
A Robust GA-based QoS Routing Algorithm for
Solving Multi-constrained Path Problem

Salman Yussof

College of Information Technology, Universiti Tenaga Nasional, Kajang, Selangor, Malaysia
Email: salman@uniten.edu.my

Ong Hang See

College of Engineering, Universiti Tenaga Nasional, Kajang, Selangor, Malaysia
Email: ong@uniten.edu.my

Abstract— To support networked multimedia applications,
it is important for a network to provide guaranteed quality-
of-service (QoS). One way to provide such services is for the
network to perform QoS routing, where the path taken must
fulfill certain constraints. Multi-constrained path (MCP)
problem refers to the problem of finding a path through a
network subject to multiple additive constraints. It has been
proven that this problem is NP-complete and finding an
exact solution can be difficult. As such, various heuristics
and approximation algorithms have been proposed to solve
the MCP problem. However, the actual link metrics in a
QoS-aware network is dynamic and may continuously
change over time and since the path given by the routing
algorithm is computed using the state information available
to the router, which may or may not be up-to-date, it is
possible that a feasible path returned by the algorithm may
turn out to be no longer valid. This paper presents a GA-
based QoS routing algorithm for solving the general k-
constrained problem which has the capability to return
multiple feasible paths in a single run. This makes the
algorithm more robust in the case that the rate of change of
state information in the network is higher than the rate of
state information received by the router. Simulation results
show that this algorithm consistently achieve higher
feasibility ratio relative to existing well-known MCP routing
algorithms when state information in the router lags behind
the network.

Index Terms— Genetic algorithm, multi-constrained path,
QoS routing, robust routing.

I. INTRODUCTION

With the emergence of networked multimedia
applications, the traditional routing method is no longer
adequate. This is because multimedia-oriented
applications require a different set of requirements than
the one required by data-oriented applications. According

to Daneshmand et al. [1], there are three primary
performance parameters for multimedia applications:
delay, mean opinion score and differential delay. From
networking point of view, these performance parameters
can be translated to network parameters such as delay,
jitter and bandwidth. Any data transfer performed without
fulfilling the QoS requirement would be useless because
the receiver may no longer be able to use the received
data. Therefore, to ensure that the requirements for
multimedia applications can be fulfilled, it is important
for the network to be able to consider the corresponding
network parameters when performing data transfer. One
way of achieving this is by implementing QoS routing.

In traditional routing, the main objective of the routing
algorithm is to find the least-cost path from sender to
receiver. QoS routing, on the other hand, has two
objectives [2], [3]. The first objective is to find a path that
satisfies the QoS requirements. Such path is called a
feasible path. Data transfer can only be performed when a
feasible path is found. The second objective is to
optimize the global network resource utilization. This is
necessary so that the network can accommodate as many
QoS requests as possible.

In general, routing consists of two tasks. The first task
is to distribute the state information to the network and
the second task is to find a feasible path by executing a
routing algorithm that uses the state information as its
input. The first task is done by routing protocols such as
RIP and OSPF, and in the case of QoS routing, a QoS
routing protocol such as QoSPF is required [4]. In a data
network such as the Internet, the link metric does not
change very often. However, in a QoS-aware network
which commonly runs networked multimedia
applications, the link metrics such as delay and delay
jitter can continuously change over time depending on the
type and amount of multimedia data being transmitted.
This makes it difficult for a router to have an up-to-date
information of all the link metrics in the network [5]. As
such, it is possible for a feasible path returned by the QoS
routing algorithm to turn out to be not feasible when the
actual data transfer is performed.

There are various QoS routing algorithms that have
been proposed by researchers. The algorithms are

Manuscript received January 13, 2010; revised March 15, 2010;
accepted March 16, 2010.

This work was supported by Universiti Tenaga Nasional.
Salman Yussof is with the Department of Systems and Networking,

College of Information Technology, Universiti Tenaga Nasional,
Malaysia (email: salman@uniten.edu.my).

Ong Hang See is with the Department of Electronics and
Communication Engineering, College of Engineering, Universiti
Tenaga Nasional, Malaysia (email: ong@uniten.edu.my).

1322 JOURNAL OF COMPUTERS, VOL. 5, NO. 9, SEPTEMBER 2010

© 2010 ACADEMY PUBLISHER
doi:10.4304/jcp.5.9.1322-1334

normally developed to tackle different problems based on
the composition rule. There are three main composition
rules: additive, multiplicative and concave. The definition
of the composition rules as specified by Wang et al. [6]
and Chen et al. [7] are given below:

Let d(i,j) be a QoS metric for link (i, j). For any path p

= (i, j, k, …, l, m), metric d is additive if:
 d(p) = d(i,j) + d(j,k) + … + d(l,m)
Metric d is multiplicative if:
 d(p) = d(i,j) x d(j,k) x … x d(l,m)
Metric d is concave if:
 d(p) = min[d(i,j), d(j,k), … , d(l,m)]

Constraints associated with concave QoS metrics can

be easily dealt with by pruning all links that do not satisfy
the constraints [6]. Several researchers such as the ones in
[2], [6] and [8] have developed algorithms to deal with a
concave metric or a combination of a concave and an
additive metric (i.e. bandwidth-delay constraint).
Constraints associated with multiplicative QoS metrics
can be converted to additive metrics by using logarithm.
However, the problem of finding a path subject to
constraints of two or more additive QoS metrics is not
very easy and it has been proven to be NP-complete [6].
This paper will mainly focus on this type of problem,
which is also commonly known as the multi-constrained
path (MCP) problem.

Definition 1 Multi-constrained path (MCP) problem:
Consider a network represented by a directed graph

),(ENG = , where N is the set of nodes and E is the set
of links. Each link Eji ∈),(is associated with K

additive QoS metrics),(jiwk , k = 1, 2, … , K where all
metrics are non-negatives. The problem is to find a path p
from a source node s to a destination node d such that

∑
∈

≤=
pji

kkk Cjiwpw
),(

),()(for k = 1, 2, … , K, where

Ck is the constraint for the kth QoS metric.

In this paper, we propose a general k-constrained QoS
routing algorithm for solving the MCP problem. In
addition to solving the MCP problem, the proposed
algorithm is also able to produce multiple feasible paths
and this enables the algorithm to become more robust in
the case that the actual state information in the network
has changed since the last state information update
received by the router. If the first feasible path found
turns out to be no longer feasible, there are other
alternative paths that can be tried without having to
execute a new routing computation. This will increase the
success of finding a feasible path that can fulfill a
particular QoS requirement.

The rest of the paper is organized as follows. In
Section II, a literature review on genetic algorithm and
MCP routing algorithms are presented. The proposed
GA-based QoS routing algorithm is described in Section
III. In Section IV, the experiments performed and the

results of the experiments are presented. The paper
concludes with a summary of the results in Section V.

II. LITERATURE REVIEW

A. Introduction to Genetic Algorithm
Genetic algorithm (GA) is a search algorithm that is

inspired by the theory of genetics and natural selection
[9], [10]. The problem to be solved using GA is encoded
as a chromosome that consists of several genes. The
solution of the problem is represented by a group of
chromosomes referred to as a population. During each
iteration of the algorithm, the chromosomes in the
population will undergo one or more genetic operations
such as crossover and mutation. The result of the genetic
operations will become the next generation of the
solution. This process continues until either the solution
is found or a certain termination condition is met. The
idea behind GA is to have the chromosomes in the
population to slowly converge to an optimal solution. At
the same time, the algorithm is supposed to maintain
enough diversity so that it can search a large search
space.

