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Abstract— To support networked multimedia applications, 
it is important for a network to provide guaranteed quality-
of-service (QoS). One way to provide such services is for the 
network to perform QoS routing, where the path taken must 
fulfill certain constraints. Multi-constrained path (MCP) 
problem refers to the problem of finding a path through a 
network subject to multiple additive constraints. It has been 
proven that this problem is NP-complete and finding an 
exact solution can be difficult. As such, various heuristics 
and approximation algorithms have been proposed to solve 
the MCP problem. However, the actual link metrics in a 
QoS-aware network is dynamic and may continuously 
change over time and since the path given by the routing 
algorithm is computed using the state information available 
to the router, which may or may not be up-to-date, it is 
possible that a feasible path returned by the algorithm may 
turn out to be no longer valid. This paper presents a GA-
based QoS routing algorithm for solving the general k-
constrained problem which has the capability to return 
multiple feasible paths in a single run. This makes the 
algorithm more robust in the case that the rate of change of 
state information in the network is higher than the rate of 
state information received by the router. Simulation results 
show that this algorithm consistently achieve higher 
feasibility ratio relative to existing well-known MCP routing 
algorithms when state information in the router lags behind 
the network.  
 
Index Terms— Genetic algorithm, multi-constrained path, 
QoS routing, robust routing. 
 

I. INTRODUCTION 

With the emergence of networked multimedia 
applications, the traditional routing method is no longer 
adequate. This is because multimedia-oriented 
applications require a different set of requirements than 
the one required by data-oriented applications. According 

to Daneshmand et al. [1], there are three primary 
performance parameters for multimedia applications: 
delay, mean opinion score and differential delay. From 
networking point of view, these performance parameters 
can be translated to network parameters such as delay, 
jitter and bandwidth. Any data transfer performed without 
fulfilling the QoS requirement would be useless because 
the receiver may no longer be able to use the received 
data. Therefore, to ensure that the requirements for 
multimedia applications can be fulfilled, it is important 
for the network to be able to consider the corresponding 
network parameters when performing data transfer. One 
way of achieving this is by implementing QoS routing. 

In traditional routing, the main objective of the routing 
algorithm is to find the least-cost path from sender to 
receiver. QoS routing, on the other hand, has two 
objectives [2], [3]. The first objective is to find a path that 
satisfies the QoS requirements. Such path is called a 
feasible path. Data transfer can only be performed when a 
feasible path is found. The second objective is to 
optimize the global network resource utilization. This is 
necessary so that the network can accommodate as many 
QoS requests as possible. 

In general, routing consists of two tasks. The first task 
is to distribute the state information to the network and 
the second task is to find a feasible path by executing a 
routing algorithm that uses the state information as its 
input. The first task is done by routing protocols such as 
RIP and OSPF, and in the case of QoS routing, a QoS 
routing protocol such as QoSPF is required [4]. In a data 
network such as the Internet, the link metric does not 
change very often. However, in a QoS-aware network 
which commonly runs networked multimedia 
applications, the link metrics such as delay and delay 
jitter can continuously change over time depending on the 
type and amount of multimedia data being transmitted. 
This makes it difficult for a router to have an up-to-date 
information of all the link metrics in the network [5]. As 
such, it is possible for a feasible path returned by the QoS 
routing algorithm to turn out to be not feasible when the 
actual data transfer is performed. 

There are various QoS routing algorithms that have 
been proposed by researchers. The algorithms are 

 

Manuscript received January 13, 2010; revised March 15, 2010; 
accepted March 16, 2010. 

This work was supported by Universiti Tenaga Nasional. 
Salman Yussof is with the Department of Systems and Networking,

College of Information Technology, Universiti Tenaga Nasional,
Malaysia (email: salman@uniten.edu.my). 

Ong Hang See is with the Department of Electronics and
Communication Engineering, College of Engineering, Universiti
Tenaga Nasional, Malaysia (email: ong@uniten.edu.my).  

1322 JOURNAL OF COMPUTERS, VOL. 5, NO. 9, SEPTEMBER 2010

© 2010 ACADEMY PUBLISHER
doi:10.4304/jcp.5.9.1322-1334



normally developed to tackle different problems based on 
the composition rule. There are three main composition 
rules: additive, multiplicative and concave. The definition 
of the composition rules as specified by Wang et al. [6] 
and Chen et al. [7] are given below: 

 
Let d(i,j) be a QoS metric for link (i, j). For any path p 

= (i, j, k, …, l, m), metric d is additive if: 
 d(p) = d(i,j) + d(j,k) + … + d(l,m) 
Metric d is multiplicative if: 
 d(p) = d(i,j) x d(j,k) x … x d(l,m) 
Metric d is concave if: 
 d(p) = min[d(i,j), d(j,k),  … , d(l,m)] 
 
Constraints associated with concave QoS metrics can 

be easily dealt with by pruning all links that do not satisfy 
the constraints [6]. Several researchers such as the ones in 
[2], [6] and [8] have developed algorithms to deal with a 
concave metric or a combination of a concave and an 
additive metric (i.e. bandwidth-delay constraint). 
Constraints associated with multiplicative QoS metrics 
can be converted to additive metrics by using logarithm. 
However, the problem of finding a path subject to 
constraints of two or more additive QoS metrics is not 
very easy and it has been proven to be NP-complete [6]. 
This paper will mainly focus on this type of problem, 
which is also commonly known as the multi-constrained 
path (MCP) problem. 

