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Abstract—Intrusion detection techniques at the level of 
system processes are discussed, and a new method named V-
AHD (Variable-length Average Hamming Distance) is 
presented, which can be used to monitor and calculate 
deviation to discriminate between normal and abnormal 
sequences of system calls. For the reason that fixed-length 
patterns can not describe the system behavior correctly and 
its inability to represent long meaningful substrings, the V-
AHD method use Teiresias to get variable-length patterns 
and construct the normal set. Then the algorithm for 
detection is described in detail, and the pseudocode is also 
given. The method has some advantages, such as algorithm 
simplicity, low overhead of time, high accuracy and real-
time detection. The prototype experiments with four attacks 
prove the validation of the method, which has high True 
Positive Rate and low False Positive Rate.  
 
Index Terms—anomaly intrusion detection, variable-length 
patterns, average hamming distance, system call 
 

I.  INTRODUCTION 

In recent years, the number of information attacks is 
increasing and malicious activity becomes more 
sophisticated. It is very important that the security 
mechanisms of a system are designed so as to prevent 
unauthorized access to system resources and data. 
Intrusion detection has been an active topic for many 
years, starting in 1980 with the publication of John 
Anderson’s “Computer Security Threat Monitoring and 
Surveillance”[1]. In that paper, an intrusion attempt is the 
potential possibility of a deliberate unauthorized attempt 
to access information, manipulate information, or render 
a system unreliable. Since then, several techniques for 
detecting intrusions have been studied. In general, 
intrusion detection techniques can be categorized into  

 

anomaly detection and misuse detection. Here we focus 
on the former one.  

The first approach, called anomaly detection, assumes 
that all intrusive activities are necessarily anomalous. The 
method defines and characterizes correct static form or 
acceptable dynamic behavior of the system, and then 
detects wrongful changes or wrongful behavior. It relies 
on being able to define desired form or behavior of the 
system and then to distinguish between that and 
undesired or anomalous behavior[2]. For example, if a 
user only uses the computer from his office between 9 am 
and 5 pm, an activity on his account late in the night is 
anomalous and hence, might be an intrusion. The main 
advantage of anomaly detection is that it does not require 
prior knowledge of intrusion and can thus detect new 
intrusions. By defining what is normal, it can identify any 
violation, whether is part of the threat model or not. 

The second approach, called misuse detection, involves 
characterizing known ways to penetrate a system. It uses 
patterns of well-known attacks or weak spots of the 
system to match and identify known intrusions. The 
patterns may be static bit strings or describe suspect sets 
or sequences of actions. The method represents signature 
about suspicious behavior and seeks to detect it directly, 
as opposed to anomaly intrusion detection, which seeks to 
profile overall normal behaviors. The main advantage of 
misuse detection is that it can accurately and efficiently 
detect instances of known attacks. 

In the work reported here, an anomaly intrusion 
detection method named V-AHD using variable-length 
patterns and average hamming distance (AHD) is brought 
forward to detect abnormal events.  

The AHD is used to build a normal profile from the 
training data of normal activities, and then it is employed 
to detect anomalous activities from testing data of both 
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normal and intrusive activities on the computer for 
intrusion detection. Sequences of system calls are 
represented as a series of event transition in models. The 
detection process relies on the assumption that when an 
attack exploits vulnerabilities in the code, new 
subsequences of system calls will appear. For the reason 
that fixed-length patterns can not describe the system 
behavior correctly, we use variable-length patterns to 
construct the normal set. 

The rest of the paper is organized as follows: Section 2 
briefly reviews related work. Section 3 presents the way 
to get normal behavior patterns and AHD algorithm in 
our approach. Section 4 describes the details of our 
experiments, and analysis of results. Section 5 makes 
some conclusions and outlines some open issues for 
future work. 

II.  RELATED WORK 

Some previous work on anomaly intrusion detection 
collects profiles of user behavior, generated by audit logs. 
Intrusions are detected when a user behaves out of 
character, such as IDES[4], NSTAT[5] or neural 
networks[6]. IDES[4] builds statistical profiles of users, 
though the entities monitored can also be workstations, 
network of workstations, remote hosts, groups of users, or 
application programs. IDES uses statistically unusual 
behavior to detect an intruder masquerading as a 
legitimate user. NSTAT (Network State Transition 
Analysis Tool)[5] collects the audit data from multiple 
hosts and combines the data into a single, chronological 
audit trail to be analyzed by a modified version of 
USTAT. To chronologically maintain the audit trail, each 
component sends a sync message periodically to make 
sure that the clocks are synchronized within some 
threshold. Tan[6] introduces an algorithm based on neural 
network, which uses information, such as command sets, 
CPU usage, login host addresses, to distinguish between 
normal and abnormal behavior. In a dynamic 
environment, it is nearly impossible to create user profile 
that determines normal behaviors. 