The general outline of GA as described by Goldberg
[10] and Dumetrescu et al. [11] is as follows:
1. Initialize the initial population. The initial population

is normally created randomly or based on some
heuristics.

2. Evaluate the fitness of each chromosome on the
population.

3. Perform selection. In this process, chromosomes are
selected to be put into the mating pool. A selection
scheme is utilized to choose the chromosomes.

4. Perform crossover. This process allows two
chromosomes to exchange information and produce
two new chromosomes. The parent chromosomes are
selected randomly from the mating pool.

5. Perform mutation to the new chromosomes produced
by crossover. This process randomly changes the
content of a gene in a chromosome. This is done to
create diversity in the population and allows the
search of a new search space. Each gene will be
considered for mutation with a certain probability.

Repeat step 2 until a termination condition is met.

B. MCP Routing Algorithms
Various heuristics and approximation algorithms have

been proposed to solve the MCP problem [12] – [25].
Other researchers turn their attentions to studying the
network conditions that impact the performance of the
routing algorithms developed [26] – [28]. Some
researchers try to augment the developed algorithms by
introducing other techniques such as smart forwarding
[29] and pre-computation [30], [31].

Most of the QoS routing algorithms developed are
actually a modified version of well-known shortest path
routing algorithms such as Dijkstra’s algorithm or
Bellman-Ford algorithm [12] – [25]. There are also

JOURNAL OF COMPUTERS, VOL. 5, NO. 9, SEPTEMBER 2010 1323

© 2010 ACADEMY PUBLISHER

approaches that are based on other methods such as
flooding [46] and vector converting [47]. Another
alternative approach would be to use artificial intelligence
(AI) approach. Multi-constrained routing algorithms
based on AI techniques such as fuzzy logic [48] and
mobile agent [49] have been explored by researchers.

The earliest work concerning the MCP problem is an
algorithm to solve two-constraint problem presented by
Jaffe [12]. Jaffe uses an approach that combines the two
link metrics into a single mixed link metric. The single
link mixed metric is defined as follows:

)()()(2211 ewd+ewd=ew (Eq. 1)
where e is a link with two different metrics, w1(e) and
w2(e) and d1 and d2 are positive real numbers. A feasible
path is then searched by using Dijkstra’s shortest path
algorithm with respect to w(e).

Chen and Nahrstedt [13] proposed an approximation to
the MCP problem by scaling down k – 1 link metrics into
integer metrics as follows:

.
⎥
⎥

⎤
⎢
⎢

⎡

i

i
i c

xw=w (Eq. 2)

where x is a pre-defined positive integer and ci is the
constraint on metric wi. The problem is then simplified to
the problem of finding the shortest path with respect to a
single QoS metric (the one that is not scaled down) with
the condition that all the k – 1 scaled metrics are within
the stricter constraint xi.

Neve and Mighem proposed an algorithm called
TAMCRA [14] to solve the general k-constrained
algorithm. TAMCRA is based on three fundamental
concepts: non-linear path length function, k-shortest path
and the principle of non-dominated path. According to
TAMCRA, the non-linear path length function can be
approximated as follows:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤≤

i

i
ki c

pw=pw)()(axm
1

 (Eq. 3)

where k is the number of constraints, w(p) is the total path
cost and ci is the constraint on metric wi. For each
destination, TAMCRA stores n non-dominated paths. A
path Q is said to be dominated by a path P if wi(P) ≤
wi(Q) for all i = 1, …, k.

Korkmaz and Krunz [17] extended the idea presented
in TAMCRA to solve not only the MCP problem but also
the more difficult multi-constrained optimization path
(MCOP) problem where a primary cost function is to be
minimized. The proposed algorithm is called H_MCOP.
It uses the same approximated non-linear cost function as
the one used by TAMCRA. It executes two modified
version of Dijkstra’s algorithm in backward and forward
direction. In the backward direction, H_MCOP computes
the shortest paths from every node to the destination node
with respect to a linear combination of all the link
metrics. In the forward direction, the non-linear cost
function is used. Among all the feasible paths found, the
algorithm would then find the one with the minimum

primary cost function. If the problem to be solved is the
MCP problem instead of the MCOP problem, then the
algorithm can terminate once a feasible path is found.

Khadivi [25] improves upon the path length function
used by TAMCRA and H_MCOP by introducing another
component to the path length function. The function is
defined as follows:

[]εμ +Δ=)()()(pppG (Eq. 4)

where μ(p) and Δ(p) are defined as follows:

∑
k

=i i

i

c
pw

k
=p

1

)(1)(μ

 ()∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−Δ

k

=i i

i pμ
c

pw=p
1

2
)()((Eq. 5)

where k is the number of constraints and ci is the
constraint on metric wi. All of these algorithms assume
that the network state information is correct and they
return a feasible path if one is found. Even though
TAMCRA can store n non-dominated paths, the
algorithm does not check whether the paths stored are
feasible or not.

A recent work by Guoliang Xue et al. [50] improves
the method proposed by Chen and Nahrstedt [13], which
resulted in a better run time complexity. However, the
general concept is still the same where the shortest path is
calculated based on only one QoS metric and the other k
– 1 link metrics are approximated.

C. GA-based Routing Algorithms
Genetic algorithm (GA) is very good at solving

optimization problems [10]. Since network routing is a
form of optimization problem, many researchers have
tried to apply GA to different types of network routing
problems. Researchers in [32] – [37] address the shortest
path routing problem, while the researchers in [38] – [43]
address various types of QoS routing problems.

Chang [32] has applied the GA algorithm to the
shortest path routing problem. He compared his result to
that of Dijkstra’s algorithm and found out that GA has
two main advantages. The first one is that the GA
algorithm is insensitive to variations in network
topologies with respect to route optimality and
convergence speed. The second one is that the proposed
GA-based routing algorithm is scalable in the sense that
the real computation time does not increase very much as
the network size gets larger. Munetomo [33], [34] also
applied GA to the shortest path routing problem.
However, the objective of his algorithm is to generate
alternative paths in addition to the path obtained from
Dijkstra’s algorithm. These alternative paths would allow
the network to be more robust in the case of link or node
failures. The alternate paths can quickly be used rather
than having to compute a new path. Both Chang and
Munetomo use variable length chromosome with each
chromosome consisting of nodes that are on the path from
sender to receiver. Other researchers who also use GA to
solve the shortest path routing problem (or a variation of

1324 JOURNAL OF COMPUTERS, VOL. 5, NO. 9, SEPTEMBER 2010

© 2010 ACADEMY PUBLISHER

it) are Sinclair [35], Shimamoto [36], and Hamdan [37].
Wang [38] and Riedl [39] develop a GA-based QoS

routing algorithm to solve the delay-bandwidth-constraint
routing problem. On top of finding a feasible path, these
two algorithms are also designed to optimize network
resource utilization. Wang’s algorithm encodes the
chromosome as a binary string where the genes represent
the link between each pair of nodes in the network. Riedl
uses chromosome that contains the weight of the links.
Barolli [40], [41] tries to solve the problem of QoS
routing subject to two QoS metrics which are delay and
transmission success rate. According to [6], this problem
is NP-complete. In these algorithms, the network is
modeled as a tree and each gene in the chromosome
represents a junction on the tree. Koyama [42] takes
Barolli’s work further by introducing a multi-purpose
optimization method that would further improve its
performance. Xiang [43] also proposes a GA-based QoS
routing algorithm to solve a routing problem subject to
four different QoS metrics: delay, bandwidth, loss-rate
and jitter. The chromosome encoding used is similar to
[38]. He [44] uses GA to solve the problem of route
selection and capacity assignment, which is also NP-
complete. Some of these algorithms are actually hybrid
algorithms where GA is combined with another algorithm
to produce better results, such as the ones in [35], [37]
and [39].