 
Definition 1 Multi-constrained path (MCP) problem: 
Consider a network represented by a directed graph 

),( ENG = , where N is the set of nodes and E is the set 
of links. Each link Eji ∈),(  is associated with K 

additive QoS metrics ),( jiwk , k = 1, 2, … , K where all 
metrics are non-negatives. The problem is to find a path p 
from a source node s to a destination node d such that 

∑
∈

≤=
pji

kkk Cjiwpw
),(

),()(  for k = 1, 2, … , K, where 

Ck is the constraint for the kth QoS metric. 
 

In this paper, we propose a general k-constrained QoS 
routing algorithm for solving the MCP problem. In 
addition to solving the MCP problem, the proposed 
algorithm is also able to produce multiple feasible paths 
and this enables the algorithm to become more robust in 
the case that the actual state information in the network 
has changed since the last state information update 
received by the router. If the first feasible path found 
turns out to be no longer feasible, there are other 
alternative paths that can be tried without having to 
execute a new routing computation. This will increase the 
success of finding a feasible path that can fulfill a 
particular QoS requirement. 

The rest of the paper is organized as follows. In 
Section II, a literature review on genetic algorithm and 
MCP routing algorithms are presented. The proposed 
GA-based QoS routing algorithm is described in Section 
III. In Section IV, the experiments performed and the 

results of the experiments are presented. The paper 
concludes with a summary of the results in Section V. 

II.  LITERATURE REVIEW 

A.  Introduction to Genetic Algorithm 
Genetic algorithm (GA) is a search algorithm that is 

inspired by the theory of genetics and natural selection 
[9], [10]. The problem to be solved using GA is encoded 
as a chromosome that consists of several genes. The 
solution of the problem is represented by a group of 
chromosomes referred to as a population. During each 
iteration of the algorithm, the chromosomes in the 
population will undergo one or more genetic operations 
such as crossover and mutation. The result of the genetic 
operations will become the next generation of the 
solution. This process continues until either the solution 
is found or a certain termination condition is met. The 
idea behind GA is to have the chromosomes in the 
population to slowly converge to an optimal solution. At 
the same time, the algorithm is supposed to maintain 
enough diversity so that it can search a large search 
space. 

The general outline of GA as described by Goldberg 
[10] and Dumetrescu et al. [11] is as follows: 
1. Initialize the initial population. The initial population 

is normally created randomly or based on some 
heuristics. 

2. Evaluate the fitness of each chromosome on the 
population. 

3. Perform selection. In this process, chromosomes are 
selected to be put into the mating pool. A selection 
scheme is utilized to choose the chromosomes. 

4. Perform crossover. This process allows two 
chromosomes to exchange information and produce 
two new chromosomes. The parent chromosomes are 
selected randomly from the mating pool. 

5. Perform mutation to the new chromosomes produced 
by crossover. This process randomly changes the 
content of a gene in a chromosome. This is done to 
create diversity in the population and allows the 
search of a new search space. Each gene will be 
considered for mutation with a certain probability. 

Repeat step 2 until a termination condition is met. 

B.  MCP Routing Algorithms 
Various heuristics and approximation algorithms have 

been proposed to solve the MCP problem [12] – [25]. 
Other researchers turn their attentions to studying the 
network conditions that impact the performance of the 
routing algorithms developed [26] – [28]. Some 
researchers try to augment the developed algorithms by 
introducing other techniques such as smart forwarding 
[29] and pre-computation [30], [31]. 

Most of the QoS routing algorithms developed are 
actually a modified version of well-known shortest path 
routing algorithms such as Dijkstra’s algorithm or 
Bellman-Ford algorithm [12] – [25]. There are also 
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approaches that are based on other methods such as 
flooding [46] and vector converting [47]. Another 
alternative approach would be to use artificial intelligence 
(AI) approach. Multi-constrained routing algorithms 
based on AI techniques such as fuzzy logic [48] and 
mobile agent [49] have been explored by researchers.  

The earliest work concerning the MCP problem is an 
algorithm to solve two-constraint problem presented by 
Jaffe [12]. Jaffe uses an approach that combines the two 
link metrics into a single mixed link metric. The single 
link mixed metric is defined as follows: 

)()()( 2211 ewd+ewd=ew  (Eq. 1) 
where e is a link with two different metrics, w1(e) and 
w2(e) and d1 and d2 are positive real numbers. A feasible 
path is then searched by using Dijkstra’s shortest path 
algorithm with respect to w(e).  

Chen and Nahrstedt [13] proposed an approximation to 
the MCP problem by scaling down k – 1 link metrics into 
integer metrics as follows: 

.
⎥
⎥

⎤
⎢
⎢

⎡

i

i
i c

xw=w  (Eq. 2) 

where x is a pre-defined positive integer and ci is the 
constraint on metric wi. The problem is then simplified to 
the problem of finding the shortest path with respect to a 
single QoS metric (the one that is not scaled down) with 
the condition that all the k – 1 scaled metrics are within 
the stricter constraint xi.  

