
Page Protection in Multithreaded Systems

Lanfranco Lopriore
Dipartimento di Ingegneria dell’Informazione: Elettronica, Informatica, Telecomunicazioni, Università di Pisa

via G. Caruso 16, 56122 Pisa, Italy
Email: l.lopriore@iet.unipi.it

Abstract—With reference to a classical address translation
scheme supporting the notion of a paged virtual address
space, and a program execution environment in which pro-
grams are allowed to have multiple concurrent threads of
execution, we present a low-cost addition to the usual hard-
ware inside the memory management unit aimed at support-
ing page protection at the thread level. The resulting protec-
tion system makes it possible to define several distinct pro-
tection domains within the boundaries of the same virtual
space. Different threads of the same process can have differ-
ent domains, and the access rights of a given thread can
change dynamically as a consequence of actions of amplifi-
cation and reduction of access privileges, so that at any giv-
en time the running thread is given the smallest set of access
rights that is necessary for that thread at that time to carry
out its job.

Rather than protecting applications from software at-
tacks of malicious code, our protection environment is
aimed at limiting the consequences of programming errors,
for instance, when an otherwise secure program is extended
by the addition of unverified foreign code, e.g. a plugin that
is prone to corrupt and even crash the main process, or a
device driver executed in the same virtual space as the oper-
ating system kernel. We do not force the user to adhere to a
specific protection model. Instead, our protection system
features a set of hardware/software mechanisms that makes
it possible to implement different protection paradigms at
little effort.

Index Terms—access right, memory protection, page,
process, protection domain, thread

I. INTRODUCTION

Let us refer to a program execution environment in
which programs are allowed to have multiple concurrent
execution threads. Interactions between the threads of the
same father process are common, whereas interactions
between the threads of different processes are compara-
tively rare, and consequently, efficiency in these interac-
tions is not a stringent requirement. In a classical address
translation scheme supporting the notion of a paged vir-
tual space, all the threads generated by a given process
share a common pool of virtual pages, which is private to
that process. This makes it easy to implement forms of
cooperation between threads. On the other hand, a thread
of a given process cannot even reference a page in the
virtual space of a different process, and this guarantees
protection against page references crossing process boun-
daries.

The salient advantage of multithreaded programming

is the ease of program structuring into independent ex-
ecution flows, which is obtained without incurring the
run-time overhead connected with context switches be-
tween processes [17]. However, heavy protection prob-
lems follow from a single address space which is shared
by all the threads. Let us consider an otherwise secure
application program that supports extensibility through
the addition of plugins implementing specific functionali-
ties. This is only an example of a wide class of software
systems that support the notion of dynamic extensibility
[3]. If the main application and the plugins share a com-
mon address space, we are in the presence of a security
hole. The main application and the plugins may well be
programmed by independent software developers. In fact,
plugins are unverified foreign code that is prone to cor-
rupt the main process and even to crash the application
[15], [19]. Similar problems are connected with device
drivers. These software components are usually executed
in the same virtual space as the operating system kernel.
This means that, rather than being enforced by the protec-
tion system, protection of the kernel space is based on
programming conventions [16], [18]. This problem is
exacerbated by the fact that drivers are often developed
by device manufacturers that have inadequate knowledge
of the kernel structure. As a result, drivers have been rec-
ognized as a main source of operating system failure [4],
[8]. This paper aims at proposing a solution to these pro-
tection problems. Essentially, we limit the extent of the
memory area which can be addressed by the threads of
the same given process so that each thread can access
only a subset of the pages of the virtual space of its father
process.

In our protection paradigm, a protection domain is a
collection of access rights to the virtual pages. Two ac-
tions are possible on a virtual page, to read the page con-
tents and to modify these contents. These actions are
made possible by the access rights read and write, respec-
tively. At any given time a protection domain is asso-
ciated with the thread that is running at that time. This
domain, called the active protection domain, identifies the
pages of the virtual space of the father process that the
thread can access and the actions that the thread can per-
form on these pages. As a consequence of address space
separation between processes, a thread has no access right
to the pages of the virtual space of any process except its
father process. When the running thread performs an
access attempt to a given page for read or write, the pro-
tection system ascertains whether the active domain con-

JOURNAL OF COMPUTERS, VOL. 5, NO. 9, SEPTEMBER 2010 1297

© 2010 ACADEMY PUBLISHER
doi:10.4304/jcp.5.9.1297-1304

tains the access right to this page that is required to ac-
complish the access successfully. If this is not the case,
an exception of protection violation is raised to the pro-
cessor and the access terminates with failure.