Even though all the algorithms discussed above use
GA, they all vary in terms of the details of their
implementation. In GA, each part of the algorithm such
as the genetic encoding, the selection scheme, the
crossover and mutation operations and the fitness
function can be implemented in many different ways. In
terms of genetic encoding, there are three types of
encoding commonly used in network routing problem.
Researchers in [32] – [34] use a list of node IDs from
source to destination to represent the chromosome.
Researchers in [38], [40] – [43] use a binary string to
represent the chromosome. However, in the case of [40] –
[42], the network is modeled as a tree and the binary
string represents the junctions in the tree. In the case of
[38] and [43], a matrix is used to represent all the
possible links between any two nodes. A binary 1 is
assigned to a value in the matrix if there is link between
the two nodes, and 0 otherwise. The binary string comes
from this representation. The crossover and mutation
operations would depend on the genetic encoding used.
The fitness function is the part of GA which is different
for each algorithm. It is derived from the routing problem
to be solved and the focus of the algorithm.

III. PROPOSAL GA-BASED QOS ROUTING ALGORITHM

A. Algorithm Overview
The proposed algorithm is aimed to find n feasible

paths given a set of QoS requirement. This is done to
make the algorithm more robust in the case where the
state information in the routers lags behind the network.

The idea is that if one of the feasible paths is no longer
feasible due to the changes in the network state
information, other alternate paths can be tried and
hopefully one of them will turn out to be really feasible.
In GA, multiple feasible paths can be easily generated by
keep iterating the algorithm until n feasible paths are
found. However, in order to prevent the algorithm from

No

No

Yes

Yes

No

Yes

Start

Initialize initial
population

Evaluate population
using fitness function

Create mating
pool

Apply selection function to
choose parents for crossover

Have all
pairs

mated?

Have we
produced
enough

children?

Apply mutation operator to each
chromosome with certain probability

Replace the worst chromosome with the
best one from the previous population

Have we found n
feasible paths OR

maximum number of
iteration is reached?

End

Apply selection operator
to choose chromosomes

from previous population
into the new population

Figure 1: Overall procedure of the GA-based QoS
routing algorithm

JOURNAL OF COMPUTERS, VOL. 5, NO. 9, SEPTEMBER 2010 1325

© 2010 ACADEMY PUBLISHER

running forever, the maximum number of iteration must
be set.

As opposed to the algorithm proposed by Chang [32]
and Munetomo [33], [34] where the objective of the
algorithm is to optimize the link cost, the algorithm
proposed here is designed to search a large search space
for a feasible path. Therefore, this algorithm will not run
until convergence. In fact, convergence is discouraged by
not allowing similar chromosomes to be in the
population. When a new chromosome is produced
through a genetic operation (either crossover or
mutation), the new chromosome is only included in the
next generation if a similar chromosome does not yet
exist.

The outline of the GA-based QoS routing algorithm is
as follows:
1. Randomly initialize the initial population.
2. Evaluate the population using a fitness function.
3. Create the mating pool, which consists of all the

chromosomes in the current population.
4. Apply crossover operator several times to create m

new children for the new population (where m is the
population size). The parents are selected using the
selection operator. Each pair of parent chromosome
can only mate once and the children produced are
only accepted into the new population if they are not
similar to the previously produced children. This is
done to diversify the search and discourage
convergence.

5. If all the possible pair of parents have mated and
there are still not enough children to populate the
new population, select members from the previous
population using the selection operator to fill in the
new population.

6. Apply mutation operator on the chromosomes in the
mating pool. Each chromosome has a certain
probability to be mutated. Mutation result must not
be the same as any of the chromosome in the current
population or else it would be ignored.

7. Replace the worst (the one with the lowest fitness
value) chromosome produced by the genetic
operators (crossover and mutation) with the best
chromosome in the previous population.

8. Repeat step 2 until n feasible paths are found or the
maximum number of iteration is reached.

The overall procedure of the algorithm is depicted in

the flowchart in Figure 1.

B. Genetic Representation
A communication network can be modeled as a

directed graph G(N,E), where N is the set of nodes
representing the routers and E is the set of edges
representing the links that connect between the routers
[6]. For a network supporting multiple QoS metrics, each
edge (i,j) is associate with k independent metrics, d1(i,j),
d2(i,j), d3(i,j), … , dk(i,j) where d(i,j) is a real positive
number.

This GA-based routing algorithm is intended to be
used in source routing where the sender performs the
algorithm and finds a feasible path before the actual data
can be sent. There are two methods by which the genetic
encoding can be done. The first method is to follow the
traditional GA where a chromosome is encoded as a
string of binaries. This method is used by the algorithms
in [38], [40] – [43]. The second method is to encode the
chromosome using an encoding specific to the problem to
be solved. This method is used by the algorithms in [32]
– [34]. For our algorithm, the latter method is chosen. In
our algorithm, each chromosome consists of a sequence
of nodes that are in the path from sender to receiver. The
first gene in the chromosome is always the sender and the
last gene in the chromosome is always the receiver.
Figure 2 shows an example of a small network that
consists of six nodes where each link has two QoS
metrics associated with it. An application requesting a
connection between A and F can have its request fulfilled
by two different paths: A B C F and A D E F.
These two paths can be encoded as two different
chromosomes:

Chromosome 1 (path 1): [A B C F]
Chromosome 2 (path 2): [A D E F]

The top path has a total QoS metric values of (8,11)

and the bottom path has a total QoS metric values of
(21,15). For a QoS aware application, any connection
request made is accompanied by a set of QoS
requirement. For example, if a multimedia application
requested a connection with a QoS requirement of
(15,13), it can be only fulfilled by the top path [A B C F].

Since different paths may have different number of

intermediate nodes, the chromosomes will be of variable
length. However, the maximum length of a chromosome
cannot exceed the total number of nodes in the network.
Any repeated nodes in the chromosome signify that the
path represented by the chromosome contains a loop and
in network routing, any loop should be eliminated.