Neve and Mighem proposed an algorithm called 
TAMCRA [14] to solve the general k-constrained 
algorithm. TAMCRA is based on three fundamental 
concepts: non-linear path length function, k-shortest path 
and the principle of non-dominated path. According to 
TAMCRA, the non-linear path length function can be 
approximated as follows: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤≤

i

i
ki c

pw=pw )()( axm
1

 (Eq. 3) 

where k is the number of constraints, w(p) is the total path 
cost and ci is the constraint on metric wi. For each 
destination, TAMCRA stores n non-dominated paths. A 
path Q is said to be dominated by a path P if wi(P) ≤ 
wi(Q) for all i = 1, …, k.  

Korkmaz and Krunz [17] extended the idea presented 
in TAMCRA to solve not only the MCP problem but also 
the more difficult multi-constrained optimization path 
(MCOP) problem where a primary cost function is to be 
minimized. The proposed algorithm is called H_MCOP. 
It uses the same approximated non-linear cost function as 
the one used by TAMCRA. It executes two modified 
version of Dijkstra’s algorithm in backward and forward 
direction. In the backward direction, H_MCOP computes 
the shortest paths from every node to the destination node 
with respect to a linear combination of all the link 
metrics. In the forward direction, the non-linear cost 
function is used. Among all the feasible paths found, the 
algorithm would then find the one with the minimum 

primary cost function. If the problem to be solved is the 
MCP problem instead of the MCOP problem, then the 
algorithm can terminate once a feasible path is found.  

Khadivi [25] improves upon the path length function 
used by TAMCRA and H_MCOP by introducing another 
component to the path length function. The function is 
defined as follows: 

[ ]εμ +Δ= )()()( pppG  (Eq. 4) 

where μ(p) and Δ(p) are defined as follows: 

∑
k

=i i
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c
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 ( )∑ ⎟⎟
⎠

⎞
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⎝
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=i i

i pμ
c

pw=p
1

2
)()(  (Eq. 5) 

where k is the number of constraints and ci is the 
constraint on metric wi. All of these algorithms assume 
that the network state information is correct and they 
return a feasible path if one is found. Even though 
TAMCRA can store n non-dominated paths, the 
algorithm does not check whether the paths stored are 
feasible or not. 

A recent work by Guoliang Xue et al. [50] improves 
the method proposed by Chen and Nahrstedt [13], which 
resulted in a better run time complexity. However, the 
general concept is still the same where the shortest path is 
calculated based on only one QoS metric and the other k 
– 1 link metrics are approximated. 

C.  GA-based Routing Algorithms 
Genetic algorithm (GA) is very good at solving 

optimization problems [10]. Since network routing is a 
form of optimization problem, many researchers have 
tried to apply GA to different types of network routing 
problems. Researchers in [32] – [37] address the shortest 
path routing problem, while the researchers in [38] – [43] 
address various types of QoS routing problems.  

Chang [32] has applied the GA algorithm to the 
shortest path routing problem. He compared his result to 
that of Dijkstra’s algorithm and found out that GA has 
two main advantages. The first one is that the GA 
algorithm is insensitive to variations in network 
topologies with respect to route optimality and 
convergence speed. The second one is that the proposed 
GA-based routing algorithm is scalable in the sense that 
the real computation time does not increase very much as 
the network size gets larger. Munetomo [33], [34] also 
applied GA to the shortest path routing problem. 
However, the objective of his algorithm is to generate 
alternative paths in addition to the path obtained from 
Dijkstra’s algorithm. These alternative paths would allow 
the network to be more robust in the case of link or node 
failures. The alternate paths can quickly be used rather 
than having to compute a new path. Both Chang and 
Munetomo use variable length chromosome with each 
chromosome consisting of nodes that are on the path from 
sender to receiver. Other researchers who also use GA to 
solve the shortest path routing problem (or a variation of 
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it) are Sinclair [35], Shimamoto [36], and Hamdan [37].  
Wang [38] and Riedl [39] develop a GA-based QoS 

routing algorithm to solve the delay-bandwidth-constraint 
routing problem. On top of finding a feasible path, these 
two algorithms are also designed to optimize network 
resource utilization. Wang’s algorithm encodes the 
chromosome as a binary string where the genes represent 
the link between each pair of nodes in the network. Riedl 
uses chromosome that contains the weight of the links. 
Barolli [40], [41] tries to solve the problem of QoS 
routing subject to two QoS metrics which are delay and 
transmission success rate. According to [6], this problem 
is NP-complete. In these algorithms, the network is 
modeled as a tree and each gene in the chromosome 
represents a junction on the tree. Koyama [42] takes 
Barolli’s work further by introducing a multi-purpose 
optimization method that would further improve its 
performance. Xiang [43] also proposes a GA-based QoS 
routing algorithm to solve a routing problem subject to 
four different QoS metrics: delay, bandwidth, loss-rate 
and jitter. The chromosome encoding used is similar to 
[38]. He [44] uses GA to solve the problem of route 
selection and capacity assignment, which is also NP-
complete. Some of these algorithms are actually hybrid 
algorithms where GA is combined with another algorithm 
to produce better results, such as the ones in [35], [37] 
and [39].  

