
A Useful Anomaly Intrusion Detection Method
Using Variable-length Patterns and Average

Hamming Distance

Ye Du
Department of Computer Engineering, School of Computer and Information Technology, Beijing Jiaotong University,

Beijing, China
Email: ydu@bjtu.edu.cn

Ruhui Zhang

Department of Computer Engineering, School of Computer and Information Technology, Beijing Jiaotong University,
Beijing, China

Email: zhangruhui1978@gmail.com

Youyan Guo
Information Management Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China

Email: youyanguo@sohu.com

Abstract—Intrusion detection techniques at the level of
system processes are discussed, and a new method named V-
AHD (Variable-length Average Hamming Distance) is
presented, which can be used to monitor and calculate
deviation to discriminate between normal and abnormal
sequences of system calls. For the reason that fixed-length
patterns can not describe the system behavior correctly and
its inability to represent long meaningful substrings, the V-
AHD method use Teiresias to get variable-length patterns
and construct the normal set. Then the algorithm for
detection is described in detail, and the pseudocode is also
given. The method has some advantages, such as algorithm
simplicity, low overhead of time, high accuracy and real-
time detection. The prototype experiments with four attacks
prove the validation of the method, which has high True
Positive Rate and low False Positive Rate.

Index Terms—anomaly intrusion detection, variable-length
patterns, average hamming distance, system call

I. INTRODUCTION

In recent years, the number of information attacks is
increasing and malicious activity becomes more
sophisticated. It is very important that the security
mechanisms of a system are designed so as to prevent
unauthorized access to system resources and data.
Intrusion detection has been an active topic for many
years, starting in 1980 with the publication of John
Anderson’s “Computer Security Threat Monitoring and
Surveillance”[1]. In that paper, an intrusion attempt is the
potential possibility of a deliberate unauthorized attempt
to access information, manipulate information, or render
a system unreliable. Since then, several techniques for
detecting intrusions have been studied. In general,
intrusion detection techniques can be categorized into

anomaly detection and misuse detection. Here we focus
on the former one.

The first approach, called anomaly detection, assumes
that all intrusive activities are necessarily anomalous. The
method defines and characterizes correct static form or
acceptable dynamic behavior of the system, and then
detects wrongful changes or wrongful behavior. It relies
on being able to define desired form or behavior of the
system and then to distinguish between that and
undesired or anomalous behavior[2]. For example, if a
user only uses the computer from his office between 9 am
and 5 pm, an activity on his account late in the night is
anomalous and hence, might be an intrusion. The main
advantage of anomaly detection is that it does not require
prior knowledge of intrusion and can thus detect new
intrusions. By defining what is normal, it can identify any
violation, whether is part of the threat model or not.

The second approach, called misuse detection, involves
characterizing known ways to penetrate a system. It uses
patterns of well-known attacks or weak spots of the
system to match and identify known intrusions. The
patterns may be static bit strings or describe suspect sets
or sequences of actions. The method represents signature
about suspicious behavior and seeks to detect it directly,
as opposed to anomaly intrusion detection, which seeks to
profile overall normal behaviors. The main advantage of
misuse detection is that it can accurately and efficiently
detect instances of known attacks.

In the work reported here, an anomaly intrusion
detection method named V-AHD using variable-length
patterns and average hamming distance (AHD) is brought
forward to detect abnormal events.

The AHD is used to build a normal profile from the
training data of normal activities, and then it is employed
to detect anomalous activities from testing data of both

JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010 1219

© 2010 ACADEMY PUBLISHER
doi:10.4304/jcp.5.8.1219-1226

normal and intrusive activities on the computer for
intrusion detection. Sequences of system calls are
represented as a series of event transition in models. The
detection process relies on the assumption that when an
attack exploits vulnerabilities in the code, new
subsequences of system calls will appear. For the reason
that fixed-length patterns can not describe the system
behavior correctly, we use variable-length patterns to
construct the normal set.

The rest of the paper is organized as follows: Section 2
briefly reviews related work. Section 3 presents the way
to get normal behavior patterns and AHD algorithm in
our approach. Section 4 describes the details of our
experiments, and analysis of results. Section 5 makes
some conclusions and outlines some open issues for
future work.