C. Initial Population
In the beginning, the population is filled with

chromosomes that represent random paths. Even though
the paths are random, they are supposed to be valid paths,
where the chromosomes consist of a sequence of nodes
that are in the path from sender to receiver. The number
of chromosomes generated depends on the population

(5,7) (9,2)

(2,4)

(4,4)

(2,3)

A

B C

F

D E
(7,6)

Figure 2: A small network with links that have two QoS
metrics (k = 2)

1326 JOURNAL OF COMPUTERS, VOL. 5, NO. 9, SEPTEMBER 2010

© 2010 ACADEMY PUBLISHER

size.
The algorithm to generate the random path is adapted

from Chang [32]. The algorithm goes as follows:
1. Start from the sending node.
2. Randomly choose, with equal probability, one of the

nodes that are connected to the current node.
3. If the chosen node has not been visited before, mark

that node as the next node in the path. Otherwise,
find another node.

4. If all the neighboring nodes have been visited, go
back to step 1.

Otherwise, repeat step 2 by using the next node as the
current node. Do this until the receiving node is found.

D. Fitness Function
Each chromosome in the population is associated with

a fitness value that is calculated using a fitness function.
This value indicates how good the solution is for a
particular chromosome [11]. This information is then
used to pick the chromosomes that will contribute to the
formation of the next generation of solution. The fitness
value is computed using a fitness function. The fitness
function is highly dependant on the problem to be solved.
For the MCP problem, the objective is to find a path that
satisfies a set of QoS requirement as defined in Definition
1. In general, the smaller the total QoS values are on the
links along a path from source to destination, the larger
the possibility for the path to satisfy the given QoS
requirement. Therefore, the fitness function must
minimize the total cost CT, which is defined as follows:

 ∑∑
−

=

−

=

=
1

0

1

0

K

k

L

l
klT cC (Eq. 6)

where ckl represents the kth QoS metric on link l, K
represents the number of QoS metric on each link and L
represents the total number of links in the path. However,
since the range of values of each QoS metric can vary
depending on the type of the metric, simply adding up all
the QoS metrics would cause the result to be dominated
by QoS metrics that have larger values compared to the
others. Therefore, before the QoS metrics can be added
up, each QoS metric must be normalized as follows:

∑∑
−

=

−

=

=′ 1

0

1

0

R

r

L

j
kj

kl
kl

c

cc (Eq. 7)

where R represents the total number of possible paths

from source to destination. The term ∑∑
−

=

−

=

1

0

1

0

R

r

L

k
kjc adds up

all the kth QoS metric on each link along each possible
path.

Based on the argument above, given a population of
size p, the fitness function is defined as follows:

K
c
c

f

K

j j

ij

i

∑
−

= ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

=

1

0
 (Eq. 8)

where fi represents the fitness value of the chromosome i,
K represents the number of QoS metric on each link,

∑
∈

=
il

ijlij cc represents the sum of the jth QoS metric for

all links l within chromosome i, and ∑
−

=

=
1

0

p

i
ijj cc is

obtained by adding up the jth QoS metrics for all links of
all the chromosomes in the population. The division with
K is done to normalize the whole result so that the
resulting fitness value is between 0 and 1, where a lower
value indicates a better path. The total fitness values from
all the chromosomes in the population would add up to 1.

As an example, assume the network depicted in Figure
2. There are two paths that can be used to travel from
node A to node F. Therefore, we will assume that the
population has two chromosomes representing these two
paths. The fitness values for the top path (f0) and the
bottom path (f1) are computed as follows:

35.0
2

26
11

29
8

0 =
+

=f 65.0
2

26
15

29
21

1 =
+

=f

In the example above, the value given by the fitness
function indicates that the top path is the better path. This
can be verified to be correct considering that the top path
generally has lower QoS metric values. It is important to
point out that the generality of the proposed algorithm
which enables it to be applied to any k-constrained MCP
QoS routing problem is due to the generality of this
fitness function.

E. Selection
In order to generate the next generation of solutions, a

mating pool that consists of the members of the current
population is created. The chromosomes in the mating
pool are then subjected to genetic operations such as
crossover and mutation. Parents for the crossover
operation are selected using a selection operator. The idea
behind the selection operator is to allow chromosomes
with better fitness values a higher chance to reproduce
through crossover operation. Parents with good fitness
values are expected to produce children with even better
fitness values.

According to [11], there are several categories of
selection scheme. Among them are proportional
selection, rank-based selection and tournament selection.
For each category, there are several variations of the
selection schemes.

In this algorithm, the pairwise tournament selection
with tournament size, s = 2, is employed. In this selection
scheme, a parent for the crossover operation is selected
by randomly choosing two chromosomes from the
population. The one with the higher chromosome
between the two will be selected as a parent. To select

JOURNAL OF COMPUTERS, VOL. 5, NO. 9, SEPTEMBER 2010 1327

© 2010 ACADEMY PUBLISHER

two parents, this operation is performed twice. A pair of
parent chromosomes can only be selected once.

F. Crossover
The first genetic operation done to the chromosomes in

the mating pool is crossover. The idea behind crossover is
to create an information exchange between two
chromosomes [11]. By doing so, the algorithm will
explore new paths and hopefully be able to find better
paths in the process.

In order to perform crossover, two chromosomes from
the mating pool will be selected using the selection
operator. These two chromosomes will become the parent
chromosomes. In an iteration, a pair of parents can only
be selected for crossover once. To ensure that the paths
generated by the crossover operation are still valid paths,
the two chromosomes selected must have at least one
common node other than the sending and receiving
nodes. If more than one common node exists, one of them
will be randomly chosen with equal probability. The
chosen node is called the crossover point. Since the
number of possible crossover point in a pair of
chromosome is normally very small, crossover is always
performed whenever there is at least one crossover point
(i.e. crossover probability, pc = 1). The actual crossover
operation is similar to the one described in [32] – [34].
For example, assume that we have the following parent
chromosomes:

Parent chromosome 1: [A B C G H I X Y Z]
Parent chromosome 2: [A K L M I T U Z]

where A and Z are the sending node and receiving node
respectively. In this example, the common node is node I.
Therefore, crossover operation will exchange the first
portion of chromosome 1 with the second portion of
chromosome 2 and vice versa. As a result, the following
child chromosomes will be generated:

Child chromosome 1: [A B C G H I T U Z]
Child chromosome 2: [A K L M I X Y Z]

These two chromosomes would then become new
members of the population.

It is possible that loops may occur after crossover
operation is performed. Loops in a chromosome can be
repaired by performing a search along the chromosome to
find repeated nodes [32]. The nodes in between the
repeated nodes are then eliminated. For example, assume
that we have the following chromosome that contains a
loop:

Chromosome with loop: [A B C G H I K G U W Z]
In this case, there are two G nodes in the chromosome
which signifies that the path contains a loop. This
chromosome can be fixed by eliminating one of the G
node and all the other nodes in between the two G nodes.
The loop-free chromosome would become like this:

Loop-free chromosome: [A B C G U W Z]
The resulting chromosome can be searched again just

in case there are multiple loops in the chromosome.

G. Mutation
The objective of mutation operation is to create

diversity in the population [11]. Mutation would allow
the algorithm to search on the areas of the search space
that was previously unknown. Each chromosome in the
population would have a certain probability to be
mutated. This probability is referred to as the mutation
rate. For optimal result, the value for the mutation rate
has to be set correctly.