An alternative approach is process-based intrusion 
detection, which is introduced by Forrest[7], identifies 
anomalous sequence of system calls executed by 
programs. Self-Nonself addresses the problem of assuring 
that static strings do not change. Again, some unchanging 
portion of code and data is defined to be the static string 
to be protected. The Self-Nonself signatures are for 
unwanted string values, that is, strings that might result if 
an unwanted change were to be made to the static system 
state. This algorithm uses fixed-length pattern which is 
called lookahead pairs. Next generation of modeling 
system call traces on process-based intrusion detection 
involves moving beyond lookahead pairs to Finite State 
automata (FSA).[8] A system call trace is the ordered 
sequence of system calls that a process performs during 
its execution. Three major detection approaches were 
proposed on previous research.[9] First, signature-based 
approach. In Ref.[5], a state-machine technique is applied 
to model the state of each process according to its current 
privileges, and violations of the system's security policy 

are identified as "forbidden" transitions. Second, it is 
specification-based approach that uses pattern language 
to detect. In Ref.[10], a high-level specifica- tion 
language called Auditing Specification Language (ASL) 
is developed for specifying normal and abnormal 
behaviors. These two approaches both are misuse 
detection, which have the same shortcomings lie in hard 
to create compact models of attacks and vulnerable to 
novel attacks. The third one is anomaly- based approach 
that was first proposed by Ref.[7]. Their work uses 
lookahead pairs to build normal usage of system call 
executed by program. For next research, they try to use 
other algorithm to build better normal profile. Ref.[10] 
uses data-mining technique, called RIPPER, to generate 
associate rule of normal profile. Ref.[16] builds a 
classifier with recurrent neural networks for system calls 
dataset. It is a good source on the comparison of recurrent 
neural networks and Multi-layered feed forward (MLFF) 
networks in terms of network structure, computational 
complexity, and classification performance. Artificial 
intelligence technique, like Hidden Markov Models 
(HMM)[11], is used to build more generalize normal 
system call behavior. HMM is well known as a good 
probabilistic method to model temporal sequences, and is 
largely exploited in the speech recognition field, but it 
requires huge amounts of time to model normal behaviors 
and detect intrusions. Unlike most researchers who 
concentrated on building individual program profiles, 
Asaka[12] introduces a method based on discriminate 
analysis. Without examining all system calls, an intrusion 
detection decision was made by analyzing only 11 system 
calls in a running program. Due to its small size of 
sample data, however, the feasibility of it still needs to be 
established[13]. A k-Nearest Neighbor (kNN) classifier 
based approach is introduced by Liao[13] to classify 
program behavior as normal or intrusive. Program 
behavior, in turn, is represented by frequencies of system 
calls. Each system call is treated as a word and the 
collection of system calls over each program execution as 
a document. These documents are then classified using 
kNN classifier, a popular method in text categorization. 
Ye[19] attempts to compare the intrusion detection 
performance of methods that used system call frequencies 
and those that used the ordering of system calls. The 
names of system calls were extracted from the audit data 
of both normal and intrusive runs, and labeled as normal 
and intrusive respectively. Since both the frequencies and 
the ordering of system calls are program dependent, this 
over simplification limits the impact of their work[13]. The 
technique we proposed here is an anomaly detection 
method, which is primarily focuses on the accuracy of 
detection, while not on building normal profile 

III.  METHOD 

The course of our method can be divided into two 
stages: building up normal variable-length pattern 
database and detecting in real environment. In the first 
stage, we build normal profile by collecting system calls 
of some interested process and extracting patterns with 
Teiresias[14], an algorithm initially developed for 
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discovering rigid patterns in unaligned biological 
sequences.  It is a phase of training. In the second stage, 
we use that profile to monitor system behavior, calculate 
the average hamming distance (AHD) between them, 

which determines the strength of an anomalous signal. If 
it exceeds the threshold value T that was set before, a 
suspicious event happens. 