II. RELATED WORK

Some previous work on anomaly intrusion detection
collects profiles of user behavior, generated by audit logs.
Intrusions are detected when a user behaves out of
character, such as IDES[4], NSTAT[5] or neural
networks[6]. IDES[4] builds statistical profiles of users,
though the entities monitored can also be workstations,
network of workstations, remote hosts, groups of users, or
application programs. IDES uses statistically unusual
behavior to detect an intruder masquerading as a
legitimate user. NSTAT (Network State Transition
Analysis Tool)[5] collects the audit data from multiple
hosts and combines the data into a single, chronological
audit trail to be analyzed by a modified version of
USTAT. To chronologically maintain the audit trail, each
component sends a sync message periodically to make
sure that the clocks are synchronized within some
threshold. Tan[6] introduces an algorithm based on neural
network, which uses information, such as command sets,
CPU usage, login host addresses, to distinguish between
normal and abnormal behavior. In a dynamic
environment, it is nearly impossible to create user profile
that determines normal behaviors.

An alternative approach is process-based intrusion
detection, which is introduced by Forrest[7], identifies
anomalous sequence of system calls executed by
programs. Self-Nonself addresses the problem of assuring
that static strings do not change. Again, some unchanging
portion of code and data is defined to be the static string
to be protected. The Self-Nonself signatures are for
unwanted string values, that is, strings that might result if
an unwanted change were to be made to the static system
state. This algorithm uses fixed-length pattern which is
called lookahead pairs. Next generation of modeling
system call traces on process-based intrusion detection
involves moving beyond lookahead pairs to Finite State
automata (FSA).[8] A system call trace is the ordered
sequence of system calls that a process performs during
its execution. Three major detection approaches were
proposed on previous research.[9] First, signature-based
approach. In Ref.[5], a state-machine technique is applied
to model the state of each process according to its current
privileges, and violations of the system's security policy

are identified as "forbidden" transitions. Second, it is
specification-based approach that uses pattern language
to detect. In Ref.[10], a high-level specifica- tion
language called Auditing Specification Language (ASL)
is developed for specifying normal and abnormal
behaviors. These two approaches both are misuse
detection, which have the same shortcomings lie in hard
to create compact models of attacks and vulnerable to
novel attacks. The third one is anomaly- based approach
that was first proposed by Ref.[7]. Their work uses
lookahead pairs to build normal usage of system call
executed by program. For next research, they try to use
other algorithm to build better normal profile. Ref.[10]
uses data-mining technique, called RIPPER, to generate
associate rule of normal profile. Ref.[16] builds a
classifier with recurrent neural networks for system calls
dataset. It is a good source on the comparison of recurrent
neural networks and Multi-layered feed forward (MLFF)
networks in terms of network structure, computational
complexity, and classification performance. Artificial
intelligence technique, like Hidden Markov Models
(HMM)[11], is used to build more generalize normal
system call behavior. HMM is well known as a good
probabilistic method to model temporal sequences, and is
largely exploited in the speech recognition field, but it
requires huge amounts of time to model normal behaviors
and detect intrusions. Unlike most researchers who
concentrated on building individual program profiles,
Asaka[12] introduces a method based on discriminate
analysis. Without examining all system calls, an intrusion
detection decision was made by analyzing only 11 system
calls in a running program. Due to its small size of
sample data, however, the feasibility of it still needs to be
established[13]. A k-Nearest Neighbor (kNN) classifier
based approach is introduced by Liao[13] to classify
program behavior as normal or intrusive. Program
behavior, in turn, is represented by frequencies of system
calls. Each system call is treated as a word and the
collection of system calls over each program execution as
a document. These documents are then classified using
kNN classifier, a popular method in text categorization.
Ye[19] attempts to compare the intrusion detection
performance of methods that used system call frequencies
and those that used the ordering of system calls. The
names of system calls were extracted from the audit data
of both normal and intrusive runs, and labeled as normal
and intrusive respectively. Since both the frequencies and
the ordering of system calls are program dependent, this
over simplification limits the impact of their work[13]. The
technique we proposed here is an anomaly detection
method, which is primarily focuses on the accuracy of
detection, while not on building normal profile