We shall introduce a low-cost modification of the
usual hardware inside the memory management unit
aimed at supporting the page protection model outlined
so far. The resulting protection system makes it possible
to define several distinct protection domains within the
boundaries of the same virtual space, so that different
threads can run in different domains. Rather than protect-
ing applications from software attacks of malicious code,
our protection environment is aimed at limiting the con-
sequences of programming errors. This means that we are
concerned with safety rather than security [10].

Essentially, our system is aimed at giving run-time
support to the implementation of the principle of least
privileges [12], so that at any given time the running
thread is given the smallest set of access rights that is
necessary for that thread at that time to carry out its job.
This not only means that different threads of the same
process may be given different sets of access rights, but
also that the access privileges of a given thread are prone
to change dynamically, as a consequence of actions of
amplification and reduction of access rights that follow
from the changes to the extent of the data areas on which
the thread is called to operate.

Thus, a main application and its extensions may well
share a common virtual space; however, the extensions
run in a protection domain smaller than that of the appli-
cation. If protection domains are carefully designed, an
approach of this type is able to prevent extensions from
corrupting the memory space of the main application. Of
course, a similar result could be well obtained by assign-
ing extensions a separate address space, at the high time

cost of the repeated actions of context switch. In fact, our
protection mechanisms support a form of protected pro-
cedure calls without incurring the time overhead con-
nected with virtual space changes.

At the hardware level, our design effort has been
guided by a main objective, to keep the cost of the protec-
tion hardware low. Rather than introducing access right
caching within the memory management unit in the form
of such a complex circuitry as a protection cache [14] or a
protection lookaside buffer [20], we extend the page table
to contain protection information that can be handled by a
traditional architecture of a translation lookaside buffer.

The rest of this paper is organized as follows. Section
II introduces a low-cost addition to the hardware inside
the memory management unit aimed at supporting page
protection, and the software primitives to control the pro-
tection hardware. Our protection environment does not
force the user to adhere to a specific protection model.
Instead, a set of hardware/software mechanisms makes it
possible to implement different protection paradigms at
little effort. This issue is considered in depth in Section
III. Finally, Section IV summarizes the most important
features of the approach to page protection presented in
the previous sections. The focus is on the low hardware
cost of the proposed protection hardware and the signifi-
cant flexibility of the resulting protection environment to
support different strategies of error confinement.

II. THE PROTECTION SYSTEM

Let us refer to a system configuration featuring a
memory management unit (MMU) interposed between
the central processor and the primary memory (Fig. 1).
The processor references a virtual space that is parti-
tioned into fixed-size pages. The physical memory space
is logically divided into primary memory frames whose

Figure 1. System configuration featuring a memory management unit (MMU) interposed between the processor and the primary memory.

1298 JOURNAL OF COMPUTERS, VOL. 5, NO. 9, SEPTEMBER 2010

© 2010 ACADEMY PUBLISHER

size is equal to the page size. An address generated by the
processor is partitioned into a page number and an offset.
The page number is used to access a page table in the
primary memory and select the page table entry corres-
ponding to the referenced page. This entry contains the
number of the primary memory frame storing the refe-
renced page. The frame number is paired with the offset
to obtain the physical address of the referenced informa-
tion item in the primary memory.

The page table is process-specific. At any given time, a
register of the memory management unit, the active
process register (APR), contains the primary memory
address of the page table of the process that is running at
that time. Inside the memory management unit, a cache of
the page table, the translation lookaside buffer (TLB),
supports fast address translation [1]. On the occurrence of
a memory access, if the memory mapping information
corresponding to the page referenced by the processor is
contained in the TLB, virtual to physical address transla-
tion can be accomplished within the MMU without ac-
cessing the page table, whereas in the case of a TLB miss
the page table entry corresponding to the referenced page
will be fetched from the primary memory to the TLB.
When a process releases the processor and a new process
is assigned the processor, an address space change takes
place that invalidates all the memory mapping informa-
tion contained in the TLB. The primary memory address
of the page table of the new process is loaded into APR.
The usual caching mechanisms will reconstruct the con-
tents of the TLB for the new process at the cost of the
time necessary to access the page table of the new
process in the primary memory. This is not the case for a
context switch between threads of the same process, as
the address space does not change.