The actual mutation operation is adapted from Chang
[32]. For each chromosome that is chosen to be mutated,
a mutation point will be chosen randomly, with equal
probability, among the intermediate nodes in the path
from sender to receiver (i.e. the sending and receiving
node cannot be chosen as the mutation point). Once the
mutation point is chosen, the chromosome will be
changed starting from the node after the mutation point
and onwards. For example, assume that the following
chromosome has been chosen to be mutated:

Original chromosome: [A C E F G H I Y Z]
where A and Z are the sending node and the receiving
node respectively. Assume also that the node G has been
chosen as the mutation point. The mutated chromosome
would become like this:

Mutated chromosome: [A C E F G x1 x2 x3 … Z]
The mutated chromosome now contains a new path

from G to Z where xi is the ith new node in the path. The
new path is generated randomly; the same way as the
paths in the initial population is generated.

IV. EXPERIMENTS AND DISCUSSION

The proposed algorithm has been implemented as a
C++ program and is run on a computer with 2.4GHz Core
2 processor and 4GB of RAM. The performance of the
algorithm is compared with TAMCRA [14], Chen [13],
H_MCOP [17] and Khadivi [25] algorithms. The
TAMCRA algorithm used is configured to store two non-
dominated paths. The performance metrics used to
compare the algorithms are success ratio (SR) and
feasibility ratio (FR). The success ratio is defined as the
number of feasible path found using the node’s state
information divided by the total number of requests.
Feasibility ratio is defined as the number of paths that is
actually feasible given that the current state information
has changed divided by the total number of requests.

There are two types of network used in the simulation,
the n x n mesh network and the Waxman network [45].
The Waxman network is actually a random graph where
the existence of link between two nodes, i and j, is
defined by the following probability:

))((exp
βL
d

α=p ji,
ij − , 10 <βα,< (Eq. 9)

where di,j is the distance between the two nodes, and L is
the maximum inter-nodal distance in the topology. A
larger value of αwould generate a graph with higher
density and a small value of β increases the density of

1328 JOURNAL OF COMPUTERS, VOL. 5, NO. 9, SEPTEMBER 2010

© 2010 ACADEMY PUBLISHER

short edges relative to longer ones. In all the experiments,
the values for α and β are set to 0.2 and 0.1 respectively.
However, to avoid having isolated nodes, each node must
be connected to at least one other node. Each link in the
graph is associated with k randomly generated link
metrics, where each link metric is given a value wk(i,j) ~
uniform[1,100]. The source and destination nodes are also
generated randomly. For each QoS requests, the
constraints for each metric are randomly generated and is
given a value ck ~ uniform[400,600] for the mesh network
and ck ~ uniform[200,400] for the Waxman network.

Each node is assumed to have the same set of network
state information. All the routing algorithms will use the
node’s state information to find a feasible path. However,
before data is actually sent, each metric of each link will
have a small probability, pv, to be increased or decreased
by a random value vk ~ uniform[0,max_change]. The
success of data transmission will now be determined
based on the new link metrics.

Each simulation is run on 8 x 8 mesh network, 12 x 12
mesh network and 80-node Waxman networks. The
results reported in the subsequent sections are averaged
over 50 runs. For each run, a new network with a new set
of link metrics is randomly generated using different
seeds. For the Waxman network, this also means that a
new topology with different connectivity is generated for
each run. Therefore, the result for 80-node Waxman

networks is actually obtained from 50 different, randomly
generated topologies. In each run, a total of 5000
connection requests are generated where the source and
destination nodes are chosen randomly.

In short, each single point in the graphs presented in
subsequent sections is obtained by taking the grand
average of the results produced by the algorithm after
running it 250,000 times (50 runs multiply with 5000
connection requests). This gives the average performance
of the algorithm when run on a network of the same size,
but subjected to different set of QoS metrics on each link,
different nodes connectivity (in the case of Waxman
networks), various source-destination pair and various
QoS requirement.

A. Identifying the Proper GA Parameters
In GA, there are several parameter values that need to

be decided during implementation. For the proposed
algorithm, the values for maximum iteration, population
size and mutation probability need to be chosen properly
to in order to ensure optimal performance. The values for
maximum iteration and population size allows for a
tradeoff between the quality of the result and the
computation time. A higher maximum iteration and
population size would, in general, gives a better quality
result at the expense of higher computation time.
Mutation probability on the other hand must be chosen
correctly because any value that is too low or too high
would cause the algorithm to perform badly.

0.7

0.75

0.8

0.85

0.9

0.95

1

20 40 60 80 100
Population Size

Su
cc

es
s

R
at

io

8x8 Mesh
12x12 Mesh
80-node Waxman

0

5000

10000

15000

20000

25000

30000

35000

20 40 60 80 100
Population Size

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

8x8 Mesh
12x12 Mesh
80-node Waxman

Figure 4: Success ratio and execution time with respect to
population size

0.7

0.75

0.8

0.85

0.9

0.95

1

50 100 150 200 250 300
Maximum Iteration

Su
cc

es
s

R
at

io

8x8 Mesh
12 x 12 Mesh
80-node Waxman

0

5000

10000

15000

20000

25000

50 100 150 200 250 300
Maximum Iteration

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

8x8 Mesh
12x12 Mesh
80-node Waxman

Figure 3: Success ratio and execution time with respect to
maximum number of iterations

JOURNAL OF COMPUTERS, VOL. 5, NO. 9, SEPTEMBER 2010 1329

© 2010 ACADEMY PUBLISHER

Here, the effect of the different GA parameters will be

tested experimentally. For each of the parameters, the
simulation is run several times with different values of
the intended parameter, while fixing the values of the
other two. The performance of the algorithm with respect
to the different parameter values is evaluated using the
success ratio and computation time. For all the
simulations in this experiment, the number of QoS
metrics on each link is set to two (k = 2).

Figure 3, Figure 4 and Figure 5 show the success ratio
and execution time for different values of maximum
iteration, population size and mutation probability
respectively. For maximum iteration, although in general

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GA Khadivi Chen H_MCOP TAMCRA

Success Ratio
Feasibility Ratio

Figure 9: Success ratio and feasibility ratio for 80-node Waxman
networks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Success Ratio
Feasibility Ratio

Figure 8: Success ratio and feasibility ratio for 12x12 mesh
network

0

0.2

0.4

0.6

0.8

1

1.2

GA Kh di i Ch H MCOP TAMCRA

Success Ratio
Feasibility Ratio

Figure 7: Success ratio and feasibility ratio for 8x8 mesh network

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10
Number of Feasible Paths Stored

Fe
as

ib
ili

ty
 R

at
io

8x8 Mesh
12x12 Mesh
80-node Waxman

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9 10
Number of Feasible Paths Stored

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

8x8 Mesh
12x12 Mesh
80-node Waxman

Figure 6: Feasibility ratio and execution time with respect to the
number of feasible path generated