III. METHOD

The course of our method can be divided into two
stages: building up normal variable-length pattern
database and detecting in real environment. In the first
stage, we build normal profile by collecting system calls
of some interested process and extracting patterns with
Teiresias[14], an algorithm initially developed for

1220 JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER

discovering rigid patterns in unaligned biological
sequences. It is a phase of training. In the second stage,
we use that profile to monitor system behavior, calculate
the average hamming distance (AHD) between them,

which determines the strength of an anomalous signal. If
it exceeds the threshold value T that was set before, a
suspicious event happens.

Figure 1. Flow of detection.

A. Normal Variable-length Patterns Database
Suppose we observe the following system call

S={SA,SB,SC,SD,SB,SC,SD,SE,SF,SG,……}, SI means one
system call such as lseek, read etc. Initialize sliding
window length k equals 2, and take out the iterant
sequences, we get some patterns whose length is 2.
Recodes the frequency of each pattern and add it into
normal database P. We use P to denote the patterns set,
and Teiresias method is used here.

If k is smaller than n (n is the length of S or a
predefined value which is bigger than 2), initializes
sliding window length k equals k+1, and repeats the
extraction steps. Here, we use Q to denote the patterns set.

iq Q∀ ∈ , (,)
ij jp P p q∃ ∈ ∈ , which means pj is the

substring of qi. If the sequence of pj is smaller than or
equal to the sequence of qi, then we delete pj from the
normal database, and add qi in it. Repeats the steps until
all the patterns in Q are included. The extraction (A stand
for SA, B stand for SB, etc.) is shown in Fig.2. Only the
processes of k=3 and k=4 are described, while others are
omitted.

(a) Extraction k=2 and k=3

(b) Extraction k=2 and k=4

(c) Result

Figure 2. The process of building up normal variable-length database.

B. Algorithm
Suppose there are m variable-length patterns stored in

normal database P, that is |P|=m. One sequence
S={S1,S2,S3,…} is to be checked for suspicious or not, Si
is a system call such as write or open etc.

, max(| |)p P p l∀ ∈ = , that is the number of system
calls one pattern in normal database contains can be up to
l. pi={Si,Si+1,…,Si+m-1}. Our method can be described as
the following steps.

(1) Initialize x equals to 1. x is a counter which points
to the place in detected sequence.

(2) Initialize n equals to 1, and D equals to 0. n is a
counter that points to the place in normal
database. D is the cumulative result of AHD.

(3) If the length of pending tested sequence is smaller
than l, delay.

(4) For |pn|=w (w≤ l), we get w system calls from the
place x, pn’= {Sx,Sx+1,…,Sx+w-1}.

(5) Caculate the distance of pn and pn’ . The formula
of dis(pn, pn’) is shown in below.

(6) If dis(pn, pn’) equals to 0, that means pattern pn
and detected sequence pn’ is matched, and pn’ is a
permitted system behavior. x equals to x plus w,
goto(2).

(7) If dis(pn, pn’) is not equal to 0, which
demonstrates pn’ is malicious. Then we plus D
and dis(pn, pn’), and assign the result to D. n
equals to n plus 1.

JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010 1221

© 2010 ACADEMY PUBLISHER

(8) If n≤m, goto (4), else goto (9).
(9) We calculate the average distance AHD. If AHD

is bigger than the threshold we set before, alarm
may be generated.

(10) x is set to x plus 1. Then goto (2).
For the purpose of understanding above method fully,

the pseudocode of our method is written as follows.
(1) set x=1;
(2) set n=1, D=0;
(3) if getlength(detected sequence) <l {wait();

goto (3)};
(4) w=getlength(pn);

pn’= getsystemcalls(x,w); // pn’= {Sx,Sx+1,…, Sx+w-1}
(5) d= dis(pn, pn’)
(6) if d=0 {x=x+w;
 goto (4)}; else goto(7);
(7) D=D+d; n=n+1;
(8) if n≤m, goto (4), else goto (9)
(9) A=avedistance(x,D);
 If A≥ T, alert();
(10) x=x+1; goto (2);
Functions used in the method are as bellows.
Function dis(pn, pn’):