A. Hardware Support
We enforce separation of address privileges between

the different threads of the same process by extending the
page table and the TLB to contain protection information,
as follows. Let PTP be the page table entry corresponding
to a given page P. Besides the name of the frame storing
this page in the primary memory, PTP contains two pro-
tection fields, called read protection (R) and write pro-
tection (W). The size of the protection fields is fixed and
is equal to the number n of the basic domains BD0, BD1,
…, BDn-1 that the protection system defines for each vir-
tual address space. Let Ri and Wi denote the i-th bit of
R and W, respectively. If asserted, Ri specifies that ba-
sic domain BDi includes the read access right for page P,
and similarly for Wi and the write access right.

At any given time, a register of the memory manage-
ment unit, called the active domain register (ADR), spe-
cifies the extent of the domain that is active at that time.
The size of ADR is n bits, one bit for each basic domain.
Let ADRi denote the i-th bit of ADR. If ADRi is asserted,
then the active domain includes all the access rights that
are part of basic domain BDi. It follows that the active
domain is the result of the logical union of the basic do-

mains corresponding to the bits of ADR which are as-
serted. If, for instance, only one bit of ADR is asserted,
say ADRi, then the active domain is formed by a single
basic domain, BDi, and contains only the access rights in
BDi. If ADR contains the all-one bit pattern, then the
active domain is the result of the logic union of all basic
domains, and contains all the access rights in these do-
mains.

When the processor references page P, entry PTP is se-
lected. If the page access is for read, the bitwise AND of
the contents of ADR and the read protection field R of
PTP is evaluated. If the result is 0, then no basic domain
in the active domain contains the read access right for
page P; an exception of access violation is generated to
the processor and the access fails. If this is not the case,
the access is accomplished successfully. If the access is
for write, the contents of the write protection field W are
involved in the check.

Thus, at any given time the register pair {APR, ADR}
univocally identifies the active process and the protection
domain of the thread that is running at that time. From the
point of view of the physical memory, these two registers
together identify the primary memory frames that the
processor can access successfully. When the processor is
switched from thread T’ to thread T” of the same process,
ADR is accessed as part of the actions involved in the
switch. The contents of this register are replaced with the
bit configuration corresponding to the domain of the new
thread, T”. On the other hand, as both threads share a
common address space, the contents of APR do not
change and validity of the contents of TLB is preserved.
In this way, we obtain a form of protection domain sepa-
ration between the threads of the same process while
keeping the execution time cost connected with thread
switch as low as the loading of a new bit configuration
into ADR.

B. Protection Primitives
The software interface of the protection system con-

sists of a set of primitives, the protection primitives, that
allows us to carry out the page protection activity deli-
neated so far. By using these primitives, we shall be able
to access and modify the active domain register ADR and
the protection fields R and W of the page table entries.
These primitives and the actions caused by each of them
are summarized in Table I. We shall now discuss these
actions in detail.

Operation makeActive() makes a given domain active;
this domain is expressed in terms of the basic domains
that compound it. This operation has the form

makeActive(d)
Quantity d is an n-bit configuration featuring one bit for
each basic domain (i.e., the size of d is equal to the ADR
size). For each bit in d, say the i-th bit, if this bit is as-
serted, then the active domain will include basic domain
BDi. Execution of this operation loads quantity d into
ADR. It follows that after execution of this instruction the
active domain is the result of the logical union of the ba-

JOURNAL OF COMPUTERS, VOL. 5, NO. 9, SEPTEMBER 2010 1299

© 2010 ACADEMY PUBLISHER

sic domains corresponding to the bits of d which are as-
serted.