Even though all the algorithms discussed above use 
GA, they all vary in terms of the details of their 
implementation. In GA, each part of the algorithm such 
as the genetic encoding, the selection scheme, the 
crossover and mutation operations and the fitness 
function can be implemented in many different ways. In 
terms of genetic encoding, there are three types of 
encoding commonly used in network routing problem. 
Researchers in [32] – [34] use a list of node IDs from 
source to destination to represent the chromosome. 
Researchers in [38], [40] – [43] use a binary string to 
represent the chromosome. However, in the case of [40] – 
[42], the network is modeled as a tree and the binary 
string represents the junctions in the tree. In the case of 
[38] and [43], a matrix is used to represent all the 
possible links between any two nodes. A binary 1 is 
assigned to a value in the matrix if there is link between 
the two nodes, and 0 otherwise. The binary string comes 
from this representation. The crossover and mutation 
operations would depend on the genetic encoding used. 
The fitness function is the part of GA which is different 
for each algorithm. It is derived from the routing problem 
to be solved and the focus of the algorithm. 

III.  PROPOSAL GA-BASED QOS ROUTING ALGORITHM 

A.  Algorithm Overview 
The proposed algorithm is aimed to find n feasible 

paths given a set of QoS requirement. This is done to 
make the algorithm more robust in the case where the 
state information in the routers lags behind the network. 

The idea is that if one of the feasible paths is no longer 
feasible due to the changes in the network state 
information, other alternate paths can be tried and 
hopefully one of them will turn out to be really feasible. 
In GA, multiple feasible paths can be easily generated by 
keep iterating the algorithm until n feasible paths are 
found. However, in order to prevent the algorithm from 

No 

No 

Yes 

Yes 

No 

Yes 

Start 

Initialize initial 
population 

Evaluate population 
using fitness function 

Create mating 
pool 

Apply selection function to 
choose parents for crossover 

Have all 
pairs 

mated?

Have we 
produced 
enough 

children?

Apply mutation operator to each 
chromosome with certain probability 

Replace the worst chromosome with the 
best one from the previous population 

Have we found n 
feasible paths OR 

maximum number of 
iteration is reached? 

End 

Apply selection operator 
to choose chromosomes 

from previous population 
into the new population  

Figure 1: Overall procedure of the GA-based QoS 
routing algorithm 
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running forever, the maximum number of iteration must 
be set. 

As opposed to the algorithm proposed by Chang [32] 
and Munetomo [33], [34] where the objective of the 
algorithm is to optimize the link cost, the algorithm 
proposed here is designed to search a large search space 
for a feasible path. Therefore, this algorithm will not run 
until convergence. In fact, convergence is discouraged by 
not allowing similar chromosomes to be in the 
population. When a new chromosome is produced 
through a genetic operation (either crossover or 
mutation), the new chromosome is only included in the 
next generation if a similar chromosome does not yet 
exist. 

The outline of the GA-based QoS routing algorithm is 
as follows: 
1. Randomly initialize the initial population.  
2. Evaluate the population using a fitness function. 
3. Create the mating pool, which consists of all the 

chromosomes in the current population. 
4. Apply crossover operator several times to create m 

new children for the new population (where m is the 
population size). The parents are selected using the 
selection operator. Each pair of parent chromosome 
can only mate once and the children produced are 
only accepted into the new population if they are not 
similar to the previously produced children. This is 
done to diversify the search and discourage 
convergence. 

5. If all the possible pair of parents have mated and 
there are still not enough children to populate the 
new population, select members from the previous 
population using the selection operator to fill in the 
new population. 

6. Apply mutation operator on the chromosomes in the 
mating pool. Each chromosome has a certain 
probability to be mutated. Mutation result must not 
be the same as any of the chromosome in the current 
population or else it would be ignored. 

7. Replace the worst (the one with the lowest fitness 
value) chromosome produced by the genetic 
operators (crossover and mutation) with the best 
chromosome in the previous population. 

8. Repeat step 2 until n feasible paths are found or the 
maximum number of iteration is reached. 

 
The overall procedure of the algorithm is depicted in 

the flowchart in Figure 1. 

B.  Genetic Representation 
A communication network can be modeled as a 

directed graph G(N,E), where N is the set of nodes 
representing the routers and E is the set of edges 
representing the links that connect between the routers 
[6]. For a network supporting multiple QoS metrics, each 
edge (i,j) is associate with k independent metrics, d1(i,j), 
d2(i,j), d3(i,j), … , dk(i,j) where d(i,j) is a real positive 
number. 