'

' 1

(,)
(,)

w

ni ni
i

n n

H p p
dis p p

w
==
∑

 (1)

= 1
w

(number of positions pni

and pni’ are differ)

Function avedistance(x,D):

'

1
(,)

w

ni ni
i

H p p
DD
m wm

== =
∑

 (2)

1

1()
x

i=

avedistance = D
x∑

 (3)

C. Benefits of Using Privileged Process and Variable-
Length Patterns

The easiest way to collect data for detection is to use
system log files. In UNIX systems, user log information
such as wtmp, utmp, and sulog files is in
/var/log/message or /var/adm/ directory. The basic log
files can be easily obtained without any significant
effort[25]. However, the type of data source can only be
used for offline extraction and analysis, and the
successful and careful breaker may even erase his
footprints logged in system. Because of the above
shortcomings, system call level audit data are used.

Privileged processes are running programs that
perform services (such as sending or receiving mail),
which require access to system resources that are
inaccessible to the ordinary user. To enable these
processes to perform their jobs, they are given privileges
over and above those of an ordinary user (even though

they can be invoked by ordinary users)[20]. In operating
systems such as Unix, the privileged processes that only
the superuser is authorized to execute make use of system
calls to access privileged system resources or services.
Such privileged processes are often a major target for
intruders[3]. For example, privileged programs include
telnetd and logind, function as servers that control access
into the system. Corruption of these servers can allow an
intruder to access the system remotely. So, system calls
corresponding to these processes are adopted as data sets.

• The way for most intrusive activities to penetrate
the system security is by wrecking the normal
mode of privileged processes. In other words,
privileged process is one of main channels for
attacker to gain certain authority.

• The behavior space of privileged process is
numbered, which helps to describe the relation
between superficies and inherence. On the other
hand, the behavior space of user activity is hard
to bewrite, for the activity modes change greatly
with time.

• Intuitively one system call sequence is
correspondence to special procedure function.
Privileged processes are all usually focus on
given and finite purposes, so the activity mode is
more stable than user programs. By putting a
numerical value to each system call, we can look
on the system call sequences as time series.

To describe the normal behavior of a process, variable-
length patterns appear to be more naturally suitable than
fixed-length patterns. When using fixed-length patterns,
the "fixed" length needs to be chosen first.

• Long patterns are expected to be more process-
specified than short patterns. However with the
increasing of pattern length, the size of normal
database is also increasing rapidly, which makes
the overhead of calculation huge.

• Short pattern may help us reduce the amount of
computation. But the capability of tracking
system behaviors is also diminished. For example,
if the length equals to 2, most system call
sequences are viewed as normal.

Using variable-length patterns can deal with above
apparently contradictory constraints.

D. Value of Threshold
There are always two ways to define the threshold.

One is using empirical value and then gradually corrects
it with self-learning algorithm such as artificial
intelligence or machine learning methods; the other is
based on experimental results which were done in
advance. In our method, the former way is adopted. We
first pre-out part of the training data and divide it into 30
sample sets. After calculating the V-AHD between them
and normal database, 10 random values were taken out to
compute the average value. Then we set it as the
threshold.

IV. EXPERIMENT RESULTS AND ANALYSIS

1222 JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER

There are two prerequisites in adoption of our method:
1. When a process runs normally, the sequences of
system calls are stable. That means the behavior database,
after training of a period of time, ought to contain all
possible normal short sequences, and the size of it cannot
be large in order to save the cost of time and space. 2.
When vulnerabilities are exploited, abnormal system call
sequences come out. The AHD value between them and
normal database must be great. Then, we can assume this
fact is a sign of an abnormal incident. In the following
section, we will prove these two conditions.

Two methods can be used for choosing the normal
behavior that is used to define the normal database:

• Generating a “synthetic” normal by exercising a
program in as many normal modes as possible
and tracing its behavior;

• generating a “real” normal by tracing the normal
behavior of a program in a live user environment

Here, we choose publicly available system call
sequences from the University of New Mexico (UNM) as
our experimental data sets. Forrest[20] studied normal
behavior for three different programs in UNIX: sendmail,
lpr and wu.ftpd. Sendmail is a program that sends and
receives mail, lpr is a program that enables users to print
documents on a printer, and ftpd is a program for the
transfer of files between local and remote hosts.