Operation copyAR() grants an access privilege for a
given page to a basic domain. This operation is as fol-
lows:

copyAR(P, AR, i, j)
Quantity AR specifies an access privilege for page P in
terms of the read access right, the write access right, or
both. This operation grants access privilege AR to basic
domain BDj. If basic domain BDi includes only a subset
of AR for page P, this subset is granted. Execution ac-
cesses the entry PT(P) reserved for P in the page table. If
AR specifies the read access right and the i-th bit Ri of
the protection field R of PT(P) is asserted, then bit Rj is
set, and similarly for the write access right, bit Wi and bit
Wj.

Finally, operation clearAR() clears an access privilege
for a given page from a basic domain. This operation is as
follows:

clearAR(P, AR, i, j)
Quantity AR specifies an access privilege for page P.
This operation clears access privilege AR from basic do-
main BDj. If basic domain BDi includes only a subset of
AR for page P, this subset is cleared. Execution accesses
the entry PT(P) reserved for P in the page table. If AR
specifies the read access right and the i-th bit Ri of the
protection field R of PT(P) is asserted, then bit Rj is
cleared, and similarly for the write access right, bit Wi
and bit Wj.

III. PROTECTION MODELS

We shall now show how the protection mechanisms in-
troduced in the previous sections can be used in several
examples of practical application. In fact, our protection
environment does not force the user to adhere to a specif-
ic protection model. Instead, the protection system fea-
tures a set of hardware/software mechanisms that makes
it possible to implement different protection paradigms at
little effort.

A. Disjoint Domains
In a protection model using disjoint protection do-

mains, each thread of a multithreaded process runs in its
own domain. In a well-structured design, according to the
principle of least privilege, this will be the smallest do-
main that allows the thread to carry out its work success-
fully. In our system, a result of this type can be obtained
by reserving a basic domain for each thread. The basic
domain reserved for a given thread will include the read
and/or write access rights for each page that the thread
should access, and no access right for every other page.

Let us refer to the classical problem of a bounded buf-
fer, for instance. In a solution using three threads, a Pro-
ducer thread assembles information items to be sent to
the buffer, a BoundedBuffer thread manages the buffer
space and a Consumer thread uses information items tak-
en from the buffer. A basic domain will be reserved for
each of these threads. Let BD0 be the domain reserved for
BoundedBuffer. This domain will include both the read
and the write access rights for the memory pages reserved
to store the buffered items. No access right for these pag-
es will be included in the basic domains, say BD1 and
BD2, reserved for Producer and Consumer. This means
that in the page table entries reserved for these pages only
bits R0 and W0 corresponding to basic domain BD0 are
asserted; all the other bits are cleared. When execution of
an operation of BoundedBuffer is started up, ADR is set
to specify basic domain BD0. To this aim, we issue pro-
tection primitive makeActive(d), where quantity d is a bit
configuration featuring bit 0 asserted.

B. Domain Unions
We shall now consider the case of an active domain

that is the result of the logical union of a number of basic
domains. This corresponds to a situation, for instance, in
which a thread is called to operate on two data sets at the
same time. If each data set corresponds to a basic domain,
the thread must run in the domain resulting from the un-
ion of these basic domains.

Let us refer to the example illustrated in Fig. 2a. Basic
domain BD0 contains the read access right for pages P’
and P”, and basic domain BD1 contains the write access
right for P’. The logical union of these two domains pro-
duces a domain D that includes both the read and the
write access rights for P’ and the read access right for P”.
With reference to our protection system, Fig. 2b shows
the corresponding configuration for the page table and
ADR. For each given page table entry, the figure only
shows the page protection fields of this entry, whereas the
frame number field, which is not related to protection, is
not shown. In the page table entry PT(P’) reserved for
page P’, bits R0 (corresponding to domain BD0) and W1
(corresponding to domain BD1) are asserted, and all the
other bits are cleared. In the page table entry PT(P”) re-
served for page P”, only bit R0 (corresponding to do-
main BD0) is asserted. We shall make domain D active
by issuing protection primitive makeActive(d), where
quantity d is a bit configuration featuring bits 0 and 1
asserted. So doing, we grant the access rights in both BD0
and BD1 to the running thread.