This GA-based routing algorithm is intended to be 
used in source routing where the sender performs the 
algorithm and finds a feasible path before the actual data 
can be sent. There are two methods by which the genetic 
encoding can be done. The first method is to follow the 
traditional GA where a chromosome is encoded as a 
string of binaries. This method is used by the algorithms 
in [38], [40] – [43]. The second method is to encode the 
chromosome using an encoding specific to the problem to 
be solved. This method is used by the algorithms in [32] 
– [34]. For our algorithm, the latter method is chosen. In 
our algorithm, each chromosome consists of a sequence 
of nodes that are in the path from sender to receiver. The 
first gene in the chromosome is always the sender and the 
last gene in the chromosome is always the receiver. 
Figure 2 shows an example of a small network that 
consists of six nodes where each link has two QoS 
metrics associated with it. An application requesting a 
connection between A and F can have its request fulfilled 
by two different paths: A B C F and A D E F. 
These two paths can be encoded as two different 
chromosomes: 

Chromosome 1 (path 1): [A B C F] 
Chromosome 2 (path 2): [A D E F] 
 
The top path has a total QoS metric values of (8,11) 

and the bottom path has a total QoS metric values of 
(21,15). For a QoS aware application, any connection 
request made is accompanied by a set of QoS 
requirement. For example, if a multimedia application 
requested a connection with a QoS requirement of 
(15,13), it can be only fulfilled by the top path [A B C F]. 

 
Since different paths may have different number of 

intermediate nodes, the chromosomes will be of variable 
length. However, the maximum length of a chromosome 
cannot exceed the total number of nodes in the network. 
Any repeated nodes in the chromosome signify that the 
path represented by the chromosome contains a loop and 
in network routing, any loop should be eliminated. 

C.  Initial Population 
In the beginning, the population is filled with 

chromosomes that represent random paths.  Even though 
the paths are random, they are supposed to be valid paths, 
where the chromosomes consist of a sequence of nodes 
that are in the path from sender to receiver. The number 
of chromosomes generated depends on the population 

(5,7) (9,2)

(2,4)

(4,4) 

(2,3)

A 

B C 

F 

D E 
(7,6) 

Figure 2: A small network with links that have two QoS 
metrics (k = 2) 
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size. 
The algorithm to generate the random path is adapted 

from Chang [32]. The algorithm goes as follows: 
1. Start from the sending node. 
2. Randomly choose, with equal probability, one of the 

nodes that are connected to the current node. 
3. If the chosen node has not been visited before, mark 

that node as the next node in the path. Otherwise, 
find another node. 

4. If all the neighboring nodes have been visited, go 
back to step 1. 

Otherwise, repeat step 2 by using the next node as the 
current node. Do this until the receiving node is found. 

D.  Fitness Function 
Each chromosome in the population is associated with 

a fitness value that is calculated using a fitness function. 
This value indicates how good the solution is for a 
particular chromosome [11]. This information is then 
used to pick the chromosomes that will contribute to the 
formation of the next generation of solution. The fitness 
value is computed using a fitness function. The fitness 
function is highly dependant on the problem to be solved. 
For the MCP problem, the objective is to find a path that 
satisfies a set of QoS requirement as defined in Definition 
1. In general, the smaller the total QoS values are on the 
links along a path from source to destination, the larger 
the possibility for the path to satisfy the given QoS 
requirement. Therefore, the fitness function must 
minimize the total cost CT, which is defined as follows: 

 ∑∑
−

=

−

=

=
1

0

1

0

K

k

L

l
klT cC  (Eq. 6) 

where ckl represents the kth QoS metric on link l, K 
represents the number of QoS metric on each link and L 
represents the total number of links in the path. However, 
since the range of values of each QoS metric can vary 
depending on the type of the metric, simply adding up all 
the QoS metrics would cause the result to be dominated 
by QoS metrics that have larger values compared to the 
others. Therefore, before the QoS metrics can be added 
up, each QoS metric must be normalized as follows: 
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where R represents the total number of possible paths 

from source to destination. The term ∑∑
−

=

−

=

1

0

1

0

R

r

L

k
kjc  adds up 

all the kth QoS metric on each link along each possible 
path. 

Based on the argument above, given a population of 
size p, the fitness function is defined as follows: 

K
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f
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where fi represents the fitness value of the chromosome i, 
K represents the number of QoS metric on each link, 

∑
∈

=
il

ijlij cc represents the sum of the jth QoS metric for 

all links l within chromosome i, and ∑
−

=

=
1

0

p

i
ijj cc is 

obtained by adding up the jth QoS metrics for all links of 
all the chromosomes in the population. The division with 
K is done to normalize the whole result so that the 
resulting fitness value is between 0 and 1, where a lower 
value indicates a better path. The total fitness values from 
all the chromosomes in the population would add up to 1. 

As an example, assume the network depicted in Figure 
2. There are two paths that can be used to travel from 
node A to node F. Therefore, we will assume that the 
population has two chromosomes representing these two 
paths. The fitness values for the top path (f0) and the 
bottom path (f1) are computed as follows: 

35.0
2

26
11

29
8

0 =
+

=f  65.0
2

26
15

29
21

1 =
+

=f   

In the example above, the value given by the fitness 
function indicates that the top path is the better path. This 
can be verified to be correct considering that the top path 
generally has lower QoS metric values. It is important to 
point out that the generality of the proposed algorithm 
which enables it to be applied to any k-constrained MCP 
QoS routing problem is due to the generality of this 
fitness function. 

E.  Selection 
In order to generate the next generation of solutions, a 

mating pool that consists of the members of the current 
population is created. The chromosomes in the mating 
pool are then subjected to genetic operations such as 
crossover and mutation. Parents for the crossover 
operation are selected using a selection operator. The idea 
behind the selection operator is to allow chromosomes 
with better fitness values a higher chance to reproduce 
through crossover operation. Parents with good fitness 
values are expected to produce children with even better 
fitness values. 