Compared with other processes, system calls of
sendmail is more complicated. So the data sets tested are
“synthetic sendmail” and “synthetic sendmail CERT”.

Synthetic data were collected at UNM on Sun SPARC
stations running unpatched SunOS 4.1.1 and 4.1.4 with
the included sendmail. UNM considered variations in
message length, number of messages, message content
(text, binary, encoded, encrypted), message subject line,
who sent the mail, who received the mail, and mailers. In
addition, UNM looked at the effects of forwarding,
bounced mail and queuing. Lastly, they also considered
the effects of the origin of all these variations in the cases
of remote and local delivery.

• Normal traces: traces of sendmail daemon.
• Abnormal traces: traces of syslog-remote

intrusion, syslog-local intrusion, decode intrusion,
and sm565a intrusion.

With the increase of normal trace quantity in real time,
the number of variable-length patterns in normal database
is shown in table 1.

In the beginning of collecting, the number of patterns
in database increases quickly. When the number of
system calls is bigger than 1500, the number of patterns
increases slowly or no increasing. In table 1, the max
value of system calls is 5000, while in experiment, the
test value of C is 15000, and only after it is bigger than
9300, the patterns size adds 2 positions. The test indicates
that although amount of system calls keep extending
constantly, the patterns in database do not increase
limitlessly. On the contrary, it is almost certainly
convergent.

TABLE I. NUMBER OF VARIABLE-LENGTH PATTERNS IN NORMAL DATABASE

To examine the validity, we first see if it can
distinguish self-process sendmail from other processes,
then detect four kinds of attacks.

TABLE II. DISTINGUISHING SENDMAIL FROM OTHER
PROCESSES

Process sendmail lpr ftp inetd
AHD 0 0.926719 0.890161 0.989235

From the table, we can see that the result of AHD can
distinguish self and non-self processes accurately, for the
differ between them is huge. AHD between sendmail
normal database and other processes are great, while
equals to 0 with sendmail process. It is because all system
calls of sendmail process are included in database.

The following experiments are detecting syslog, sm5x,
Decode intrusions. Syslog attack can be run either locally
(syslog-local) or remotely (syslog-remote); we have
tested both modes. Results are shown in Fig.3 and Fig. 4.

The x axis indicates the number of system calls traced,
with unit of which is 100; the y axis indicates the value of
AHD. We collected 1500 system calls. From figures, it is

clear to see the changing process of intrusions. Based on
the threshold established before, attacks can be detected.
In Fig.3 and Fig.4, we separately set threshold T1=0.75,
T2=0.83, these four kinds of intrusions were all detected.
In experiments, we still test lprcp, wu-ftp attacks, and
results are distinct.

Figure 3. Detecting syslog attack.

JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010 1223

© 2010 ACADEMY PUBLISHER

Figure 4. Detecting Sm5x attack and Decode attack.

When evaluating an algorithm for intrusion detection,
four indicators are always used, which include True
negative (TN), False positive (FP), False negative (FN),
and True positive (TP). True negatives as well as true
positives correspond to a correct operation of the method;
that is, events are successfully labeled as normal and
attacks, respectively. False positives refer to normal
events being predicted as attacks; false negatives are
attack events incorrectly predicted as normal events.
Based on the above indicators, a numerical evaluation can
apply the following measures to quantify the performance
of an algorithm[23]:

• True Positive Rate (TPR) = TP/(TP+FN), the
probability that an intrusion attempt in the
environment is detected.

• False Positive Rate (FPR) = FP/(TN+FP), the
probability of an alarm given no intrusion.

• False Negative Rate (FNR) = FN/(TP+FN), the
probability of no alarm given an actual intrusion.