TABLE I
PROTECTION PRIMITIVES

Primitive Action

makeActive(d) Activates a domain including the basic do-
mains corresponding to the bits of d that are
asserted.

copyAR(P, AR, i, j) Grants BDj the subset included in BDi of the
access privilege for page P that is specified by
AR.

clearAR(P, AR, i, j) Deprives BDj of the subset included in BDi of
the access privilege for page P that is specified
by AR.

1300 JOURNAL OF COMPUTERS, VOL. 5, NO. 9, SEPTEMBER 2010

© 2010 ACADEMY PUBLISHER

C. Hierarchical Domains
Protection domains can be organized into a hierarchy

where a parent domain at the directly higher level to one
or more child domains imports all the access rights of the
child domains. A salient feature of a hierarchical organi-
zation of protection domains is that revocation of an
access right from a child domain produces revocation of
this access right from the father domain and, recursively,
from all the domains at the higher levels in the hierarchy
that import this access rights.

Let us refer, for instance, to a two-level hierarchy in
which a given domain Dk is at a directly higher level to
child domains D0, D1, …, Dk-1. In our protection system,
we shall reserve a basic domain BDi to each child domain
Di, i = 0, 1, …, k-1. For each read or write access right in
Di we set the i-th bit in the R or W field of the corres-
ponding page table entry. Moreover, we reserve a basic
domain BDk for father domain Dk. For each read or write
access right in Dk, we set the k-th bit in the R or W pro-
tection field of the corresponding page table entry (it
should be noted that no action is required for the access
rights that Dk imports from its child domains). In the
ADR configuration for child domain Di we set only the i-
th bit corresponding to basic domain BDi; all the other
bits will be cleared. For the father domain Dk, we set bits
0, 1, …, k. So doing, an access right of a child domain
will be part of the father domain too, and if this access
right is deleted from the child domain it will be deleted
from the father domain as well. Of course, the configura-
tion outlined above can be easily extended to cope with

deeper domain hierarchies.
An example of a hierarchical organization of protec-

tion domains is shown in Fig. 3a. Domain D2 is at a di-
rectly higher level to domains D0 and D1. Domain D0
includes the read access right for page P’, and similarly
for domain D1 and page P”. Domain D2 includes the
write access right for both P’ and P”, and imports the
access rights in D0 and D1. Fig. 3b shows the correspond-
ing configurations for the page table and ADR. Three
basic domains, namely BD0, BD1 and BD2, are reserved
for domains D0, D1 and D2, respectively. In the page ta-
ble entry PT(P’) reserved for page P’, bits R0 (corres-
ponding to domain BD0) and W2 (corresponding to do-
main BD2) are asserted, and similarly for page table entry
PT(P”), bit R1 and bit W2. In the ADR configuration for
child domain D0, only bit ADR0 is asserted, and similarly
for D1 and bit ADR1. In the ADR configuration for father
domain D2, bits ADR0, ADR1 and ADR2 are asserted
and all the other bits are cleared. In this way, a thread
running in D2 will be granted full access rights for both
P’ and P”. In the configuration proposed, revocation of a
given access right from D0 or D1 produces revocation of
this access right from D2, too.

Figure 2. Domain union: (a) configuration of two basic domains BD0
and BD1 and their logical union D; (b) corresponding configurations of
the page table and ADR.

Figure 3. Hierarchical protection domains: (a) configuration of a father
domain D2 and two child domains D0 and D1; (b) corresponding con-
figurations of the page table and ADR.

JOURNAL OF COMPUTERS, VOL. 5, NO. 9, SEPTEMBER 2010 1301

© 2010 ACADEMY PUBLISHER

D. Protection Rings
A protection ring is a hierarchical organization of pro-

tection domains in which each father domain has a single
child [13]. Protections rings are usually depicted as con-
centric rings where domain Gi corresponding to an inner
ring is at a higher level in the hierarchy than the domains
G0, G1, …, Gi-1 corresponding to outer rings (this is in
sharp contrast with the usual scheme used to represent
hierarchical domains as shown in Fig. 3, where outer do-
mains have higher strength than inner domains). In our
protection system, we shall implement the protection
rings by using the basic domains as follows: basic domain
BDi contains those access rights that are exclusively
owned by ring Gi (whereas BDi will not contain the
access rights that Gi shares with the lower level rings G0,
G1, …, Gi-1). In the ADR configuration for ring Gi, bits
ADR0, ADR1, …, ADRi are asserted and the other bits
are cleared.

