. The modified PSO is 
derived from the genetic PSO, and employs the crossover 
operator and the mutation operator derived from the 
differential evolution to enhance searching performance. 
With the data from 1980 to 2006, using the proposed 
approach, the road icing models for the three cities in Hubei 
province are created, which have been used for the 
prediction from 2007 to 2008. The results have shown 
feasibility and effectiveness of the forecast approach. 
 
Index Terms—particle swarm optimization, support vector 
machine, evolutionary algorithm, weather forecasting 
 

I.  INTRODUCTION 

The Hubei Province locates in the middle and lower 
Yangtze which belongs to the north subtropical region 
monsoon climate region. Consequently, in the winter and 
the early spring, it experiences frequent snow, sleet, ice, 
and frost. Such adverse weather condition leads to road 
icing, a dangerous driving condition with consequential 
effects on road transportation. 

To forecast the road icing conditions, various 
approaches have been proposed. Norrman proposed an 
expert system approach for classifying different types of 
slipperiness on roads in Sweden [1]. Alexander evaluated 
the road icing conditions in the Danish road network 
which was conducted based on observational data (road 
surface, air and dew point temperatures) from 2003-2007 
to improve the quality of road forecasts [2]. An 
automated system for prediction of icing on the road was 
proposed by Konstantin, where a numerical forecasting 
system was developed. The system is based on a road 
conditions model forced by input from an operational 
atmospheric limited area model [3]. Weather prediction 
was employed in a road-maintenance decision-support 
system to provide real-time treatment guidance [4]. Liu 
studied the temperature factors which influenced the road 
icing conditions remarkably [5]. The relationship between 
developmental tendency of ice roads and the temperature 
in Heilongjiang was studied by Xu [6].  

To provide accurate prediction, a numerical road icing 
forecast approach is employed which was derived from 
the support vector machine (SVM). SVM were suggested 
by Vapnik [7], and have recently been used in a range of 
problems. To build a SVM, one must choose a kernel 
function; set the kernel parameters such as the gamma (γ) 
for the radial basis function (RBF) kernel. Moreover, for 
the road icing prediction problem, a linearly inseparable 
problem, and a soft margin constant C has to be set too 
[8].  These parameters have a heavy impact on the 
classification accuracy [9]. To provide a promising result 
for the parameters the genetic algorithm (GA), the 
particle swarm optimization (PSO) and the grid algorithm 
were employed to optimize the parameters [8], [9].  

PSO was proposed by Kennedy and Eberhart [11],[12]. 
And it is inspired by the social behavior of bird flocking, 
fish schooling and swarm theory, etc. The theoretical 
framework of PSO is very simple, and PSO possesses the 
properties of easy implementation and fast convergence. 
PSO was customized to continuous function optimization; 
hence PSO has gained much attention and been 
successfully applied in various fields. To enhance the 
search performance many technologies were employed, 
such as parameter adjust strategies [13], mutation 
operators [14], and hybrid PSO methods. In hybrid PSOs, 
CPSO methods were integrated with one or more 
assistant optimization methods such as the linear interior 
[15], the differential evolution [16], the genetic algorithm 
[17], etc. The simulation results have shown that 
incorporated with the mechanisms of other algorithms, 
the searching performance of CPSO could be enhanced 
significantly. Instead of traditional PSO, this study 
employs a modified PSO method which was derived from 
the traditional PSO, genetic PSO [18], and the differential 
evolution [19],[20]. The modified PSO method is 
employed as an optimization technique to simultaneously 
optimize the SVM parameters.  

This paper is organized as follows. Section II describes 
the road icing prediction problem and SVM. Section III 
describes the modified PSO. Section IV presents the 
PSO-SVM hybrid system. Experimental results are given 
in Section V. And Section VI gives the conclusion. 

II. SVM FOR ROAD ICING PREDICTION 

A. The Road Icing Prediction 
Ice on road surfaces is one of the most serious 

dangerous meteorological hazardous phenomenons, and it 
is well known that annually it causes serious injuries even 
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deaths in road accidents. The objective of the road icing 
prediction is to create a model based on the previously 
data to forecast if a region will occur road icing or not in 
a given day for the reduction of the threat of the ice-
related accidents. Consequently, it is very important to 
select proper meteorological factors which influence the 
road icing remarkably. 

In order for ice to be formed on the road surface the 
following is required: temperatures near and below 0°C 
as well as presence of water (moisture) on the surface of 
the road [2]. Consequently, the meteorological factors 
which may influence the temperatures and the presence 
of water should be considered. In [2], the latitude and 
longitude, time, road surface temperature, air temperature, 
dew point temperature, height of the station above sea 
level, etc were considered. Cloud cover and observations 
of temperature, humidity, water and ice on the road from 
the road station sites are taken into account in [3]. The 
temperature factors were discussed by Liu [5] and Xu [6].  

 In our study, based on the experienced forecaster and 
the statistical results, for each day twelve meteorological 
factors are selected. Mean air temperature, maximum 
temperature, minimum temperature, and minimum 
surface temperature are the factors impact the 
temperatures. Average relative humidity, precipitation, 
minimum relative humidity, mean vapor pressure, and the 
24 hours precipitation of the passed day are the factors 
impact the water or moisture. Moreover, average air 
pressure, average total cloud cover, minimum total cloud 
cover are the factors impact both temperature and water, 
potentially. Moreover, in the three cities in the Hubei 
Province, viz., Wuhan, Shiyan and Xianning, a road icing 
season is considered to continue from November through 
March. The reason for this period is that based on the 
historical observation data, in the other periods the 
temperatures were higher than 0°C in almost all the days, 
and there were seldom road icing cases.  

B. Support Vector Machine 
The SVM is a new and promising technique for 

classification [7]. Given training vectors xi∈Rn, i = 1,…, l, 
in two classes, and a vector y∈{1, -1}, the support vector 
technique requires the solution of the following 
optimization problem: 

min   
1

1
2

l
T

i
i

Cω ω ξ
=
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Training vectors xi are mapped into a higher (maybe 
infinite) dimensional space by the function φ . The 
existing common method to solve (1) is through its dual, 
a finite quadratic programming problem. 
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where e is the vector of all ones, C is the upper bound 
of all variables, Q is an l by l positive semi definite 

matrix,  ( , )ij i j i jQ y y K x x≡ and ( , ) ( ) ( )T
i j i jK x x x xφ φ≡  

is the kernel. In the linear case, ( , ) T
i j i jK x x x x≡ , but the 

extension to the nonlinear case is straightforward, by 
using any Mercer kernel ( , )K ⋅ ⋅ .  

After learning, the feed forward phase of the SVM is 
computed by 

1
( ) ( ( , ))

l

i i i
i

y x y K x x bα
=

= +∑                                   (5) 

where x is a new sample, which is classified according 
to the sign of y.  

The model of rainstorm forecast is nonlinear, so a 
Mercer kernel is needed. This paper employed the radial 
basis function (RBF) kernel as follows. 

( )
1( , )

n
x xi j

i
i jK x x e

γ− −
=
∑

≡                                          (6) 
Consequently, it can be observed that there are two 

parameters influence the performance of SVM viz., C and 
γ. C is employed to handle the linear inseparable cases as 
a penalty coefficient to punish those wrong classifications 
which is an important parameter for road icing forecast. 
Firstly, the road icing model is proved to be a complex 
nonlinear system. Secondly, the errors in the measured 
data are unavoidable because of the system errors and the 
artificial factors.  γ is another important parameter which 
influence the hyper plane remarkably. 

III THE MODIFIED PARTICLE SWARM OPTIMIZATION 

A.  The Classical Particle Swarm Optimization 
The classical particle swarm optimization (CPSO) 

consists of a swarm of particles flying through the search 
space. Each particle i  in the swarm contains parameters 
for position ( t

iX ) and velocity ( t
iV ) where t n

iX R∈ , 
t n

iV R∈  ( t N∈ , i N∈ ), and n  is the dimensionality of 
the search space, t  is the number of current iteration. The 
position of each particle represents a potential solution to 
the optimization problem. At each iteration step, each 
particle adjusts its velocity based on its momentum and 
the influence of its best position ( t

iP ) tracked and the best 

position found by the neighbors ( t
GP ) so far, after which 

it computes a new position to examine. The CPSO 
formulas are given as follows [12]. 

1 1 1
1 1

1 1
2 2

( )

       ( )

t t t t
i i i i

t t
G i

V V c r P X

c r P X

ω − − −

− −

= ⋅ + ⋅ ⋅ −

+ ⋅ ⋅ −                             (7) 

1t t t
i i iX X V−= +                                                          (8) 
Where 1c  and 2c  are constants knows as the cognitive 

and social acceleration coefficients, respectively, ω  is 
the inertia weight, r1 and r2 are random numbers 
uniformly distributed .between 0 and 1, and the position 
is clamped as min max[ , ]iX X X∈ . 

The first part of (7) represents the previous velocity, 
which provides the necessary momentum for particles to 
fly across the search space. The second part is known as 
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the “cognitive” component, which represents the personal 
thinking of each particle. This component encourages the 
particles to fly toward their own best positions found so 
far ( 2k = ). The third part is known as the “social” 
component, which represents the collaborative effect of 
the particles in finding the global optimum. This 
component always pulls the particles toward the best 
positions found by their neighbors so far [13]. 

B. The Genetic Particle Swarm Optimization 
To solve combinatorial optimization problems, Yin [18] 

proposed a genetic particle swarm optimization with 
genetic reproduction mechanisms, namely crossover and 
mutation. Denote by D the dimension of the particle, the 
GPSO with genetic recombination for the d-th component 
of particle i is described as follows. 

1 1
1 1 2, , ,

1
2 ,

(0, ). ( ) ( , ). ( )

         ( ,1). ( )

t t t
i d i d i d

t
G d

X rand X rand P

rand P

ω ω ω ω ω

ω ω

− −

−

= +

+   (9)

 
11( : )

( , )
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if a R b
a b

otherwise
ω

≤ <⎧
= ⎨
⎩                                      (10)

 
2, : ( )( )

,
my if R prand y

y otherwise

⎧ <⎪= ⎨
⎪⎩    

                                 (11) 

Where 1R and 2R are the random numbers uniformly 
distributed in [0, 1], thus with 1 20 1ω ω< < < , only one 
of the three terms on right hand side of (3) will remain, 
and ()rand  mutates y  with a small mutation probability 
pm. And then 1ω  and 2ω  are used to select components 

from 1t
iX − , 1t

iP − and 1t
GP − . They work similarly to what 1c  

and 2c do in the CPSO.  
There are four neighborhood topology types were 

proposed for PSO methods in [11] viz., circles ( lbest ), 
wheels, stars ( gbest ) and random edges. To avoid 
premature convergence, our approach employed the circle 
topology, in which each particle only communicates with 
its two immediate neighbors. Consequently, the particle 
holding the neighborhood best position can only 
influence its two neighbors in each iteration step, while 
its neighbors may transfer its information to the whole 
swarm step by step during the generation. 

C. The Modified  Genetic Particle Swarm Optimization 
To apply GPSO to continuous function optimization 

problems, a modified genetic particle swarm optimization 
(MGPSO) was introduced in [20] which modified the 
crossover and the mutation operators with the differential 
evolution and the genetic algorithm mechanisms. 

In GPSO, each component of the newborn is selected 
randomly from one of the three positions, which 
introduces poor diversities for continuous variables. 
Consequently, the heuristic crossover (HC) used in GA 
was employed [21], which is more specific to floating 
point representation. HC works as follows: let the parents 
be X and Y such that Y is not worse in fitness than X. The 
newborn is Y + r(Y-X), where r is a random value selected 
uniformly in the interval [0, 1]. Since in GPSO, the 

newborn is made of 1t
iX − , 1t

iP − and 1t
GP − , the heuristic 

crossover has to be modified. Differential evolution (DE) 
is a simple population based stochastic parallel search 
evolutionary algorithm for global optimization [19], in 
which for an individual i, the weighted difference of two 
randomly chosen population vectors, 2rX and 3rX , is 
added to another randomly selected population 
member 1rX , to build a mutated vector 
as 1 2 3Pr ( - )i r r rM X X X= + . Based on which, a modified 
heuristic crossover (MHC) in MATLAB style was given 
in Fig.1. 

Where rand is a random value selected uniformly in 
the interval [0, 1]; D is the number of the dimension; and 
Pr is a user defined parameter. Consequently, each 
component is selected randomly from one of the three 
positions with the GPSO rules, and then a weighted 
difference of the other two positions’ component is added 
to the selected component with DE rules. The sequence 
of the two components in the weighted difference is 
based on the HC rule.  Consequently, MGPSO was 
derived from GPSO, incorporated with DE and HC rules 
for floating point representation. And in Fig.1, α , β , 
and γ is named as iX , iP , and GP  dominated crossover, 
respectively [20].  

1
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Figure 1.  the modified heuristic crossover 

As described in (11), the mutation operator of GPSO is 
based on the binary representation. To introduce diversity, 
the uniform mutation operator (UM) used in GA [21] was 
incorporated to MGPSO as follows [20].   

 

1

, min, max,

    1:
         

           [ , ]
       

r
t
i d d d

for d D
if r m

x rand x x
end

end

=
<

=  

Figure 2.  the uniform mutation operator (UM) 

Where 1r is a random value selected uniformly in the 
interval [0, 1]; mr is the mutation ratio; 

min, max,[ , ]d drand x x is used to generate a new value 
between the boundaries of the component. The uniform 
mutation is implemented after MHC.  
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In MGPSO, 1ω  and 2ω  are two key parameters used to 

set the probabilities to generate ,
t
i dX based on iX , iP , and 

GP dominated crossovers for the balance of the local and 
the global search. Consequently, this paper will study the 
parameters at first. Three new parameters Px, Pp, and Pg 
are defined as 1Px ω= , 2 1Pp ω ω= − , and 21Pg ω= − . 
And then, 0 , , 1Px Pp Pg≤ ≤ , and 1Px Pp Pg+ + =  . 
Consequently, Px, Pp, and Pg denotes the probability to 
generate a component with iX , iP , and GP  dominated 
crossover, respectively. And the three new parameters are 
relatively clearer to represent the probabilities of the 
dominated crossovers than 1ω  and 2ω . 

D. The Modified GPSO with Inertia Weight 
In the original GPSO, the concept of inertia weight is 

absent, while it is a particular mechanism of CPSO and 
provides necessary momentum and consistency. To 
employ the mechanism for MGPSO, a modified velocity 
was employed. 

Initialization: 
1. Randomly initialize the population 0

iX  and calculate the fitness 
0 0( )i iF f X=  

2. Set the velocity to zero 0 0iV =  

3. Calculate 0
iP  and 0

GP based on iF  

Repeat a predetermined number of maximum generations 
1 Save a backup copy of each particle using 1t t

i iB X −=  

2. Generate a new position for each particle with MHC using 
1 1 1( , , )t t t t

i i G iX MHC P P X− − −=  

3. Implement the uniform mutation to each particle 
using ( )t t

i iX UM X=  

4. Add the inertia to each particle -1t t t
i i iX X Vω= + g  and 

calculate the fitness ( )t t
i iF f X=  

5. Calculate the velocity of each particle using
 

t t t
i i iV X B= −   

6. Calculate t
iP  and t

GP based on t
iF  

End repeat       
Figure 3.  Main algorithm of MGPSO-IW 

In CPSO, based on the particle’s previous velocity, the 
new velocity combines 1t

iP − and 1t
GP − , while in MGPSO, 

the combination is performed by MHC. Consequently, 
this paper will employ a new format velocity. Since the 
velocity is the displacement of a particle at each iteration 
step in CPSO, in MGPSO after the new position is 
generated, the velocity is defined as follows. 

1t t t
i i iV X X −= −                                                        (12) 

The weighted velocity is added to the position 
generated by MHC and the mutation operator as flows.  

1t t t
i i iX X Vω −= + ⋅                                                   (13) 

Where ω  is the inertia weight, it was derived from 
CPSO to maintain the inertia to provide necessary 
momentum and consistency. The flow chart of MGPSO 
with inertia weight (MGPSO-IW) is given as in Fig.3. 

By comparisons with (7) and (8), three differences can 
be found. Firstly, in CPSO, t

iV  is the only momentum for 

a particle, while in MGPSO-IW, the momentum comes 
from MHC, the mutation operator and the previous 
velocity. Secondly, in CPSO, t

iV is the combination of 
1t

iV − , 1t
iX − , 1t

iP − and 1t
GP − , and added to the previous 

position, while in MGPSO-IW, t
iV is simply set to the 

momentum of a particle in current iteration step and 
added to its position in the next iteration step. Finally, in 
CPSO the velocity is commonly limited between the 
lower boundary and the upper boundary, without which 
particles could essentially fly out of the physically 
meaningful solution space. While in MGPSO-IW, the 
velocity needs no boundary, because in MGPSO-IW, the 
velocity is consequentially clamped in the range. 

To validate the feasibility and the effectiveness of the 
velocity strategy, MGPSO-IW with the inertia weight 
was implemented to the four benchmark functions given 
as follows [13]. 

f1: Sphere, the global optimum is 0 with * 0x =   
2

1
1

( ) , 100 100
n

i i
i

f x x x
=

= − ≤ ≤∑ ，  

f2: Rosenbrock, the global optimum is 0 with * 1x =   
2 2 2

2 1
1

( ) [100( ) ( 1) ], 100 100
n

i i i i
i

f x x x x x+
=

= − + − − ≤ ≤∑
 

 
f3: Rastrigin, the global optimum is 0 with * 0x =   

2
3

1
( ) ( 10cos(2 ) 10), 10 10

n

i i i
i

f x x x xπ
=

= − + − ≤ ≤∑  ，  

f4: Griewank, the global optimum is 0 with * 0x =  
2

4
1 1

( ) / 4000 cos( ) 1, 600 600
nn

i i i
i i

f x x x i x
= =

= − + − ≤ ≤∑ ∏
 The first two functions are simple unimodal functions 
whereas the next two functions are multimodal functions 
designed with a considerable amount of local minima. 

All the benchmarks are tested with dimensions 10, 20, 
and 30, and 50 trials are carried out with the same 
random initial populations with each dimension. Mutation 
rate mr decreased from 1e-2 to 1e-4. For all the 
benchmarks, the stopping criteria are set to 0.01. The 
population size is 40. Table I lists the average of the 
optimal value (standard deviations) of MGPSO with (Px, 
Pp, Pg) = (0.2, 0.8, 0) as well as various inertia weight, 
where Dim is the dimension, Gen is the maximum 
generation, Fun denotes the function. Table II lists the 
number of trails that converges to the stopping criteria 
and average number of generations for convergence for 
the 50 trials.  