TABLE III. TPR & FPR & FNR

Attack TPR(%) FPR(%) FNR(%)
syslog-local 97.9 1.6 2.1

syslog-remote 98.2 2.1 1.8
sm5x 98.7 1.9 1.3

Decode 98.1 2.2 1.9

Experiment data show that the method can find these
four attacks precisely, with the lowest TPR equals to
97.9% and the highest FPR equals to 2.2%. Compared to
other privileged process, sendmail is more complicated.
So it can be used as examples to illustrate the usability
when detecting.

ROC curves are often used to identify the quality of an
automated system where some criteria can be changed in
order to affect the quality of the system. In assessing an
anomaly intrusion detection method, we are usually
interested in looking at how change in the ruleset affect
the detection probability (TPR) and the probability for a
false alarm (FPR).

To V-AHD, when the FPR is 0, the TPR is 87.56%.
Then the threshold value is change to be lower, and when
the TPR is 100%, the FPR is 12.9%. It is clear to see that
the detection effect of our method V-AHD is higher than
SVMS, while similar to HMM. However, the major
drawback of HMM is the time consumption of training

Figure 5. Performance of V-AHD，HMM and SVMS Methods

Expressed in ROC Curve.

and detection. For example, to the lpr process with about
700,000 system calls, it will cost HMM method 5 days to
train and extraction. While it just cost V-AHD method
about 90 minutes to do the same thing.

The performance comparison between V-AHD and
some common used methods is shown in the following
table, which includes CTBIPS[22] and RSVMs[23]. We can
see that the True Positive Rate of V-AHD is higher than
other methods, and the False Positive Rate is similar to
them. To RSVMs method, the False Positive Rate is very
low but the True Positive Rate is also very low. So, it is
not suitable.

TABLE IV. COMPARISON OF V-AHD AND OTHER
METHODS

Method The Best TPR% The Best FPR%
V-AHD 98.7 1.3
HMM 96.67 1.67

CTBIPS 97.37 3.59
RSVMs 81.8 1

Experiments show that, in attainable attack databases,
V-AHD method has pleased detection achievements
without safety vulnerabilities. Compared with other
processes, system calls of sendmail is more complicated.
Thus, by tests on that process, V-AHD can have high
accuracy to detect other processes and unknown attacks.
Also, we will do more experiments to validate it. While
on-line detecting, V-AHD finds attacks at the very
beginning of they work, which avoids the disadvantages
of afterwards detection and allows administrators to take
actions to eliminate damages to system.

V. CONCLUSION

This paper presents a process level based anomaly
intrusion detection method V-AHD, which monitors short
sequences of system calls in processes and calculates
deviation. For solving the shortcomings of fixed-length
patterns, V-AHD uses variable-length patterns to form
the normal database. We have explained the limitation of
the fixed-length pattern approach, namely its inability to
represent long meaningful substrings. For the purpose of
understanding the process of V-AHD, we have written
the pseudocode of it.

1224 JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER

The algorithm is simple, feasible, low overhead of time
and meets the requirements of detection in real-time.
Detection results between self-process and other
processes or between normal processes and intrusive
processes are different obviously, which indicates high
accuracy. The method, through experiments, is not only
available in theory, but also able to construct a
lightweight intrusion detection system. Further work will
concentrate on enhancing the algorithm for variable-
length generation of patterns in order to reduce the risk of
obtaining false positive alarms while keeping the good
results regarding the true positive rate. In addition, we
need to establish normal behavior databases of more
processes, expand the range of detection, and change this
method into a real applicable facility.

APPENDIX A

This appendix describes detailed information for
intrusions that Forrest selected at UNM and we used as
data source.

syslogd intrusion: syslogd provides a kind of logging
mechanism to issue warnings that will be displayed.
Every logged message contains at least a time and a
hostname field, normally a program name field. There is
the potential for the syslogd daemon to be utilized as a
way to actualize the denial of service attack. A vicious
program could very easily flood the syslogd daemon with
large numbers of messages which depletes all the
remaining resources on the filesystem. The syslogd attack
here uses the syslog interface to overflow a buffer in
sendmail. A message is sent to the sendmail on the victim
machine, causing it to log a very long, specially created
error message. The log entry overflows a buffer in
sendmail, replacing part of sendmail's running image with
the attacker's machine code. This attack can be run either
locally or remotely.