Fig. 4a shows a protection system featuring three rings,
and Fig. 4b shows the corresponding implementation in

our protection system. Basic domain BD0 corresponds to
the outer (least privileged) ring G0 that includes the read
access right for page P’, basic domain BD1 corresponds
to the middle-level ring that includes the write access
right for P’ and the read access right for P”, and finally,
basic domain BD2 corresponds to the inner (most privi-
leged) ring that includes the write access right for P”. In
the page table entry PT(P’) reserved for page P’, only bits
R0 and W1 are asserted; in PT(P”), only bits R1 and
W2 are asserted. In the ADR configuration for ring G0,
bit ADR0 is asserted and all the other bits are cleared; in
the configuration for G1, bits ADR0 and ADR1 are as-
serted and the other bits are cleared; and finally, in the
configuration for G2, bits ADR0, ADR1 and ADR2 are
asserted and the other bits are cleared.

E. User/Supervisor Protection Domains
A particular case of a two-level protection ring organi-

zation is the traditional pair of protection domains, user
and supervisor. The user domain limits the extent of the
memory areas that can be accessed by the running thread
to a subset of all pages, whereas no such limit exists for a
thread running in the supervisor domain. In our protection
system, a result of this type can be obtained by adding a
bit to ADR, say bit ADRn, which, if asserted, inhibits the
generation of exceptions of access violation to the pro-
cessor.

It should be noted that if we insert the all-one bit con-
figuration into ADR, we obtain a domain that includes
the access rights for all the pages which are part of at
least one of the basic domains of the running process. Of
course, this is not the same as the supervisor domain, as
the resulting active domain includes no access right for a
page that is not part of at least one of these basic do-
mains. An effective, alternative solution is to disable gen-
eration of exceptions of access violation to the processor
in the presence of the all-ones bit configuration in ADR;
however this solution prevents us from activating the
weaker domain that results from the logical union of all
the basic domains of the running process.

On the other hand, it has been widely demonstrated
that the supervisor domain is inadequate to cope with
protection of the inner kernel layers [17]. A better alter-
native is that even device drivers comply with the prin-
ciple of least privilege. This means that the partitioning of
access privileges into domains should be maintained even
for the kernel components. So doing we facilitate in-line
expansion of system calls [10], and avoid the run-time
overhead that is usually connected with the supervisor
state owing to the need to save and then restore the state
of the running process at each system call [2].

F. Capability Lists
In the capability-based protection paradigm, a capa-

bility is a pair {object name, access rights} [9], [11]. A
thread that holds a capability for a given object is allowed
to access this object and carry out the actions that are
made possible by the access rights in the capability. Pro-

Figure 4. Protection rings: (a) configuration of three protection rings;
(b) corresponding configurations of the page table and ADR.

1302 JOURNAL OF COMPUTERS, VOL. 5, NO. 9, SEPTEMBER 2010

© 2010 ACADEMY PUBLISHER

tection domains take the form of lists of capabilities. A
thread running in a given domain holds all the capabilities
in the list associated with this domain. A salient feature of
capability based protection is the ease of implementing
small protection domains and small objects to facilitate
error confinement and fault detection [5], [6].

Our page-oriented protection environment supports a
form of capability protection as follows. A capability
consists of the read and/or the write access rights for a
memory page. The capability list associated with basic
domain BDi includes a capability for a given page P if
the page table entry PT(P) corresponding to this page
specifies the read and/or the write access rights for BDi,
that is, the Ri and/or the Wi bits of PT(P) are asserted.
The protection fields of the page table entries can be seen
as forming a two-dimensional array featuring one row for
each page and two columns for each domain (i.e., for
BDi, the two columns formed by the bits in the i-th posi-
tion of the R and the W fields of all the page table en-
tries). These two columns considered as a whole form the
capability list of BDi.

G. Access Control Lists
An access control list is a collection of pairs {domain

name, access rights} that is associated with a given object
[12]. When a thread running in a given domain performs
an access attempt to a protected object, the access control
list of this object is inspected to ascertain whether that
domain holds the access right permitting successful ac-
complishment of the access. By keeping all the access
permissions for a given protected object grouped in a
single list, access control lists are especially well suited to
access right review and revocation.