According to [11], there are several categories of 
selection scheme. Among them are proportional 
selection, rank-based selection and tournament selection. 
For each category, there are several variations of the 
selection schemes. 

In this algorithm, the pairwise tournament selection 
with tournament size, s = 2, is employed. In this selection 
scheme, a parent for the crossover operation is selected 
by randomly choosing two chromosomes from the 
population. The one with the higher chromosome 
between the two will be selected as a parent. To select 
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two parents, this operation is performed twice. A pair of 
parent chromosomes can only be selected once. 

F.  Crossover 
The first genetic operation done to the chromosomes in 

the mating pool is crossover. The idea behind crossover is 
to create an information exchange between two 
chromosomes [11]. By doing so, the algorithm will 
explore new paths and hopefully be able to find better 
paths in the process. 

In order to perform crossover, two chromosomes from 
the mating pool will be selected using the selection 
operator. These two chromosomes will become the parent 
chromosomes. In an iteration, a pair of parents can only 
be selected for crossover once. To ensure that the paths 
generated by the crossover operation are still valid paths, 
the two chromosomes selected must have at least one 
common node other than the sending and receiving 
nodes. If more than one common node exists, one of them 
will be randomly chosen with equal probability. The 
chosen node is called the crossover point. Since the 
number of possible crossover point in a pair of 
chromosome is normally very small, crossover is always 
performed whenever there is at least one crossover point 
(i.e. crossover probability, pc = 1). The actual crossover 
operation is similar to the one described in [32] – [34]. 
For example, assume that we have the following parent 
chromosomes: 

Parent chromosome 1: [A B C G H I X Y Z] 
Parent chromosome 2: [A K L M I T U Z] 

where A and Z are the sending node and receiving node 
respectively. In this example, the common node is node I. 
Therefore, crossover operation will exchange the first 
portion of chromosome 1 with the second portion of 
chromosome 2 and vice versa. As a result, the following 
child chromosomes will be generated: 

Child chromosome 1: [A B C G H I T U Z] 
Child chromosome 2: [A K L M I X Y Z] 

These two chromosomes would then become new 
members of the population.  

It is possible that loops may occur after crossover 
operation is performed. Loops in a chromosome can be 
repaired by performing a search along the chromosome to 
find repeated nodes [32]. The nodes in between the 
repeated nodes are then eliminated. For example, assume 
that we have the following chromosome that contains a 
loop: 

Chromosome with loop: [A B C G H I K G U W Z]  
In this case, there are two G nodes in the chromosome 
which signifies that the path contains a loop. This 
chromosome can be fixed by eliminating one of the G 
node and all the other nodes in between the two G nodes. 
The loop-free chromosome would become like this: 

Loop-free chromosome: [A B C G U W Z] 
The resulting chromosome can be searched again just 

in case there are multiple loops in the chromosome. 

G.  Mutation 
The objective of mutation operation is to create 

diversity in the population [11]. Mutation would allow 
the algorithm to search on the areas of the search space 
that was previously unknown. Each chromosome in the 
population would have a certain probability to be 
mutated. This probability is referred to as the mutation 
rate. For optimal result, the value for the mutation rate 
has to be set correctly.  

The actual mutation operation is adapted from Chang 
[32]. For each chromosome that is chosen to be mutated, 
a mutation point will be chosen randomly, with equal 
probability, among the intermediate nodes in the path 
from sender to receiver (i.e. the sending and receiving 
node cannot be chosen as the mutation point). Once the 
mutation point is chosen, the chromosome will be 
changed starting from the node after the mutation point 
and onwards. For example, assume that the following 
chromosome has been chosen to be mutated: 

Original chromosome: [A C E F G H I Y Z] 
where A and Z are the sending node and the receiving 
node respectively. Assume also that the node G has been 
chosen as the mutation point. The mutated chromosome 
would become like this: 

Mutated chromosome: [A C E F G x1 x2 x3 … Z] 
The mutated chromosome now contains a new path 

from G to Z where xi is the ith new node in the path. The 
new path is generated randomly; the same way as the 
paths in the initial population is generated. 

IV.  EXPERIMENTS AND DISCUSSION 

The proposed algorithm has been implemented as a 
C++ program and is run on a computer with 2.4GHz Core 
2 processor and 4GB of RAM. The performance of the 
algorithm is compared with TAMCRA [14], Chen [13], 
H_MCOP [17] and Khadivi [25] algorithms. The 
TAMCRA algorithm used is configured to store two non-
dominated paths. The performance metrics used to 
compare the algorithms are success ratio (SR) and 
feasibility ratio (FR). The success ratio is defined as the 
number of feasible path found using the node’s state 
information divided by the total number of requests. 
Feasibility ratio is defined as the number of paths that is 
actually feasible given that the current state information 
has changed divided by the total number of requests. 