decode intrusion: a common configuration for older
mail transfer agents is to include an alias for the decode
user. In older versions of sendmail, the uuencode and
uudecode programs (used to decode and encode email
messages respectively) are referenced in the /etc/aliases
file. This file is used by sendmail to either properly route
email messages to mail accounts or perform certain
actions when mail is sent to a particular email address.
uudecode respects absolute filenames, so if a file "bar.uu"
says that the original file is "/home/foo/.rhosts" then
when uudecode is given "bar.uu", it will attempt to create
foo's .rhosts file. A remote attacker can send mail to the
decode alias that is present on some systems to create or
overwrite files on the remote host. This allows an attacker
to gain remote access to the system.

ACKNOWLEDGMENT

This work is supported by National High Technology
Research and Development Program of China (project
No. 2007AA01Z410, 2007AA01Z177), National Key
Basic Research Program (project No. 2007CB307101),
Program for Changjiang Scholars and Innovative
Research Team in University, National Nature Science

Foundation of China (project No. K09A300150). Some of
this work was performed whilst the author was at Harbin
Engineering University, where a very helpful support
staff provided a good environment for research and
experimentation. Many people have contributed
important ideas and suggestions for this paper, including
Huiqiang Wang, Yonggang Pang, Tong Wang, Zhonglan
Yuan, Meihong Li, Yongzhong He, The authors are
grateful for the anonymous reviewers who made
constructive comments.

REFERENCES

[1] J. P. Anderson, “Computer security threat monitoring and
surveillance,” James P. Anderson Co., Fort Washington,
1980

[2] Anita K. Jones, Robert S. Sielken, “computer system
intrusion detection: a survey,” http://www.cs.virginia.
edu/~jones/IDS.../jones-sielken-survey-v11.pdf

[3] Dit-Yan Yeung, Yuxin Ding, “Host-based intrusion
detection using dynamic and static behavioral models,”
Pattern Recognition, vol. 36, no.1, pp. 229-243, 2003

[4] Lunt T F, Tamaru A, and Gilham F, “A real-time intrusion
detection expert system (IDES),” Computer Science
Laboratory(SRI International, Menlo Park, Calif.):Final
Technical Report SRI-CSL-92-05, 1992

[5] Kemmerer, R.A, “NSTAT: a model-based real-time
network intrusion detection system,” University of
California-Santa Barbara, Technical Report TRCS97-18,
November 1997.

[6] K. Tan, “The application of neural networks to unix
computer security,” Proceedings of IEEE International
Conference on Neural Networks, vol. 1, pp. 476–481,
Nov.1995

[7] S. Forrest, S. A. Hofmeyr, and A. Somayaji, “A sense of
self for unix process,” Proceedings of the 1996 IEEE
Symposium on Research in Security and Privacy, Orkland
California, pp. 120-128, 1996

[8] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni, “A fast
automaton-based method for detecting anomalous program
behaviors,” IEEE Symposium on Security and Privacy, pp.
144-155, 2001

[9] chowalit Tinnagonsutibout, pirawat watanapongse, “A
novel approach to process-based intrusion detection system
using read-sequence finite state automata with inbound
byte profiler,” http:// pindex.ku.ac.th/file_research/
Full2.pdf

[10] N. Nuansri, “A process state-transition analysis and its
application to intrusion detection,” Proceedings of the 15th
Annual Computer Security Applications Conference,
Arizona, USA, 1999

[11] R. Sekar, T. Bowen, and M. Segal, “On preventing
intrusions by process behavior monitoring,” Proceedings of
the Workshop on Intrusion Detection and Network
Monitoring, California, USA, 1999

[12] M. Asaka, T. Onabuta, T. Inoue, S. Okazawa and S. Goto,
“A new intrusion detection method based on discriminant
analysis,” IEEE trans. inf. & syst., Vol. E84-D, pp. 570-
577, 2001

[13] Y. Liao, V. R. Vemuri, “Use of K-Nearest neighbor
classifier for intrusion detection,” Computer & Security,
vol. 21, pp. 439-448, 2002