In our protection environment, the access control list of
a given page P is implemented by the R and W fields of
the page table entry PT(P) corresponding to this page. If a
bit, say bit Ri, of PT(P) is asserted, then the access con-
trol list of P contains the pair {BDi, read}.

H. Amplification and Revocation of Access Privileges
An amplification of privileges is the action of increas-

ing the strength of the active domain by adding new
access rights. This is necessary, for instance, when execu-
tion of the running thread reaches a point at which one or
more components of the internal representation of a data
object M must be accessed, and this data object is not part
of the active domain. In a situation of this type, the active
domain should be amplified to contain the access rights to
the pages containing the components of M.

We shall reserve a basic domain, say domain BD0, to
the pages of the components of M. For each page P, we
set bit R0 and/or bit W0 of the page table entry PT(P)
reserved for this page. Let ADR* denote a bit configura-
tion of the same size as the ADR size, featuring bit 0 as-
serted and all the other bits cleared. The desired amplifi-
cation of the active domain will be obtained by using the
makeActive() protection primitive to replace the actual
contents of ADR with the result of the bitwise OR of the

previous contents and quantity ADR*.
A revocation of access privileges is the action of re-

ducing the strength of the active domain by eliminating a
subset of the access rights it contains [7]. Let us refer
again to data object M. When the running thread termi-
nates its access to this data object, the access rights for
the pages storing the internal representation of the object
are no longer necessary for the running thread to carry on
its job. According to the principle of least privilege, these
access rights should be revoked from the active domain.
Let ADR** denote a bit configuration of the same size as
the ADR size, featuring bit 0 cleared and all the other bits
asserted. The desired revocation of access rights will be
obtained by using the makeActive() protection primitive
to replace the actual contents of ADR with the result of
the bitwise AND of the previous contents and quantity
ADR**.

IV. CONCLUDING REMARKS

With reference to a multithreaded environment and a
paged memory system, we have approached the problem
of supporting protection domain separation between the
threads of the same process. Essentially, we have ex-
tended the page table to contain protection information
together with the usual virtual to physical address map-
ping information that is necessary to translate virtual page
numbers into physical frame numbers. So doing, we can
take advantage of the translation lookaside buffer to
cache the page protection information inside the memory
management unit. The resulting cost of the protection
circuitry is low, and is much lower than that of, for in-
stance, such a complex hardware circuitry as an ad-hoc
protection cache inside the memory management unit.

We have demonstrated that our protection environment
makes it possible to support several distinct protection
models, including capability lists and access control lists,
as well as the amplification and the revocation of access
privileges. Rather than imposing a specific view of page
protection, we introduce a set of protection mechanisms
at the hardware level that can be controlled by a small set
of protection primitives. These primitives can be used to
implement the desired protection paradigm at little effort.

On the other hand, no mechanism prevents malicious
software from using the protection primitives and control
domain definition to subvert the protection boundaries.
Rather than precluding software attack from producing
disruptive effects, our protection environment is aimed at
limiting the consequences of programming errors. This is
the case for a software extension that is not intended to
produce harmful effects but is prone to programming
errors that expose the main application to severe risks of
corruption. By limiting the extent of thread actions in
memory, our proposal is aimed at limiting the conse-
quences of situations of this type.

REFERENCES

[1] M. Cekleov, M. Dubois, “Virtual-address caches. Part 1:

JOURNAL OF COMPUTERS, VOL. 5, NO. 9, SEPTEMBER 2010 1303

© 2010 ACADEMY PUBLISHER

problems and solutions in uniprocessors,” IEEE Micro,
vol. 17, no. 5 (September/October 1997), pp. 64–71.

[2] H. Cha, S. Choi, I. Jung, H. Kim, H. Shin, J. Yoo, C.
Yoon, “RETOS: resilient, expandable, and threaded oper-
ating system for wireless sensor networks,” Proceedings of
the 6th International Conference on Information
Processing in Sensor Networks, Cambridge, Massachu-
setts, USA, April 2007, pp. 148–157.

