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Abstract—As an important part of airborne avionics system, 
aircraft safety critical software (ASCS) plays an essential 
role to the safety of the aircraft, and to ensure its quality 
and reliability is one of the key problems we are facing. 
Formal methods have become important means for 
modeling and verifying safety critical software. In this 
paper, formal method is introduced into the ASCS 
verification field and the real-time extended finite state 
machine model (RT-EFSM) is studied, which includes the 
detailed real-time extension schemes and its validation 
methods. The verification process of ASCS based on RT-
EFSM is also proposed. Furthermore, combined with the 
verification of an aircraft inertial/satellite navigation 
systems, a timed unique input/output sequence (t_UIO) is 
presented and the automatic generation algorithm of sub-
transfer sequences based on t_UIO is given. Finally, the test 
adequacy criteria are discussed and a time condition 
coverage criterion is proposed. The actual engineering 
project application shows that the method proposed in this 
paper is of great value for the ASCS, which can be generally 
and effectively used in engineering. 
 
Index Terms—real-time embedded software; aircraft; safety 
critical software; RT-EFSM; formal methods; verification; 
test sequence 
 

I.  INTRODUCTION 

As the development of computer technique, a wide 
range of complex hardware and software systems 
embedded in a large number of safety-critical systems, 
and play an irreplaceable role. In general, Safety-critical 
systems are computer, electronic or electromechanical 
systems in which failure may have severe consequences 
such as injury or illness, death of humans, serious 
environmental damage or failure of important mission. 
Safety-critical software, as a part of the safety-critical 
systems, is an important factor to safety-critical 
systems[1][2].  

The software verification technique based on formal 
methods can eliminate ambiguity, enhance the accuracy 
and consistency of verification and improve the 
automation level and efficiency. Both European Space 
Agency (ESA) and NASA highly recommend using 
formal methods for the development and testing of 
safety-critical software[3]. Therefore, the verification 

technique based on formal methods is an effective way to 
ensure the quality of ASCS, also it guarantees the safety 
critical software meets the airworthiness requirements 
[15]. ASCS usually shows the state based behaviors 
wholly or partly, and one of the most commonly used 
formal method for testing this kind of embedded software 
is FSM or EFSM [10] [11] [12] [13]. Literature [4] 
proposed an assertion-based extended EFSM model p-
EFSM for embedded software testing; literature [5] 
proposed a real-time finite state machine (RTFSM) model 
for numerical control system micro-fabrication (NCS); 
literature [6] presented a testing method which is based 
on incremental conformance; literature [7] proposed a 
kind of EFSM-based test input data automatically 
selected method; literature [8] showed an time extended 
finite state machine to describe the system modeling with 
time characteristics; literature [9] presented a testing 
method based on statecharts and temporal logic that 
oriented reactive system; literature [14] gave a EFSM 
model based testing method combined with hardware 
structure, and adopting fault injection method.  

From the existing research, we can see that there is 
lack of a universal and effective formal verification 
method which has practical value in engineering for 
ASCS. The problems of the existing research are as 
fallows: 

• Existing verification methods can not meet real-
time requirements of ASCS, such as the lack of 
the temporal characteristics description during the 
state transition. 

• The cross-linked devices, interfaces, state types 
and transition of ASCS are complex, while the 
existing methods to solve these problems is not 
well. 

• The temporal characteristics description and time-
related test adequacy criteria of existing test 
sequence generation method is obviously 
insufficient. 

In this paper, grounding on abundant experience and 
research on real-time embedded software testing 
technique, we introduced formal method into the ASCS 
verification field and proposed a real-time extension of 
EFSM model, named RT-EFSM, and gives its validation 
methods. At the same time, we put forward a timed 
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unique input/output sequence (t_UIO) and its automatic 
generation algorithm. Finally, we applied the method to 
the verification of an aircraft inertia/satellite navigation 
system, and the results proved the correctness and 
validity of the method. 

II.  RT-EFSM MODEL AND ITS VALIDATION 

A. RT-EFSM Model 
The traditional EFSM model is a six-tuple <S, S0, I, 

O,T, V>: 
S: non-empty set of finite states; 
S0: the initial state; 
I: non-empty finite set of input; 
O: non-empty finite set of output; 
T: non-empty finite set of transition; 
V: non-empty set of variables. 
The traditional EFSM model is lack of the ability to 

describe the complexity and real time characteristic for 
ASCS, as a result, it can’t meet the requirements of 
modeling for ASCS. As we consider, the ASCS model 
and validation theory which is based on real time 
extended EFSM have to solve the problems below, as it is 
shown in Table 1. 