There are two types of network used in the simulation, 
the n x n mesh network and the Waxman network [45]. 
The Waxman network is actually a random graph where 
the existence of link between two nodes, i and j, is 
defined by the following probability: 

))((exp
βL
d

α=p ji,
ij − , 10 <βα,<  (Eq. 9) 

where di,j is the distance between the two nodes, and L is 
the maximum inter-nodal distance in the topology. A 
larger value of αwould generate a graph with higher 
density and a small value of β increases the density of 
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short edges relative to longer ones. In all the experiments, 
the values for α and β are set to 0.2 and 0.1 respectively. 
However, to avoid having isolated nodes, each node must 
be connected to at least one other node.  Each link in the 
graph is associated with k randomly generated link 
metrics, where each link metric is given a value wk(i,j) ~ 
uniform[1,100]. The source and destination nodes are also 
generated randomly. For each QoS requests, the 
constraints for each metric are randomly generated and is 
given a value ck ~ uniform[400,600] for the mesh network 
and ck ~ uniform[200,400] for the Waxman network. 
 

Each node is assumed to have the same set of network 
state information. All the routing algorithms will use the 
node’s state information to find a feasible path. However, 
before data is actually sent, each metric of each link will 
have a small probability, pv, to be increased or decreased 
by a random value vk ~ uniform[0,max_change]. The 
success of data transmission will now be determined 
based on the new link metrics. 

Each simulation is run on 8 x 8 mesh network, 12 x 12 
mesh network and 80-node Waxman networks. The 
results reported in the subsequent sections are averaged 
over 50 runs. For each run, a new network with a new set 
of link metrics is randomly generated using different 
seeds. For the Waxman network, this also means that a 
new topology with different connectivity is generated for 
each run. Therefore, the result for 80-node Waxman 

networks is actually obtained from 50 different, randomly 
generated topologies. In each run, a total of 5000 
connection requests are generated where the source and 
destination nodes are chosen randomly.  

In short, each single point in the graphs presented in 
subsequent sections is obtained by taking the grand 
average of the results produced by the algorithm after 
running it 250,000 times (50 runs multiply with 5000 
connection requests). This gives the average performance 
of the algorithm when run on a network of the same size, 
but subjected to different set of QoS metrics on each link, 
different nodes connectivity (in the case of Waxman 
networks), various source-destination pair and various 
QoS requirement. 

A.  Identifying the Proper GA Parameters 
In GA, there are several parameter values that need to 

be decided during implementation. For the proposed 
algorithm, the values for maximum iteration, population 
size and mutation probability need to be chosen properly 
to in order to ensure optimal performance. The values for 
maximum iteration and population size allows for a 
tradeoff between the quality of the result and the 
computation time. A higher maximum iteration and 
population size would, in general, gives a better quality 
result at the expense of higher computation time. 
Mutation probability on the other hand must be chosen 
correctly because any value that is too low or too high 
would cause the algorithm to perform badly. 
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Here, the effect of the different GA parameters will be 

tested experimentally. For each of the parameters, the 
simulation is run several times with different values of 
the intended parameter, while fixing the values of the 
other two. The performance of the algorithm with respect 
to the different parameter values is evaluated using the 
success ratio and computation time. For all the 
simulations in this experiment, the number of QoS 
metrics on each link is set to two (k = 2). 

Figure 3, Figure 4 and Figure 5 show the success ratio 
and execution time for different values of maximum 
iteration, population size and mutation probability 
respectively. For maximum iteration, although in general 
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the success ratio tends to be higher with higher value of 
maximum iteration, the increase in success ratio is not 
consistent. There is no guarantee that a higher success 
ratio will be achieved with a higher maximum iteration. 
Even if there is an increase in success ratio, the increase 
is not very significant. This behavior shows that if a 
feasible path exists, most of the time it can be found 
without requiring a large number of iterations. As such, 
an increase in the maximum iteration value does not 
significantly increase the success ratio. On the other 
hand, the total execution time increases linearly with 
higher value of maximum iteration. With respect to 

population size, the success ratio tends to increase with 
higher population size. However, the increase is 
logarithmic, meaning that the rate of increase gets lower 
as the population size gets larger. This trend is the same 
regardless of the network size. The execution time, 
however, increases exponentially. For mutation 
probability, there seems to be a positive correlation 
between the success ratio and execution time where the 
mutation probability that gives a good success ratio also 
tends to give a low execution time. Although the right 
value for mutation probability varies depending on the 
network topology, it can be generalized that any value 
between 0.05 and 0.2 tends to give a good result with low 
execution time. 

For the rest of the experiment, the values for maximum 
iteration, population size and mutation probability are 
chosen to be 200, 60 and 0.1 respectively. 

B.  Generating Multiple Feasible Paths 
To ensure the robustness of the proposed algorithm 

with respect to changing link cost values, the algorithm 
can be configured to return multiple feasible paths. This 
is done by keep iterating the algorithm until the specified 
n feasible paths have been found. However, the 
maximum number of iteration performed is still subjected 
to the maximum iteration parameter as discussed above. 
As such, it is possible that the number of feasible paths 
returned is less than n, especially if the actual number of 
feasible path is very low. In this experiment, the 
performance of the algorithm will be evaluated with 
respect to the values of n. The performance metric used is 
the feasibility ratio. For all the simulations in this 
experiment, the number of QoS metrics on each link is 
also set to two (k = 2). It is expected that the feasibility 
ratio will increase as the value of n increases. However, 
since there is a limit on the actual number of feasible path 
and the value of maximum iteration, there should be a 
maximum values of n after which a higher value of n 
would no longer be useful. 