[3] T. Chiueh, G. Venkitachalam, P. Pradhan, “Integrating
segmentation and paging protection for safe, efficient and
transparent software extensions,” Proceedings of the Se-
venteenth ACM Symposium on Operating Systems Prin-
ciples, Charleston, South Carolina, USA, December 1999,
pp. 140–153.

[4] A. Chou, J. Yang, B. Chelf, S. Hallem, D. Engler, “An
empirical study of operating systems errors,” Proceedings
of the Eighteenth ACM Symposium on Operating Systems
Principles, Banff, Alberta, Canada, October 2001, pp. 73–
88.

[5] P. Corsini, L. Lopriore, “An implementation of storage
management in capability environments,” Software —
Practice and Experience, vol. 25, no. 5 (May 1995), pp.
501–520.

[6] E. F. Gehringer, Capability Architectures and Small Ob-
jects, UMI Research Press, Ann Arbor, Mich., 1982.

[7] V. D. Gligor, “Review and revocation of access privileges
distributed through capabilities,” IEEE Transactions on
Software Engineering, vol. SE-5, no. 6 (November 1979),
pp. 575–586.

[8] B. Leslie, N. FitzRoy-Dale, G. Heiser, “Encapsulated user-
level device drivers in the Mungi operating system,” Pro-
ceedings of the Workshop on Object Systems and Software
Architectures, Victor Harbor, South Australia, Australia,
January 2004, pp. 16–30.

[9] H. M. Levy, Capability-Based Computer Systems, Digital
Press, 1984.

[10] D. Lohmann, J. Streicher, W. Hofer, O. Spinczyk, W.
Schröder-Preikschat, “Configurable memory protection by
aspects,” Proceedings of the 4th Workshop on Program-
ming Languages and Operating Systems, Stevenson,
Washington, USA, October 2007.

[11] L. Lopriore, “Access control mechanisms in a distributed,
persistent memory system,” IEEE Transactions on Parallel
and Distributed Systems, vol. 13, no. 10 (October 2002),
pp. 1066–1083.

[12] J. H. Saltzer, M. D. Schroeder, “The protection of informa-
tion in computer systems,” Proceedings of the IEEE, vol.
63, no. 9 (September 1975), pp. 1278–1308.

[13] M. D. Schroeder, J. H. Saltzer, “A hardware architecture
for implementing protection rings,” Communications of the
ACM, vol. 15, no. 3 (March 1972), pp. 157–170.

[14] J. Shen, G. Venkataramani, M. Prvulovic, “Tradeoffs in
fine-grained heap memory protection,” Proceedings of the
1st Workshop on Architectural and System Support for Im-
proving Software Dependability, San Jose, California,
USA, October 2006, pp. 52–57.

[15] M. M. Swift, B. N. Bershad, H. M. Levy, “Improving the
reliability of commodity operating systems,” ACM Trans-
actions on Computer Systems, vol. 23, no. 1 (February
2005), pp. 77–110.

[16] A. S. Tanenbaum, J. N. Herder, H. Bos, “Can we make
operating systems reliable and secure?,” Computer, vol.
39, no. 5 (May 2006), pp. 44–51.

[17] M. Wilkes, “Operating systems in a changing world,”
SIGOPS Operating Systems Review, vol. 28, no. 2 (April
1994), pp. 9–21.

[18] E. Witchel, K. Asanović, “Hardware works, software
doesn’t: enforcing modularity with Mondriaan memory
protection,” Proceedings of the 9th Conference on Hot
Topics in Operating Systems, Lihue, Hawaii, May 2003,
pp. 24–29.

[19] E. Witchel, J. Cates, K. Asanović, “Mondrian memory
protection,” Proceedings of the 10th International Confe-
rence on Architectural Support for Programming Lan-
guages and Operating Systems, San Jose, California, Octo-
ber 2002, pp. 304–316.

[20] E. Witchel, J. Rhee, K. Asanović, “Mondrix: memory iso-
lation for Linux using Mondriaan memory protection,”
Proceedings of the Twentieth ACM Symposium on Operat-
ing Systems Principles, Brighton, United Kingdom, Octo-
ber 2005, pp. 31–44.

1304 JOURNAL OF COMPUTERS, VOL. 5, NO. 9, SEPTEMBER 2010

© 2010 ACADEMY PUBLISHER