TABLE I.  THE PROBLEMS SHOULD BE SOLVED FOR RT-EFSM 

No. Description 

1 How to describe the static and dynamic behavior of 
ASCS 

2 How to describe the real time characteristic of ASCS 

3 How to describe the time characteristic in transition of 
ASCS 

4 How to solve the problem of states explosion 

5 How to describe the complicated transition relationship 
of ASCS 

6 How to ensure the correctness and consistency of the 
ASCS models 

7 How to lay the foundation for the test cases automatic 
generation 

 
Based on the analysis above, in this paper we propose 

the RT-EFSM model as the theoretical basis and extend 
the EFSM from six-tuple to eight-tuple. 

RT-EFSM＝<S*,S0,I,O,T,V,C,E>,and: 
S*:non-empty set of finite states, and 

S*=<Se,Si,S>,and Se is the set of states with 
embedded relationship; Si is the set of states with 
inherited relationship; S is the set of the other states; 

S0: the initial state; 
I: non-empty finite set of input; 
O: non-empty finite set of output; 
T: non-empty finite set of transition; and 

T=<Head(t),I(t),P(t),operation,O(t),Tail(t),TM>; 
and Head(t) is the start state of transition; I(t) is the 
input message included in set I; P(t) is the 
precondition of transition t and it could be empty; 
operation is the operation during transition process, 

usually it includes assignment statement and output 
statement; O(t) is the output message included in set 
O; Tail(t) is the end state of transition; TM is 
transition time, which is three-tuple<tf, tF, tI >[8], tf 
indicates that the transition time is a fix time, tF 
indicates that the transition time is a stochastic time 
complies to some distribution function; tI indicates 
that the transition time is a time interval; 

V: non-empty set of variables, and V=<IV, CV, OV>; 
IV is the set of input variables, and they are under 
tester’s control; OV is the set of output variables; 
CV is the set of environment variables, which can be 
local variables or global variables, and the variables 
that are neither input variables nor output variables 
can be called environment variables; both CV and 
OV are out of the tester’s control, their values are 
decided by state transition operation. 

C: the set of static information of each state, 
C=<NAME(S*),Variable(S*),Action(S*)>, and 
NAME(S*) is state label, Variable(S*) is the related 
variable to the state ; Action(S*) is the action and 
activity of the state; 

E: non-empty set of directed edge; it is an extension to 
the original EFSM edge, and connection, 
combination connection, selection joint are added, 
which can describe the system dynamic behaviors 
better, as it is shown in figure 1. 

 
Figure 1.  Extended directed edge in RT-EFSM 

For the complex real-time embedded system as ASCS, 
the state number is usually large, which leads to great 
problems for testing. However, there often exists some 
kind of relationship between the states, making some 
rules for us to follow. For example, some state is 
embedded in another one or some state is inherited from 
another one. So, we extend the tuple S in EFSM to S*. S* 
is defined as the non-empty set of finite states, and Se is 
the set of states with embedded relationship; Si is the set 
of states with inherited relationship; S is the set of the 
other states. After extending, the RT-EFSM model can 
describe the system under test more clearly and 
accurately, helping the testers to understand the states and 
the relationships between them. Meanwhile, the extension 
can solve the state space explosion problem to a certain 
extent. 

The tuple TM in T describe three different time 
situations when transferring from one state to another:fix 
time, a stochastic time complies to some distribution 
function and time interval. The fix time means that the 
time a certain transition costs each time is the same fix 
time, such as 50 time periods; a stochastic time complies 
to some distribution function means that although the 

JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010 1153

© 2010 ACADEMY PUBLISHER



time a transition costs are different each time, it follows 
certain rules, namely it complies to a distribution function, 
such as uniform distribution and index distribution; time 
interval means that the transition time is an interval, 
namely [t1, t2], and this interval could be open, closed, or 
half open half closed, which can describe the delay 
transition. 

The tuple C is the set of static information of each state, 
which can be detailed to C=<NAME(S*),Variable(S*), 
Action(S*)>. When testing some state of the ASCS, the 
testers can get the related variables, operation information 
with it easily. Meanwhile, the test platform can read 
related information from this state information table to 
support automatic generation test cases. 