 
Figure 1.  Flow of detection. 

A.  Normal Variable-length Patterns Database 
Suppose we observe the following system call 

S={SA,SB,SC,SD,SB,SC,SD,SE,SF,SG,……}, SI means one 
system call such as lseek, read etc. Initialize sliding 
window length k equals 2, and take out the iterant 
sequences, we get some patterns whose length is 2. 
Recodes the frequency of each pattern and add it into 
normal database P. We use P to denote the patterns set, 
and Teiresias method is used here. 

If  k is smaller than n ( n is the length of S or a 
predefined value which is bigger than 2),  initializes 
sliding window length k equals k+1, and repeats the 
extraction steps. Here, we use Q to denote the patterns set. 

iq Q∀ ∈ , ( , )
ij jp P p q∃ ∈ ∈ , which means pj is the 

substring of  qi. If the sequence of pj is smaller than or 
equal to the sequence of qi, then we delete pj from the 
normal database, and add qi in it. Repeats the steps until 
all the patterns in Q are included. The extraction (A stand 
for SA, B stand for SB, etc.) is shown in Fig.2. Only the 
processes of k=3 and k=4 are described, while others are 
omitted.  

 
(a) Extraction k=2 and k=3 

 
(b) Extraction k=2 and k=4 

 
(c) Result 

Figure 2.  The process of building up normal variable-length database. 

B.  Algorithm 
Suppose there are m variable-length patterns stored in 

normal database P, that is |P|=m. One sequence 
S={S1,S2,S3,…} is to be checked for suspicious or not, Si 
is a system call such as write or open etc.  

, max(| |)p P p l∀ ∈ = , that is the number of system 
calls one pattern in normal database contains can be up to 
l. pi={Si,Si+1,…,Si+m-1}.  Our method can be described as 
the following steps.  

(1) Initialize x equals to 1. x is a counter which points 
to the place in detected sequence.  

(2) Initialize n equals to 1, and D equals to 0. n is a 
counter  that points to the place in normal 
database. D is the cumulative result of AHD. 

(3) If the length of pending tested sequence is smaller 
than l, delay.  

(4) For |pn|=w (w≤ l), we get w system calls from the 
place x, pn’= {Sx,Sx+1,…,Sx+w-1}.  

(5) Caculate the distance of pn and pn’ . The formula 
of dis(pn, pn’) is shown in below.  

(6) If dis(pn, pn’) equals to 0, that means pattern pn 
and detected sequence pn’ is matched, and pn’ is a 
permitted system behavior. x equals to x plus w, 
goto(2).  

(7) If dis(pn, pn’) is not equal to 0, which 
demonstrates pn’ is malicious. Then  we plus D 
and dis(pn, pn’), and assign the result to D. n 
equals to n plus 1.  
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(8) If n≤m, goto (4), else goto (9). 
(9) We calculate the average distance AHD. If AHD 

is bigger than the threshold we set before, alarm 
may be generated.  

(10) x is set to x plus 1. Then goto (2).  
For the purpose of understanding above method fully, 

the pseudocode of our method is written as follows. 
(1) set x=1; 
(2) set n=1, D=0; 
(3) if getlength(detected sequence) <l {wait( );  

goto (3)}; 
(4) w=getlength(pn); 

pn’= getsystemcalls(x,w); // pn’= {Sx,Sx+1,…, Sx+w-1} 
(5) d= dis(pn, pn’) 
(6) if d=0 {x=x+w; 
         goto (4)}; else goto(7); 
(7) D=D+d; n=n+1;  
(8) if n≤m, goto (4), else goto (9) 
(9) A=avedistance(x,D); 
         If A≥ T, alert( ); 
(10) x=x+1; goto (2); 
Functions used in the method are as bellows.  
Function dis(pn, pn’): 

                        
'

' 1

( , )
( , )

w

ni ni
i

n n

H p p
dis p p

w
==
∑

                   (1) 

= 1
w

(number of positions pni 

and pni’ are differ) 
 

Function avedistance(x,D):  

                            
'

1
( , )

w

ni ni
i

H p p
DD
m wm

== =
∑

                       (2)         

                           
1

1( )
x

i=

avedistance = D
x∑

                    (3)               

C.  Benefits of Using Privileged Process and Variable-
Length Patterns 

The easiest way to collect data for detection is to use 
system log files. In UNIX systems, user log information 
such as wtmp, utmp, and sulog files is in 
/var/log/message or /var/adm/ directory. The basic log 
files can be easily obtained without any significant 
effort[25]. However, the type of data source can only be 
used for offline extraction and analysis, and the 
successful and careful breaker may even erase his 
footprints logged in system. Because of the above 
shortcomings, system call level audit data are used.  