[14] Andreas Wespi, Marc Dacier, and Herve Debar, “An
intrusion detection system based on the teiresias pattern
discovery algorithm,” Proceedings of EICAR, 1999

JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010 1225

© 2010 ACADEMY PUBLISHER

[15] Rune Hammersland, “ROC in Assessing IDS Quality,”
http:// rune.hammersland.net/tekst/roc.pdf

[16] M. Al-Subaie, M. Zulkernine, “The power of temporal
pattern processing in anomaly intrusion detection,”
Proceedings of IEEE International Conference on
Communications, Glasgow, Scotland, pp. 1391-1398, June
2007

[17] Calvin Ko, George Fink, and Karl Levitt, “Automated
detection of vulnerabilities in privileged programs by
execution monitoring,” Proceedings of the 10th Annual
Computer Security Applications Conference, Los Alamitos,
CA, vol.8, pp. 134-144, 1994.

[18] Sandeep Kumar, Eugene H. Spafford, “A pattern matching
model for misuse intrusion detection,” Proceedings of the
17th National Computer Security Conference, Baltimore
MD, USA, pp.11–21, 1994

[19] N. Ye, X. Li, Q. Chen, S. M. Emran, and M. Xu,
“Probabilistic techniques for intrusion detection based on
computer audit data,” IEEE Trans. SMC-A, vol.31, pp.
266-274, 2001

[20] Hofmeyer, S.A., S. Forrest, and A. Somayaji, “Intrusion
detection using sequences of system calls,” Revised:
December 17, 1997. http://www.cs.unm.edu/~steveah/
publications/ids.ps.gz.

[21] Forrest, S., L. Allen, A.S. Perelson, and R. Cherukuri,
“Self-Nonself discrimination in a computer,” Proceedings
of the 1994 IEEE Symposium on Research in Security and
Privacy, 1994.

[22] Lihong Yao, Xiaochao Zi, “Research of system call based
intrusion detection,” Chinese Journal of Electronics, vol.31,
pp. 1134-1137, 2003

[23] Shelly Xiaonan Wu, Wolfgang Banzhaf, “The use of
computational intelligence in intrusion detection systems:
A review,” Applied Soft Computing, vol. 10, pp. 1-35,
2010

[24] UNM synthethic sendmail data, http://www.cs.unm.edu/
~immsec/data/synth-sm.html

[25] Sung-Bae Cho, Hyuk-Jang Park. “Efficient anomaly
detection by modeling privilege flows using hidden
Markov model,” Computers & Security, Vol.22, pp.45-55,
Jan. 2003

[26] P. Garcia-Teodoro, J. Diaz-Verdejo, G. Macia-Fernandez,
and E. Vazquez, “Anomaly-based network intrusion
detection: Techniques, systems and challenges,”
Computers & Security, vol.28, pp. 18-28, 2009

Ye Du, Hebei, China, 1978. He is a lecture and master

supervisor of Beijing Jiaotong University, Beijing, China.
He received his Ph.D. degree in computer science and
technology from Harbin Engineering University, Harbin,
China.

 He studied network and system security, distributed
computing, parallel computer architecture, etc. And his
current research interests focus on intrusion detection and
response, distributed systems security, fault tolerant, and
disaster recovery. He has published a book named
Network Attack and Defense: Principles and Practice
(Wuhan, China: Wuhan University Press, 2008). In recent
years, he has published over thirty papers in international
journals and conferences.

Ruhui Zhang, Hebei, China, 1978. She is a
postdoctoral fellow in Beijing Jiaotong University. She
received her PH.D. degree in Information Systems
Engineering from Kochi University of Technology,
Kochi, Japan.

She studied network security, distributed systems, etc.
And her current research interests focus on network
security system design and evaluation, intrusion response.
She has published many papers in international journals
and conferences.

Youyan Guo, Beijing, China, 1969. She is an
associate professor and master supervisor of Information
Management Center, Beijing Anzhen Hospital. She
received her master degree in computer science from
Beijing Jiaotong University, Beijing, China.

She studied information security, artificial intelligence,
etc. And her current research interests focus on network
security, distributed object computing. She has published
many papers in computer science.

1226 JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER