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.01 0.05 0.1 0.2 0.5 1

Mutation Probability

Su
cc

es
s

R
at

io

8x8 Mesh
12x12 Mesh
80-node Waxman

0

5000

10000

15000

20000

25000

30000

0 0.01 0.05 0.1 0.2 0.5 1

Mutation Pribability

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

8x8 Mesh
12x12 Mesh
80-node Waxman

Figure 5: Success ratio and execution time with respect to mutation
probability

1330 JOURNAL OF COMPUTERS, VOL. 5, NO. 9, SEPTEMBER 2010

© 2010 ACADEMY PUBLISHER

the success ratio tends to be higher with higher value of
maximum iteration, the increase in success ratio is not
consistent. There is no guarantee that a higher success
ratio will be achieved with a higher maximum iteration.
Even if there is an increase in success ratio, the increase
is not very significant. This behavior shows that if a
feasible path exists, most of the time it can be found
without requiring a large number of iterations. As such,
an increase in the maximum iteration value does not
significantly increase the success ratio. On the other
hand, the total execution time increases linearly with
higher value of maximum iteration. With respect to

population size, the success ratio tends to increase with
higher population size. However, the increase is
logarithmic, meaning that the rate of increase gets lower
as the population size gets larger. This trend is the same
regardless of the network size. The execution time,
however, increases exponentially. For mutation
probability, there seems to be a positive correlation
between the success ratio and execution time where the
mutation probability that gives a good success ratio also
tends to give a low execution time. Although the right
value for mutation probability varies depending on the
network topology, it can be generalized that any value
between 0.05 and 0.2 tends to give a good result with low
execution time.

For the rest of the experiment, the values for maximum
iteration, population size and mutation probability are
chosen to be 200, 60 and 0.1 respectively.

B. Generating Multiple Feasible Paths
To ensure the robustness of the proposed algorithm

with respect to changing link cost values, the algorithm
can be configured to return multiple feasible paths. This
is done by keep iterating the algorithm until the specified
n feasible paths have been found. However, the
maximum number of iteration performed is still subjected
to the maximum iteration parameter as discussed above.
As such, it is possible that the number of feasible paths
returned is less than n, especially if the actual number of
feasible path is very low. In this experiment, the
performance of the algorithm will be evaluated with
respect to the values of n. The performance metric used is
the feasibility ratio. For all the simulations in this
experiment, the number of QoS metrics on each link is
also set to two (k = 2). It is expected that the feasibility
ratio will increase as the value of n increases. However,
since there is a limit on the actual number of feasible path
and the value of maximum iteration, there should be a
maximum values of n after which a higher value of n
would no longer be useful.

This experiment is run for n ranging from 1 to 10. To
measure feasibility ratio, the link metrics must be able to
change before a packet is transmitted. As explained
above, there are two variables that control how the link
metrics change. These two variables are probability of
link metric change, pv, and maximum link metric change
offset, max_change. For this experiment, the values for pv
and max_change are set to 0.2 and 50 respectively.

Figure 6 shows the feasibility ratio and execution time
with respect to different values of n. The result shows that
the feasibility ratio increases logarithmically as more
feasible paths are generated. The increase is more
significant in the mesh networks as compared to Waxman
networks. In Waxman networks, the feasibility ratio can
only improve up to n = 3. Storing more feasible paths
than three does not increase the performance of the
algorithm. This can be explained by the fact that there are
not many alternative paths between two nodes in
Waxman networks as compared to mesh networks. As a
result, increasing the number of generated paths will not
have much effect on the performance of the algorithm.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 4 6 8 10

Number of Constraints

Fe
as

ib
ili

ty
 R

at
io GA

Khadivi
Chen
H_MCOP
TAMCRA

Figure 12: Feasibility ratio with respect to number of constraints
for 80-node Waxman networks

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

2 4 6 8 10

Number of Constraints

Fe
as

ib
ili

ty
 R

at
io GA

Khadivi
Chen
H_MCOP
TAMCRA

Figure 11: Feasibility ratio with respect to number of constraints
for 12x12 mesh network

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

2 4 6 8 10

Number of Constraitns

Fe
as

ib
ili

ty
 R

at
io GA

Khadivi
Chen
H_MCOP
TAMCRA

Figure 10: Feasibility ratio with respect to number of constraints
for 8x8 mesh network

JOURNAL OF COMPUTERS, VOL. 5, NO. 9, SEPTEMBER 2010 1331

© 2010 ACADEMY PUBLISHER

The execution time increases linearly as more feasible
paths are generated. However, the execution time in
Waxman networks tends to have a higher rate of increase
as compared to the rate of increase in the mesh networks.

C. Comparison with Other MCP Algorithms
In this experiment, the performance of the proposed

GA-based QoS routing algorithm will be compared with
several of the other MCP algorithms discussed in Section
II above. For this simulation, the algorithm will be
executed using the state information known to all the
routing nodes. From this, the success ratio given by each
algorithm will be recorded. Before the packet is sent,
some of the links will have their link metrics changed,
subjected to the value of pv and max_change. For this
experiment, the value of pv and max_change are set to 0.2
and 100 respectively. The feasibility ratio given by each
algorithm would then be recorded. Each link in the
network is associated with two QoS metrics (k = 2) and
the number of feasible paths stored is five (n = 5).

Figure 7 until Figure 9 show the success ratio and the
feasibility ratio for the three types of network used in this
experiment. For the 8x8 mesh network, the success ratio
given by the proposed algorithm is comparable to the
ones given by the other algorithms. However, the
advantage of the proposed algorithm becomes more
apparent when it comes to feasibility ratio where it gives
the highest feasibility ratio compared to the other
algorithms. In the 12x12 mesh network and 80-node
Waxman networks, the proposed algorithms starts out
with a lower success ratio compared to some of the other
algorithms. But when it comes to feasibility ratio, it still
gives the highest. From this result, it can be seen that the
proposed algorithm is almost comparable to the other
MCP algorithms in terms of success ratio. However,
when used in an unstable network environment where the
link metrics can easily change, the proposed algorithm
has shown its ability to be more robust and give a higher
feasibility ratio compared to the other MCP algorithms.

D. Scalability with Respect to Number of Constraints
Since the proposed algorithm is intended to solve the

general k-constrained problem, we will next test the
performance of the proposed algorithm with different
number of constraints. The performance metric used here
is the feasibility ratio. For this experiment, the value of pv
and max_change are set to 0.2 and 50 respectively and
the number of feasible paths stored is set to five (n = 5).

Figure 10 until Figure 12 show the feasibility ratio
given by the different algorithms as the number of
constraints increases from 2 to 10. For the 8x8 and 12x12
mesh networks, the proposed algorithm gives the highest
feasibility ratio regardless of the number of constraints.
However, as the number of constraints gets larger, the
difference between the feasibility ratio of the proposed
algorithm and the feasibility ratio of the other algorithms
also becomes larger. This trend is also similar in 80-node
Waxman networks although in this case, the feasibility
ratio given by the proposed algorithm starts out slightly
lower compared to the feasibility ratio of TAMCRA and
H_MCOP when the number of constraints is low.

However, as the number of constraints gets larger, the
proposed algorithm starts to give a better feasibility ratio.
From this result, it can be implied that the proposed
algorithm can scale better with larger number of
constraints as compared to the other MCP algorithms and
therefore it is suitable to be used for the general k-
constrained MCP routing problem.