This experiment is run for n ranging from 1 to 10. To 
measure feasibility ratio, the link metrics must be able to 
change before a packet is transmitted. As explained 
above, there are two variables that control how the link 
metrics change. These two variables are probability of 
link metric change, pv, and maximum link metric change 
offset, max_change. For this experiment, the values for pv 
and max_change are set to 0.2 and 50 respectively. 

Figure 6 shows the feasibility ratio and execution time 
with respect to different values of n. The result shows that 
the feasibility ratio increases logarithmically as more 
feasible paths are generated. The increase is more 
significant in the mesh networks as compared to Waxman 
networks. In Waxman networks, the feasibility ratio can 
only improve up to n = 3. Storing more feasible paths 
than three does not increase the performance of the 
algorithm. This can be explained by the fact that there are 
not many alternative paths between two nodes in 
Waxman networks as compared to mesh networks. As a 
result, increasing the number of generated paths will not 
have much effect on the performance of the algorithm. 
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The execution time increases linearly as more feasible 
paths are generated. However, the execution time in 
Waxman networks tends to have a higher rate of increase 
as compared to the rate of increase in the mesh networks. 

C.  Comparison with Other MCP Algorithms 
In this experiment, the performance of the proposed 

GA-based QoS routing algorithm will be compared with 
several of the other MCP algorithms discussed in Section 
II above. For this simulation, the algorithm will be 
executed using the state information known to all the 
routing nodes. From this, the success ratio given by each 
algorithm will be recorded. Before the packet is sent, 
some of the links will have their link metrics changed, 
subjected to the value of pv and max_change. For this 
experiment, the value of pv and max_change are set to 0.2 
and 100 respectively. The feasibility ratio given by each 
algorithm would then be recorded. Each link in the 
network is associated with two QoS metrics (k = 2) and 
the number of feasible paths stored is five (n = 5). 

Figure 7 until Figure 9 show the success ratio and the 
feasibility ratio for the three types of network used in this 
experiment. For the 8x8 mesh network, the success ratio 
given by the proposed algorithm is comparable to the 
ones given by the other algorithms. However, the 
advantage of the proposed algorithm becomes more 
apparent when it comes to feasibility ratio where it gives 
the highest feasibility ratio compared to the other 
algorithms. In the 12x12 mesh network and 80-node 
Waxman networks, the proposed algorithms starts out 
with a lower success ratio compared to some of the other 
algorithms. But when it comes to feasibility ratio, it still 
gives the highest. From this result, it can be seen that the 
proposed algorithm is almost comparable to the other 
MCP algorithms in terms of success ratio. However, 
when used in an unstable network environment where the 
link metrics can easily change, the proposed algorithm 
has shown its ability to be more robust and give a higher 
feasibility ratio compared to the other MCP algorithms. 

D.  Scalability with Respect to Number of Constraints 
Since the proposed algorithm is intended to solve the 

general k-constrained problem, we will next test the 
performance of the proposed algorithm with different 
number of constraints. The performance metric used here 
is the feasibility ratio. For this experiment, the value of pv 
and max_change are set to 0.2 and 50 respectively and 
the number of feasible paths stored is set to five (n = 5). 

Figure 10 until Figure 12 show the feasibility ratio 
given by the different algorithms as the number of 
constraints increases from 2 to 10. For the 8x8 and 12x12 
mesh networks, the proposed algorithm gives the highest 
feasibility ratio regardless of the number of constraints. 
However, as the number of constraints gets larger, the 
difference between the feasibility ratio of the proposed 
algorithm and the feasibility ratio of the other algorithms 
also becomes larger. This trend is also similar in 80-node 
Waxman networks although in this case, the feasibility 
ratio given by the proposed algorithm starts out slightly 
lower compared to the feasibility ratio of TAMCRA and 
H_MCOP when the number of constraints is low. 

However, as the number of constraints gets larger, the 
proposed algorithm starts to give a better feasibility ratio. 
From this result, it can be implied that the proposed 
algorithm can scale better with larger number of 
constraints as compared to the other MCP algorithms and 
therefore it is suitable to be used for the general k-
constrained MCP routing problem. 

V. CONCLUSION 

This paper proposed a robust GA-based QoS routing 
algorithm for the general k-constrained MCP routing 
problem. As opposed to most other MCP routing 
algorithms, the proposed algorithm is able to produce 
multiple feasible paths and therefore can perform well in 
a network environment where the state information in the 
router lags behind the network. Based on the experiments 
performed, the performance of the algorithm is 
comparable to the other MCP routing algorithms in terms 
of success ratio but consistently outperform them in terms 
of feasibility ratio. The algorithm is also shown to be 
more scalable compared to the other MCP routing 
algorithms with respect to the number of link constraints. 
The advantage of the algorithm is more apparent in n x n 
mesh networks as compared to Waxman networks due to 
the availability of large number of alternative paths 
between any two nodes in the mesh networks. 
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