Privileged processes are running programs that 
perform services (such as sending or receiving mail), 
which require access to system resources that are 
inaccessible to the ordinary user. To enable these 
processes to perform their jobs, they are given privileges 
over and above those of an ordinary user (even though 

they can be invoked by ordinary users)[20]. In operating 
systems such as Unix, the privileged processes that only 
the superuser is authorized to execute make use of system 
calls to access privileged system resources or services. 
Such privileged processes are often a major target for 
intruders[3]. For example, privileged programs include 
telnetd and logind, function as servers that control access 
into the system. Corruption of these servers can allow an 
intruder to access the system remotely. So, system calls 
corresponding to these processes are adopted as data sets. 

• The way for most intrusive activities to penetrate 
the system security is by wrecking the normal 
mode of privileged processes. In other words, 
privileged process is one of main channels for 
attacker to gain certain authority. 

• The behavior space of privileged process is 
numbered, which helps to describe the relation 
between superficies and inherence. On the other 
hand, the behavior space of user activity is hard 
to bewrite, for the activity modes change greatly 
with time.  

• Intuitively one system call sequence is 
correspondence to special procedure function. 
Privileged processes are all usually focus on 
given and finite purposes, so the activity mode is 
more stable than user programs. By putting a 
numerical value to each system call, we can look 
on the system call sequences as time series. 

To describe the normal behavior of a process, variable-
length patterns appear to be more naturally suitable than 
fixed-length patterns. When using fixed-length patterns, 
the "fixed" length needs to be chosen first.  

• Long patterns are expected to be more process-
specified than short patterns. However with the 
increasing of pattern length, the size of normal 
database is also increasing rapidly, which makes 
the overhead of calculation huge. 

• Short pattern may help us reduce the amount of 
computation. But the capability of tracking 
system behaviors is also diminished. For example, 
if the length equals to 2, most system call 
sequences are viewed as normal.  

Using variable-length patterns can deal with above 
apparently contradictory constraints. 

D.  Value of Threshold 
There are always two ways to define the threshold. 

One is using empirical value and then gradually corrects 
it with self-learning algorithm such as artificial 
intelligence or machine learning methods; the other is 
based on experimental results which were done in 
advance. In our method, the former way is adopted. We 
first pre-out part of the training data and divide it into 30 
sample sets. After calculating the V-AHD between them 
and normal database, 10 random values were taken out to 
compute the average value. Then we set it as the 
threshold.  

IV.  EXPERIMENT RESULTS AND ANALYSIS 
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There are two prerequisites in adoption of our method: 
1. When a process runs normally, the sequences of 
system calls are stable. That means the behavior database, 
after training of a period of time, ought to contain all 
possible normal short sequences, and the size of it cannot 
be large in order to save the cost of time and space. 2. 
When vulnerabilities are exploited, abnormal system call 
sequences come out. The AHD value between them and 
normal database must be great. Then, we can assume this 
fact is a sign of an abnormal incident. In the following 
section, we will prove these two conditions. 

Two methods can be used for choosing the normal 
behavior that is used to define the normal database:  

• Generating a “synthetic” normal by exercising a 
program in as many normal modes as possible 
and tracing its behavior; 

• generating a “real” normal by tracing the normal 
behavior of a program in a live user environment 

Here, we choose publicly available system call 
sequences from the University of New Mexico (UNM) as 
our experimental data sets. Forrest[20] studied normal 
behavior for three different programs in UNIX: sendmail, 
lpr and wu.ftpd. Sendmail is a program that sends and 
receives mail, lpr is a program that enables users to print 
documents on a printer, and ftpd is a program for the 
transfer of files between local and remote hosts. 

Compared with other processes, system calls of 
sendmail is more complicated. So the data sets tested are 
“synthetic sendmail” and “synthetic sendmail CERT”. 

Synthetic data were collected at UNM on Sun SPARC 
stations running unpatched SunOS 4.1.1 and 4.1.4 with 
the included sendmail. UNM considered variations in 
message length, number of messages, message content 
(text, binary, encoded, encrypted), message subject line, 
who sent the mail, who received the mail, and mailers. In 
addition, UNM looked at the effects of forwarding, 
bounced mail and queuing. Lastly, they also considered 
the effects of the origin of all these variations in the cases 
of remote and local delivery. 

• Normal traces: traces of sendmail daemon. 
• Abnormal traces: traces of syslog-remote 

intrusion, syslog-local intrusion, decode intrusion, 
and sm565a intrusion.  

With the increase of normal trace quantity in real time, 
the number of variable-length patterns in normal database 
is shown in table 1. 

In the beginning of collecting, the number of patterns 
in database increases quickly. When the number of 
system calls is bigger than 1500, the number of patterns 
increases slowly or no increasing. In table 1, the max 
value of system calls is 5000, while in experiment, the 
test value of C is 15000, and only after it is bigger than 
9300, the patterns size adds 2 positions. The test indicates 
that although amount of system calls keep extending 
constantly, the patterns in database do not increase 
limitlessly. On the contrary, it is almost certainly 
convergent. 

TABLE I.  NUMBER OF VARIABLE-LENGTH PATTERNS IN NORMAL DATABASE 

 
 
 

To examine the validity, we first see if it can 
distinguish self-process sendmail from other processes, 
then detect four kinds of attacks. 

TABLE II.  DISTINGUISHING SENDMAIL FROM OTHER 
PROCESSES 

Process sendmail lpr ftp inetd 
AHD 0 0.926719 0.890161 0.989235 

From the table, we can see that the result of AHD can 
distinguish self and non-self processes accurately, for the 
differ between them is huge. AHD between sendmail 
normal database and other processes are great, while 
equals to 0 with sendmail process. It is because all system 
calls of sendmail process are included in database. 

The following experiments are detecting syslog, sm5x, 
Decode intrusions. Syslog attack can be run either locally 
(syslog-local) or remotely (syslog-remote); we have 
tested both modes. Results are shown in Fig.3 and Fig. 4. 

The x axis indicates the number of system calls traced, 
with unit of which is 100; the y axis indicates the value of 
AHD. We collected 1500 system calls. From figures, it is 

clear to see the changing process of intrusions. Based on 
the threshold established before, attacks can be detected. 
In Fig.3 and Fig.4, we separately set threshold T1=0.75, 
T2=0.83, these four kinds of intrusions were all detected. 
In experiments, we still test lprcp, wu-ftp attacks, and 
results are distinct. 

 
Figure 3.  Detecting syslog attack. 
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Figure 4.  Detecting Sm5x attack and Decode attack. 

When evaluating an algorithm for intrusion detection, 
four indicators are always used, which include True 
negative (TN), False positive (FP), False negative (FN), 
and True positive (TP). True negatives as well as true 
positives correspond to a correct operation of the method; 
that is, events are successfully labeled as normal and 
attacks, respectively. False positives refer to normal 
events being predicted as attacks; false negatives are 
attack events incorrectly predicted as normal events. 
Based on the above indicators, a numerical evaluation can 
apply the following measures to quantify the performance 
of an algorithm[23]: 

• True Positive Rate (TPR) = TP/(TP+FN), the 
probability that an intrusion attempt in the 
environment is detected. 

• False Positive Rate (FPR) = FP/(TN+FP), the 
probability of an alarm given no intrusion. 

• False Negative Rate (FNR) = FN/(TP+FN), the 
probability of no alarm given an actual intrusion. 

TABLE III.  TPR & FPR & FNR  

Attack TPR(%) FPR(%) FNR(%) 
syslog-local  97.9 1.6 2.1 

syslog-remote  98.2 2.1 1.8 
sm5x  98.7 1.9 1.3 

Decode  98.1 2.2 1.9 

Experiment data show that the method can find these 
four attacks precisely, with the lowest TPR equals to 
97.9% and the highest FPR equals to 2.2%. Compared to 
other privileged process, sendmail is more complicated. 
So it can be used as examples to illustrate the usability 
when detecting. 

ROC curves are often used to identify the quality of an 
automated system where some criteria can be changed in 
order to affect the quality of the system. In assessing an 
anomaly intrusion detection method, we are usually 
interested in looking at how change in the ruleset affect 
the detection probability (TPR) and the probability for a 
false alarm (FPR).  

To V-AHD, when the FPR is 0, the TPR is 87.56%. 
Then the threshold value is change to be lower, and when 
the TPR is 100%, the FPR is 12.9%. It is clear to see that 
the detection effect of our method V-AHD is higher than 
SVMS, while similar to HMM. However, the major 
drawback of HMM is the time consumption of training 

 
Figure 5.  Performance of V-AHD，HMM and SVMS Methods 

Expressed in ROC Curve. 

and detection. For example, to the lpr process with about 
700,000 system calls, it will cost HMM method 5 days to 
train and extraction. While it just cost V-AHD method 
about 90 minutes to do the same thing. 

The performance comparison between V-AHD and 
some common used methods is shown in the following 
table, which includes CTBIPS[22] and RSVMs[23]. We can 
see that the True Positive Rate of V-AHD is higher than 
other methods, and the False Positive Rate is similar to 
them. To RSVMs method, the False Positive Rate is very 
low but the True Positive Rate is also very low. So, it is 
not suitable. 

TABLE IV.  COMPARISON OF V-AHD AND OTHER 
METHODS  

Method The Best TPR% The Best FPR% 
V-AHD 98.7 1.3 
HMM 96.67 1.67 

CTBIPS 97.37 3.59 
RSVMs 81.8 1 

Experiments show that, in attainable attack databases, 
V-AHD method has pleased detection achievements 
without safety vulnerabilities. Compared with other 
processes, system calls of sendmail is more complicated. 
Thus, by tests on that process, V-AHD can have high 
accuracy to detect other processes and unknown attacks. 
Also, we will do more experiments to validate it. While 
on-line detecting, V-AHD finds attacks at the very 
beginning of they work, which avoids the disadvantages 
of afterwards detection and allows administrators to take 
actions to eliminate damages to system. 

V.  CONCLUSION 

This paper presents a process level based anomaly 
intrusion detection method V-AHD, which monitors short 
sequences of system calls in processes and calculates 
deviation. For solving the shortcomings of fixed-length 
patterns, V-AHD uses variable-length patterns to form 
the normal database. We have explained the limitation of 
the fixed-length pattern approach, namely its inability to 
represent long meaningful substrings. For the purpose of 
understanding the process of V-AHD, we have written 
the pseudocode of it.  
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The algorithm is simple, feasible, low overhead of time 
and meets the requirements of detection in real-time. 
Detection results between self-process and other 
processes or between normal processes and intrusive 
processes are different obviously, which indicates high 
accuracy. The method, through experiments, is not only 
available in theory, but also able to construct a 
lightweight intrusion detection system. Further work will 
concentrate on enhancing the algorithm for variable-
length generation of patterns in order to reduce the risk of 
obtaining false positive alarms while keeping the good 
results regarding the true positive rate. In addition, we 
need to establish normal behavior databases of more 
processes, expand the range of detection, and change this 
method into a real applicable facility. 

APPENDIX A   

This appendix describes detailed information for 
intrusions that Forrest selected at UNM and we used as 
data source. 

syslogd intrusion: syslogd provides a kind of logging 
mechanism to issue warnings that will be displayed. 
Every logged message contains at least a time and a 
hostname field, normally a program name field. There is 
the potential for the syslogd daemon to be utilized as a 
way to actualize the denial of service attack. A vicious 
program could very easily flood the syslogd daemon with 
large numbers of messages which depletes all the 
remaining resources on the filesystem. The syslogd attack  
here uses the syslog interface to overflow a buffer in 
sendmail. A message is sent to the sendmail on the victim 
machine, causing it to log a very long, specially created 
error message. The log entry overflows a buffer in 
sendmail, replacing part of sendmail's running image with 
the attacker's machine code. This attack can be run either 
locally or remotely.  

decode intrusion: a common configuration for older 
mail transfer agents is to include an alias for the decode 
user. In older versions of sendmail, the uuencode and 
uudecode programs (used to decode and encode email 
messages respectively) are referenced in the /etc/aliases 
file. This file is used by sendmail to either properly route 
email messages to mail accounts or perform certain 
actions when mail is sent to a particular email address. 
uudecode respects absolute filenames, so if a file "bar.uu" 
says that the original file is "/home/foo/.rhosts" then 
when uudecode is given "bar.uu", it will attempt to create 
foo's .rhosts file. A remote attacker can send mail to the 
decode alias that is present on some systems to create or 
overwrite files on the remote host. This allows an attacker 
to gain remote access to the system. 
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