V. CONCLUSION

This paper proposed a robust GA-based QoS routing
algorithm for the general k-constrained MCP routing
problem. As opposed to most other MCP routing
algorithms, the proposed algorithm is able to produce
multiple feasible paths and therefore can perform well in
a network environment where the state information in the
router lags behind the network. Based on the experiments
performed, the performance of the algorithm is
comparable to the other MCP routing algorithms in terms
of success ratio but consistently outperform them in terms
of feasibility ratio. The algorithm is also shown to be
more scalable compared to the other MCP routing
algorithms with respect to the number of link constraints.
The advantage of the algorithm is more apparent in n x n
mesh networks as compared to Waxman networks due to
the availability of large number of alternative paths
between any two nodes in the mesh networks.

REFERENCES

[1] M. F. Daneshmand, R. R. Roy, C. G. Savolaine,
“Framework and requirements of quality of service for
multimedia applications”, Intelligent Information System,
pp. 466 – 474, December 1997.

[2] D. Ghosh, V. Sarangan, R. Acharya, “Quality-of-service
routing in IP networks”, IEEE Transactions on
Multimedia, vol. 3, issue 2, pp. 200 – 208, June 2001.

[3] Shigang Chen, K. Nahrstedt, “An overview of quality of
service routing for next-generation high-speed networks:
problems and solutions”, IEEE Network, vol. 12, issue 6,
pp. 64 – 79, November / December 1998.

[4] G. Apostolopoulos, D. Williams, S. Kamat, R. Guerin, A.
Orda, T. Przygienda, “QoS Routing Mechanisms and
OSPF Extensions”, RFC 2676, August 1999.

[5] R. Guerin, A. Orda, “QoS-based routing in networks with
inaccurate information: theory and algorithms”,
IEEE/ACM Transactions in Networking, vol. 7, pp. 350 –
364, June 1999.

[6] Zheng Wang, J. Crowcroft, “Quality-of-service routing for
supporting multimedia applications”, IEEE Journals on
Selected Areas in Communications, vol. 14, issue 7, pp.
1228 – 1234, September 1996.

[7] Shigang Chen, K. Nahrstedt, “Distributed quality-of-
service routing in high-speed networks based on selective
probing”, 23rd Annual Conference on Local Computer
Networks, pp. 80 – 89, October 1998.

[8] Yi Yang, J. K. Muppala, S. T. Chanson, “Quality of
service routing algorithms for bandwidth-delay constrained
applications”, 9th International Conference on Network
Protocols, pp. 62 – 70, November, 2001.

[9] J. H. Holland, Adaptation in Natural and Artificial
Systems. University of Michigan Press, 1975.

[10] D. E. Goldberg, Genetic Algorithms in Search,
Optimization and Machine Learning. Addison Wesley,
1989.

1332 JOURNAL OF COMPUTERS, VOL. 5, NO. 9, SEPTEMBER 2010

© 2010 ACADEMY PUBLISHER

[11] D. Dumetrescu, B. Lazzerini, L.C. Jain, A. Dumitrescu,
Evolutionary Computing. The CRC Press, 2000.

[12] J. M. Jaffe, “Algorithms for finding paths with multiple
constraints”, Networks, vol. 14, pp. 95 – 116, 1984.

[13] S. Chen, K. Nahrstedt, “On finding multi-constrained
path”, IEEE International Conference on Communication,
vol. 2, pp. 874 – 879, June 1998.

[14] H. De Neve, P. Van Mieghem, “A multiple quality of
service routing algorithm for PNNI”, IEEE ATM
Workshop, pp. 324 – 328, May 1998.

[15] L. L. H. Andrew, A. A. N. Ananda Kusuma, “Generalized
analysis of a QoS-aware routing algorithm”, IEEE Global
Telecommunications Conference, vol. 1, pp. 1 – 6,
November 1998.

[16] Jun Song, Hung Keng Pung, L. Jacob, “A multi-
constrained distributed QoS routing algorithm”, IEEE
International Conference on Networks, pp. 165 – 171,
September 2000.

[17] T. Kormaz, M. Krunz, “Multi-constrained optimal path
selection”, 20th Annual Joint Conference of the IEEE
Computer and Communications Societies, vol. 2, pp. 834 –
843, April 2001.

[18] Dong-Won Shin, E. K. P. Chong, H. J. Siegel, “A
multiconstraint QoS routing scheme using the depth-first
search method”, IEEE Workshop on High Performance
Switching and Routing, pp. 385 – 389, May 2001.

[19] Gang Feng, K. Makki, N. Pissinou, C. Douligeris, “An
efficient approximate algorithm or delay-cost-constrained
QoS routing”, 10th International Conference on Computer
Communications and Networks, pp. 395 – 400, October
2001.

[20] F. Kuipers, P. Van Mieghem, T. Korkmaz, M. Krunz, “An
overview of constraint-based path selection algorithms for
QoS routing”, IEEE Communications Magazine, vol. 40,
issue 12, pp. 50 – 55, December 2002.

[21] Xin Yuan, “Heuristics algorithms for multiconstrained
quality-of-service routing”, IEEE/ACM Transactions on
Networking, vol. 10, issue 2, pp. 244 – 256, April 2002.

[22] Guoliang Xue, Arunahba Sen, Rakesh Banka, “Routing
with many additive QoS constraints”, IEEE International
Conference on Communications, vol. 1, pp. 223 – 227,
May 2003

[23] Baoxian Zhang, H. T. Mouftah, “A stateless QoS routing
algorithm subject to multiple constraints”, IEEE
International Conference on Communications, vol. 3, pp.
1870 – 1874, May 2003.

[24] R. A. Resende, R. M. Oliveira, F. J. L. Padua, Akebo
Yamakami, I. S. Bonathi, A. C. Lavelha, “An algorithm for
quality-of-service unicast routing in data communication
networks”, 13th International Conference on
Telecommunications, May 2006.

[25] P. Khadivi, S. Samavi, T. D. Todd, H. Saidi, “Multi-
constraint QoS routing using a new single mixed metric”,
IEEE International Conference on Communications, vol.
4, pp. 2042 – 2046, June 2004.

[26] F.A. Kuipers, P. Van Mieghem, “The impact of correlated
link weights on QoS routing”, 22nd Annual Joint
Conference of the IEEE Computer and Communications
Societies, vol. 2, pp. 1425 – 1434, March / April 2003.

[27] F. A. Kuipers, P. F. A Van Mieghem, “Conditions that
impact the complexity of QoS routing”, IEEE/ACM
Transactions on Networking, vol. 13, issue 14, pp. 717 –
730, August 2005.

[28] B. Peng, A. H. Kemp, S. Boussakta, “Impact of network
conditions on QoS routing algorithms”, 3rd IEEE
Consumer Communications and Networking Conference,
vol. 1, pp. 25 – 29, January 2006.

[29] A. Fei, M. Gerla, “Smart forwarding technique for routing
with multiple QoS constraints”, IEEE Global
Telecommunication Conference, vol. 1, pp. 599 – 604,
November / December 2000.

[30] Yong Cui, Ke Xu, Jianping Wu, “Precomputation for
multi-constrained QoS routing in high-speed networks”,
22nd Annual Joint Conference of the IEEE Computer and
Communications Societies, vol. 2, pp. 1414 – 1424, March
/ April 2003.

[31] Won-Ick Lee, Byeong Gi Lee, “Multi-constrained pre-
computation based selective probing (MC-PCSP) scheme
for distributed QoS routing”, Joint Conference of the 10th
Asia-Pacific Conference on Communications and the 5th
International Symposium on Multi-Dimensional Mobile
Communications, vol. 1, pp. 228 – 233, August /
September 2004.

[32] Chang Wook Ahn, R.S. Ramakrishna, “A genetic
algorithm for shortest path routing problem and the sizing
of populations”, IEEE Transactions on Evolutionary
Computing, vol. 6, pp. 566 – 579, December 2002.

[33] M. Munetomo, Y. Takai, Y. Sato, “A migration scheme for
the genetic adaptive routing algorithm”, IEEE
International Conference on Systems, Man and
Cybernatics, vol. 3, pp. 2774 – 2779, October 1998.

[34] M. Munetomo, N. Yamaguchi, K. Akama, Y. Sato,
“Empirical investigations on the genetic adaptive algorithm
in the Internet”, 2001 Congress of Evolutionary
Computing, vol. 2, pp. 1236 – 1243, May 2001.

[35] M. C. Sinclair, “Minimum cost routing and wavelength
allocation using genetic algorithm / heuristic hybrid
approach”, 6th IEE Conference on Telecommunications, pp.
62 – 71, March 1998.

[36] N. Shimamoto, A. Hiramatsu, K. Yamasaki, “A dynamic
routing control based on a genetic algorithm”, IEEE
Conference in Neural Networks, pp. 1123 – 1128, March
1993.

[37] M. Hamdan, M.E. El-Hawary, “Hopfield-Genetic approach
for solving the routing problem in computer networks”,
Canadian Conference on Electrical and Computer
Engineering, vol. 2, pp. 823 – 827, May 2002.

[38] Wang Xinhong, Wang Guangxing, “An algorithm for QoS
routing to optimize network resource utilization”,
International Conference on Info-tech and Info-net, vol. 2,
pp. 474 – 479, October / November 2001.

[39] A. Riedl, “A hybrid genetic algorithm for routing
optimization in IP networks utilizing bandwidth and delay
metrics”, IEEE Workshop on IP Operations and
Management, pp. 166 – 170, 2002.

[40] L. Barolli, A. Koyama, H. Sawada, T. Suganuma, N.
Shiratori, “A new QoS routing approach for multimedia
applications based on genetic algorithm”, First
International Symposium on Cyber Worlds, pp. 289 – 295,
November 2002.

[41] L. Barolli, A. Koyama, K. Matsumoto, T. Suganuma, N.
Shiratori, “A genetic algorithm based routing method using
two QoS parameters”, 13th International Workshop on
Database and Expert Systems Applications, pp. 3 – 7,
September 2002.

[42] A. Koyama, L. Barolli, K. Matsumoto, B. O. Apduhan, “A
GA-based multi-purpose optimization algorithm for QoS
routing”, 18th International Conference on Advanced
Information Networking and Applications, vol. 1, pp. 23 –
28, 2004.

[43] F. Xiang, L. Junzhou, W. Jieyi, G. Guanqun, “QoS routing
based on genetic algorithm”, Computer Communications,
vol. 22, issue 15 – 16, pp. 1392 – 1399, September 1999.

JOURNAL OF COMPUTERS, VOL. 5, NO. 9, SEPTEMBER 2010 1333

© 2010 ACADEMY PUBLISHER

[44] He Cuihong, “Route selection and capacity assignment in
computer communication networks based on genetic
algorithm”, IEEE International Conference on Intelligent
Processing Systems, vol. 1, pp. 548 – 552, October 1997.

[45] B. M. Waxman, “Routing for multipoint connections”,
IEEE Journal on Selected Areas in Communications, vol.
6, no. 9, pp. December 1988.

[46] Y.-S. Yen, R.-S. Chang, H.-C. Chao, “Flooding limited for
multi-constrained quality-of-service routing protocol in
mobile ad hoc networks”, IET Communications, Vol. 2,
Issue 7, pp. 971 – 981, August 2008.

[47] Fu-Sheng Dai, Ai-Jun Liu, “A multi-constrained quality-
of-service routing algorithm based on vector converting”,
5th International Conference on Wireless Communications,
Networking and Mobile Computing, pp. 1 – 4, September
2009.

[48] Zuo Jing, Chi Xuefen, Lin Guan, Li Hongxia, “Service-
aware multi-constrained routing protocol with QoS
guarantee based on fuzzy logic”, 22nd International
Conference on Advanced Information Networking and
Applications Workshop, pp. 762 – 767, March 2008.

[49] Chen Wei, Zhang Yi, “A multi-constrained routing
algorithm based on mobile agent for MANET networks”,
International Joint Conference on Artificial Intelligence,
pp. 16 – 19, April 2009.

[50] Guoliang Xue, Weiyi Zhang, Jian Tang, K. Thulasiraman,
“Polynomial time approximation algorithms for multi-
constrained QoS routing”, IEEE/ACM Transactions on
Networking, Vol. 16, Issue 3, pp. 656 – 669, June 2008.

Salman Yussof was born in Kuala
Lumpur, Malaysia on 27 October 1976.
He received his Bachelor of Science
degree and Masters of Science degree in
Electrical and Computer Engineering
from Carnegie Mellon University, USA,
in 1999.

In the same year, he was accepted as a
faculty member at the College of

Information Technology, Universiti Tenaga Nasional, Malaysia

and is currently a Senior Lecturer at the same institution. His
research interests include quality-of-service (QoS) provisioning
in computer networks, application of artificial intelligence (AI)
to network problems, parallel computing and ad-hoc networks.

Mr. Salman is a member of Association for Computing
Machinery (ACM), Boards of Engineers Malaysia (BEM) and
Malaysian National Computer Federation (MNCC).

Ong Hang See is an Associate Professor
at the College of Engineering, Universiti
Tenaga Nasional, Malaysia. He received
his Bachelor of Science degree in
Electrical Engineering and Master of
Science degree in Health Physics from
University of North Dakota, USA, in
1986 and 1989, respectively. Later, he
was educated and trained in University

of Minnesota where he received his Ph.D in Biomedical
Engineering and Medical Physics.

His job experience includes title like Scientific and Database
Programmer, Network Administrator and Designer, Biomedical
Engineer, and Instrumental Specialist. He has designed and
implemented instrument such as high field nonhuman Magnetic
Resonance Spectroscopy and Imaging system, networked data
acquisition system and ultrasonic power meter. In networking
field, he was involved in designing and testing of an ATM
network for healthcare education and telemedicine. Among the
renowned biomedical research institution that he worked,
attached and collaborated are United States Department of
Agriculture (USDA), Grand Forks Human Nutrition Research
Center, University of Minnesota Hospital & Clinics (UMHC),
Center for Magnetic Resonance Research (CMRR), Center for
Interdisciplinary Applications in Magnetic Resonance
(CIAMR), and Mayo Clinics. Currently his research interests
include internet technology, biological computing, biomedical
imaging and instrumentation.

Dr. Ong is a long time member of the Institute of Electrical
and Electronics Engineers (IEEE). He has also served as a
member of the Malaysian Radiology Society Teleradiology
Standard Committee.

1334 JOURNAL OF COMPUTERS, VOL. 5, NO. 9, SEPTEMBER 2010

© 2010 ACADEMY PUBLISHER