It can be seen in Table I that with (Px, Pp, Pg) = (0.2, 
0.8, 0), in general, the results with proper inertia weight 
are relative better. With ω is 0.35, 0.45 and 0.55, 
MGPSO-IW has consistently converged to the stopping 
criteria for f1, f2 and f3 under all the three dimensions, 
while for f4, with inertia weight between 0.00 and 0.65, 
MGPSO has provided comparative results, and the results 
are deteriorated with higher inertia weight. 
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TABLE I.   
  AVERAGE OF THE OPTIMAL VALUE( STANDARD DEVIATION)  FOR 50 TRIALS FOR MGPSO-IW 

Fun Gen(Dim) inertia weight ω 
0.00 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 

f1 

1000 
(10) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

2000 
(20) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

3000 
(30) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

f2 

3000 
(10) 

0.028 
(0.037) 

0.035 
(0.085) 

0.057 
(0.099) 

0.015 
(0.018) 0.01 0.01 0.01 0.01 0.01 

4000 
(20) 

0.025 
(0.041) 

0.059 
(0.140) 

0.039 
(0.048) 

0.014 
(0.023) 0.01 0.01 0.01 0.01 0.01 

5000 
(30) 

0.033 
(0.050) 

0.021 
(0.031) 

0.029 
(0.040) 

0.034 
(0.102) 0.01 0.01 0.01 0.01 0.01 

f3 

3000 
(10) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.304 

(0.483) 
4000 
(20) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.300 

(0.447) 
5000 
(30) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.010 

(0.0004) 
0.159 

(0.344) 

f4 

3000 
(10) 

0.024 
(0.012) 

0.023 
(0.011) 

0.025 
(0.015) 

0.027 
(0.014) 

0.026 
(0.013) 

0.024 
(0.011) 

0.023 
(0.011) 

0.028 
(0.012) 

0.065 
(0.024) 

4000 
(20) 

0.024 
(0.012) 

0.024 
(0.014) 

0.028 
(0.014) 

0.028 
(0.015) 

0.021 
(0.011) 

0.021 
(0.010) 

0.027 
(0.012) 

0.034 
(0.015) 

0.066 
(0.027) 

5000 
(30) 

0.023 
(0.014) 

0.025 
(0.015) 

0.030 
(0.016) 

0.024 
(0.012) 

0.022 
(0.011) 

0.021 
(0.011) 

0.025 
(0.011) 

0.033 
(0.012) 

0.064 
(0.025) 

TABLE II.   
NUMBER OF THAT CONVERGED TO THE STOPPING CRITERIA AND AVERAGE NUMBER OF GENERATIONS FOR CONVERGENCE FOR 50 TRIALS  

Fun Gen(Dim) ω=0 ω=0.05 ω=0.15 ω=0.25 ω=0.35 ω=0.45 ω=0.55 ω=0.65 ω=0.75 

f1 

3000 
(10) 

50 
(354.9) 

50 
(303.6) 

50 
(270.5) 

50 
(232.7) 

50 
(255.2) 

50 
(304.7) 

50 
(427.4) 

50 
(573.4) 

50 
(848.0) 

2000 
(20) 

50 
(358.8) 

50 
(302.5) 

50 
(270.2) 

50 
(238.6) 

50 
(249.2) 

50 
(290.5) 

50 
(418.4) 

50 
(563.6) 

50 
(858.7) 

3000 
(30) 

50 
(358.8) 

50 
(300.0) 

50 
(271.9) 

50 
(242.7) 

50 
(249.4) 

50 
(303.8) 

50 
(419.4) 

50 
(554.0) 

50 
(850.4) 

f2 

3000 
(10) 

38 
(627.0) 

38 
(450.6) 

26 
(451.4) 

44 
(517.9) 

50 
(556.1) 

50 
(582.9) 

50 
(827.9) 

50 
(1336.9) 

50 
(2187.3) 

4000 
(20) 

34 
(529.4) 

31 
(482.5) 

28 
(732.7) 

47 
(556.7) 

50 
(502.3) 

50 
(627.7) 

50 
(960.6) 

50 
(1283.0) 

50 
(2224.4) 

5000 
(30) 

35 
(521.8) 

38 
(448.0) 

33 
(472.9) 

42 
(375.0) 

50 
(491.8) 

50 
(694.2) 

50 
(916.9) 

50 
(1248.3) 

50 
(2180.8) 

f3 

3000 
(10) 

50 
(1070.3) 

50 
(734.4) 

50 
(968.2) 

50 
(935.8) 

50 
(846.3) 

50 
(1104.6) 

50 
(1685.0) 

50 
(1930.1) 

27 
(2686.9) 

4000 
(20) 

50 
(1099.0) 

50 
(754.3) 

50 
(1043.5) 

50 
(938.7) 

50 
(856.0) 

50 
(1071.5) 

50 
(1558.0) 

50 
(1938.9) 

25 
(2662.1) 

5000 
(30) 

50 
(1075.0) 

50 
(773.1) 

50 
(956.7) 

50 
(953.8) 

50 
(811.9) 

50 
(1047.1) 

50 
(1691.7) 

49 
(1972.1) 

33 
(2685.6) 

f4 

3000 
(10) 

10 
(1482.5) 

7 
(986.6) 

13 
(991.4) 

10 
(885.2) 

6 
(816.0) 

6 
(1421.5) 

8 
(1864.8) 

0 
(n/a) 

1 
(2743.0) 

4000 
(20) 

7 
(995.7) 

9 
(1311.2) 

4 
(726.0) 

12 
(1184.8) 

12 
(1071.3) 

10 
(1498.6) 

6 
(2297.7) 

3 
(2580.0) 

0 
(n/a) 

5000 
(30) 

14 
(1513.4) 

13 
(1093.8) 

6 
(723.7) 

12 
(983.9) 

11 
(1239.8) 

11 
(1197.3) 

5 
(2293.0) 

2 
(2531.0) 

0 
(n/a) 

 
From Table II, it is clear that with proper inertia weight 

the convergence speeds of MGPSO-IW are faster than 
those of MGPSO for f1 (withω from 0.05 to 0.45), f2 
(with ω =0.35) and f3 (with ω from 0.05 to 0.35), and 
for f2 the convergence rate is higher. While for f4, inertia 
weight provides poor improvement. Moreover, 
withω more than 0.55, the convergence speed decreases 
for all the functions under the three dimensions, 
markedly.  

Consequently, in general, the inertia weight is effective 
for MGPSO-IW, and withω between 0.35 and 0.45, the 

performance is relatively consistent for the four 
functions. While the typical value of the inertia weight in 
classical PSO is bigger, in the fixed inertia weight 
strategies it is typically set to 0.9, and in the time-varying 
strategy, it decreases from 0.9 to 0.4 during the 
generation [13]. One of the reasons is that, in CPSO the 
velocity is the only momentum of a particle containing 
the previous “social” and “cognitive” information, 
consequently, the higher inertia weight means more 
momentum and more useful information. While in 
MGPSO-IW, a particle mainly moves with the modified 
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heuristic crossover with the inertia weight as a secondary 
part in the momentum. Consequently, in MGPSO-IW the 
inertia weight should be less, or the inertia will disturb 
the consistency and continuity. 

MGPSO-IW ( 0.45ω = ) are compared with the PSO 
methods discussed in [13] with the same population, 
maximal generation and stopping criteria. The averages 
of the optimal values (standard deviations) are listed in 
Table III, where PSO-TVIW, PSO-RANDIW, PSO-

TVAC, MPSO-TVAC, MPSO-FAC, HPSO-TVAC, and 
HPSO-FAC denote that PSO with time-varying inertia 
weigh, with rand inertia weigh, with time-varying 
acceleration coefficients, with both mutation and  time-
varying acceleration coefficients, with both mutation and 
fixed acceleration coefficients, with both self-organizing 
hierarchical strategy and time-varying acceleration 
coefficients, and with both self-organizing hierarchical 
strategy and fixed acceleration coefficients, respectively.  

TABLE III.   
  AVERAGE OF THE OPTIMAL VALUE( STANDARD DEVIATION)  FOR 50 TRIALS FOR MGPSO-IW WITH 0.45ω =   AND THE OTHER PSO METHODS 

Fun Gen(Dim) MGPSO- 
IW 

PSO- 
TVIW 

PSO- 
RANDIW 

PSO- 
TVAC 

MPSO- 
TVAC 

MPSO- 
FAC 

HPSO- 
TVAC 

HPSO- 
FAC 

f1 

3000 
(10) 0.01 0.0

1 0.01 0.0
1

0.0
1

0.0
1

0.0
1 

0.0
1 

2000 
(20) 0.01 0.0

1 0.01 0.0
1

0.0
1

0.0
1

0.0
1 

0.0
1 

3000 
(30) 0.01 0.0

1 0.01 0.0
1 

0.0
1 

0.0
1 

0.0
1 

0.2
30 

(0.
173) 

f2 

3000 
(10) 0.01 27.11 

(58.312) 
2.102 

(3.218) 
0.946 

(32.127) 
4.247 

(7.961) 
11.12 

(14.243) 
12.967 

(11.538) 
12.963 

(14.397) 
4000 
(20) 0.01 51.56 

(119.79) 
28.1788 
(73.072) 

17.944 
(46.296) 

17.7148 
(60.306) 

54.402 
(92.88) 

14.093 
(9,641) 

101.126 
(129.56) 

5000 
(30) 0.01 63.35 

(71.210) 
35.277 

(55.751) 
28.97 

(51.638) 
18.633 

(25.122) 
135.08 

(306.07) 
13.666 

(11.006) 
706.28 

(951.95) 

f3 

3000 
(10) 0.01 2.069 

(1.152) 
4.63 

(2.366) 
2.268 

(1.333) 
0.01 

(0.0033) 
19.54 

(36.577) 0.01 0.0671 
(0.237) 

4000 
(20) 0.01 11.74 

(3.673) 
26.293 
(8.176) 

15.323 
(5.585) 

0.3415 
(0.588) 

2.786 
(1.808) 0.01 11.391 

(6.489) 
5000 
(30) 0.01 29.35 

(6.578) 
69.7266 
(20.700) 

36.236 
(8.133) 

2.050 
(1.910) 

12.477 
(5.990) 

0.044 
(0.196) 

36.847 
(10.626) 

f4 

3000 
(10) 

0.024 
(0.011) 

0.0675 
(0.029) 

0.0661 
(0.030) 

0.05454 
(0.025) 

0.0469 
(0.0256) 

0.065 
(0.2373) 

0.057 
(0.026) 

0.057 
(0.023) 

4000 
(20) 

0.021 
(0.010) 

0.0288 
(0.023) 

0.0272 
(0.025) 

0.0293 
(0.027) 

0.0239 
(0.017) 

0.027 
(0.025) 

0.011 
(0.005) 

0.055 
(0.085) 

5000 
(30) 

0.021 
(0.011) 

0.0162 
(0.013) 

0.0175 
(0.018) 

0.0191 
(0.015) 

0.0169 
(0.0149) 

0.018 
(0.051) 

0.01 
(0.0035) 

0.116 
(0.193) 

 
It can be seen from Table III that MGPSO-IW has 

consistently found the optimal for f1, f2, and f3 with all 
the dimensions, which exceeds all the other PSO methods. 
For f4, MGPSO-IW provides the best result with 10 
dimensions; with 20 dimensions, MGPSO-IW is inferior 
to HPSO-TVAC but exceeds the other PSO methods; 
with 30 dimensions, MGPSO-IW is inferior to all the 
other methods but the results are near the optimum. 
Consequently, the comparisons have shown the feasibility 
and effectiveness of MGPSO-IW which can provide high 
quality solution for both simple unimodal functions and 
multimodal functions. 

IV THE PSO-SVM HYBRID SYSTEM 

A. The Fitness Definition 
To implement our proposed approach, this research 

used the RBF kernel function as defined by (6) for the 
SVM classifier because the RBF kernel function can 
analyze higher dimensional data and requires that only 
two parameters, C and γ be defined [8][22][23], . When 
the RBF kernel is selected, the parameters (C and γ) used 
as parameters must be optimized using the proposed 
PSO–SVM system. 

Classification accuracy is the criteria used to design a 
fitness function. Thus, for the particle with high 
classification accuracy produces a high fitness value. The 
particle with high fitness value has high probability to 
effect the other particles’ positions of the next iteration, 
so it should be appropriately defined.  

For the fitness definition, the classification accuracy 
(acc) or hit rate denoting the percentage of correctly 
classified examples is evaluated by (14) in [8]. The 
numbers of correctly and incorrectly classified examples 
are indicated by cc and uc, respectively. 

/ ( )F cc cc uc= +                                            (14) 
In the road icing the fitness definition has to be 

modified, because the road icing phenomenon only 
occurs in few days in a road icing season. For example, in 
the examples of Xianning from 1961 to 2006, there are 
6592 days in road icing reasons, and there are only 597 
road icing days (9.06%). And for Wuhan and Shiyan, the 
percents are 22.56% (from 1961 to 2006) and 26.28% 
(from 1963 to 2006), respectively. Consequently, an 
arbitrary prediction “there are not any road icing days in 
the road icing seasons” have the prediction accuracies 
90.94%, 77.44% and 73.72% for Xianning, Wuhan and 
Shiyan, respectively. It can be seen that the predictions 
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have high accuracies, but they provide no useful 
information for the reduction of the threat of the ice-
related accidents. 

 With the days with road icing denoted by 1 (positive), 
and the days without road icing denoted by 0 (negative), 
this paper employs another fitness definition given as 
follows. 

_ / ( _ _ _ )F N R N R N M N W= + +       (15) 
where _N R is the number of the positive examples 

classified correctly, which encourages the solution that 
can predict more road icing days correctly. _N M is the 
number of positive examples classified incorrectly to 
negative, which punishes the prediction of missing road 
icing days. And _N W is the number of negative 
examples classified incorrectly to positive, which is used 
to punish excessive positive prediction. 

By comparisons with (14), the employed fitness 
definition focuses more on the prediction of positive 
examples. With (15) the prediction accuracies of the 
above arbitrary prediction are zero for all the cities, and 
for a perfect prediction, the fitness will be 100% which is 
more reasonable.  

B. The Frame of the Proposed PSO-SVM system 
With the above fitness definition, MGPSO-IW is 

employed to train the parameters C and γ for SVM. 
Before the experimental procedure the historical data for 
training are split into two groups by cross-validation 
where N*P (0<P<1) examples are randomly selected 
from N examples for the training group, and the left N-
NP examples are used for the validation group. The 
training group is used to build the SVM model. The 
validation group is used to determine the proper training 
iteration avoid overtraining. Moreover, a test group is 
employed to evaluate the model’s classification accuracy 
which is independent to the training group and the 
validation group. The detailed experimental procedure for 
the training and testing is given as follows [8]. 
Step 1. Date preparation: Training, validation, and test 

groups are represented as Tr, Va, and Te, 
respectively. 

Step2. Particle initialization and PSO parameter setting: 
Generate initial particles comprised of C and γ, 
Set the PSO parameters including number of 
iteration, velocity boundary, population. Set 
iteration = 0, and perform the training process 
from step 3-7. 

Step 3.  Set iteration i=i+1. 
Step 4. SVM model training: 

(a) Build a SVM model based on the training 
group and each particle (C and γ). 

(b) Evaluate the classification accuracy on the 
validation group Va using the model above 
with (15) to generate the fitness of the particle. 

Step 5.  Update the local he the personal best according to 
the fitness evaluation results.  

Step6.   Update the position of each particle using the 
operations in Fig.3.  

Step7. If stopping criteria (maximum iterations 
predefined) are met, go to the next step, 
otherwise go to step 3. 

Step 8.  With the stopping training iteration determined in 
the previous step, based the best particle found 
so far build the SVM model. And then measure 
the testing accuracy on the Te. 

Step 9. End the training and testing procedure.      

V.  EXPERIMENTAL RESULTS 

The PSO-SVM system is performed to predict road 
icing in the three cities viz., Shiyan, Wuhan, and 
Xianning. For each city, three training data sets are 
employed viz., 1980 to 2006, 1994 to 2006, and 2000 to 
2006, and P = 30%. The data from 2007 to 2008 of each 
city are employed as the test group for each city, 
respectively. The population is set to 30, the searching 
ranges for C and γ are as follows: C∈[100, 280], γ∈
[0.001, 5], the maximum iteration is 10. The other 
parameters are the same with those used for Table I. For 
each city with each training group, 10 runs are performed, 
and the best results are given in Table IV, where Period is 
the period of the training data sets, Positive cases is the 
number of positive cases (road icing days) in the test 
groups, FIT is the fitness of the model for test groups 
generated by (15).  

TABLE IV.   
THE SIMULATION RESULTS OF THE PSO-SVM SYSTEM 

City Period Positive 
 Cases FIT N_R N_M N_W 

Shiyan 

1980-2006

69 

89.33% 67 2 6 

1994-2006 84.21% 64 5 7 

2000-2006 83.10% 59 10 2 

Wuhan 

1980-2006

49 

80.36% 45 4 7 

1994-2006 81.36% 48 1 10 

2000-2006 76.67% 46 3 11 

Xianning

1980-2006

48 

92.00% 46 2 2 

1994-2006 90.00% 45 3 2 

2000-2006 93.88% 46 2 1 

 
It can be seen that PSO-SVM system performed well 

for all the cities, with which almost all the road icing days 
have been predicted successfully and the fitness of the 
runs are more than 80% except Wuhan in 2000-2006. 
PSO-SVM provided the best predictions for Xianning, 
with which with all the periods the fitness are more than 
90%. And it can be seen that the system has predicted 
almost all the road icing days, and only predicted few 
non-road icing to road icing days in error. For Wuhan, the 
results are the worst where although it predicted almost 
all the road icing days, it predicted many non-road icing 
to road icing days, wrongly. For Shiyan, with the period 
2000 to 2006, the system has missed 10 road icing days 
which need be improved.  
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It is obviously that the period 1980 to 2006 there are 
more examples than those in the other periods, while for 
Wuhan and Xianning, it failed to provide the best results. 
One of the reasons is that the configuration of the cities 
are keeping on changing, and the total length, distributing, 
and technologies, etc have changed. Consequently, the 
examples long time ago may provide less useful 
information than those in recent years.  

VI. CONCLUSION 

The PSO-SVM predication system is employed for 
automatic prediction of road icing conditions in three 
cities of Hubei Province, viz., Wuhan, Shiyan and 
Xianning. To improve the classification accuracy for road 
icing prediction, a modified particle swarm optimization 
is employed to simultaneously optimize the SVM kernel 
function parameter and the penalty parameter. With the 
data from 1980 to 2006, using the proposed approach, the 
road icing models for the three cities in Hubei province 
are created, which have been used for the prediction from 
2007 to 2008. The results have shown the forecasting 
ability and reference values of the approach. 
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