The tuple E is an extension of the original EFSM 
model general edge for the complex states transition 
relationship in ASCS, and connection, combination 
connection, selection joint are added. Connection is used 
to connect more than one transition or divide one 
transition into an array of continuous segments. 
Regardless the number of transition segments, they are all 
executed in one process from running to completion. 
Combination connection is a kind of connection, which 
connects more than one transition to an entrance ‘or’ state 
transition, especially several transitions triggered by 
different events share the same action list and/or guard 
condition, or transferring to the same state. Selection joint 
connection is a kind of connection that connects its action 
list before entering the next transition segment, which 
allows binding the actions to the first transition segment 
in order to be executed before the following guard 
expressions valued. The extension to the edge makes RT-
EFSM model more suitable to model ASCS, and the test 
cases number can be decreased and efficiency can be 
enhanced when automatic generating test cases.   
From the analysis above we can see that, the proposition 
of RT-EFSM model can solve all the problems listed in 
Table 1 efficiently. 

B. The Verification Process of ASCS Based on RT-
EFSM model 

The verification process of ASCS based on RT-EFSM 
is shown in figure 2. 

 
Figure 2.  The verification process of ASCS based on RT-EFSM 

In this paper we focus on the most important three 
steps in figure2, including modeling based on RT-EFSM, 
model validation and test sequence generation. 

C. Model Validation Method 
After modeling ASCS based on RT-EFSM, the RT-

EFSM model needs to be validated to guarantee its 
consistency, determinacy (includes static determinacy 
and dynamic determinacy), reachability and 
synchronicity. The static determinacy can guarantee the 
RT-EFSM model is minimal; the dynamic determinacy 
can guarantee the RT-EFSM model is completed; the 
rechability can guarantee the RT-EFSM model is strong 
connected. We have researched on all the four aspects 
mentioned above and figured out corresponding 
algorithms. 

1). Determinacy Validation 

• Static Determinacy 
Static determinacy for RT-EFSM model means that in 

any state, the target state is unique for a determinate 
transition. If a RT-EFSM model is not determinate, it 
means the system could execute different state transitions 
in the same situation which makes the test can’t be 
carried on.       

The algorithm to judge indeterminacy for RT-EFSM 
model is: 

Input: RT-EFSM model M=< S*，S0，I，O，T，V，C，E > 

Output: return false if M is indeterminate, else return true 

M_Certain(Si， ti， tj) 

{ 

for_each Si∈S* 

for_each ti， tj∈T(Head(ti)==Head(tj)=Si) 

if((ti.I== tj.I)&&( ti.P== tj.P)&&( ti.o== tj.o)&&( ti.O== 

tj.O)&&(Tail(ti)!=Tail(tj))) 

return false 

return true 

} 

 
• Dynamic Determinacy 

The tuple V of RT-EFSM eight tuples is a three-
tuple<IV, CV, OV>, and CV refers to the set of 
environment variables. CV is out of control of testers and 
its value depends on the operation of state transition. As a 
result, if there is pre-condition in state transition and there 
are inner environment variables in pre-condition, the RT-
EFSM model is indeterminate, that is because the next 
state not only depends on the current state and input, but 
also depends on the environment variables in the pre-
condition. We call this kind of indeterminacy dynamic 
indeterminacy. For the RT-EFSM model whose pre-
condition includes input variables, we still consider it 
determinate, since the input variables are under tester’s 
control. As long as we choose appropriate input variables 
values, all the pre-conditions will be TRUE, thus the pre-
conditions will not impact the state transition, so this kind 
of RT-EFSM model is determinate. 
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We can use the state decomposing method to 
convert an indeterminate RT-EFSM model to a 
determinate RT-EFSM model. The key point is to 
eliminate the state transition indeterminacy incurred by 
inner environment variables, namely after conversion, all 
the transitions are not constrained by inner environment 
variables. Adopting the equivalence class partition 
method, we divide the state whose transition is 
constrained by inner environment variables into sub states 
which are independent to each other. We use M to 
represent RT-EFSM model, S* is the state set of M, Si∈
S*, for ti∈out(Si) (out(Si) is the set of transitions that 
started from Si), if there is pre-condition in ti and 
environment variables in this pre-condition, we divide Si 
into two states. The algorithm is:  

S* is the state set of original M=< S*，S0，I，O，T，V，C，E 

>,and: 

1) choose a state Si from S*, and set the transition set started from Si 

out(Si); 

2) if the state transition in out(Si) with pre-condition and it includes 

environment variables, the state Si can be divided into Si1 and Si2 two sub 

states, and Si1 for pre-condition is FALSE, and Si2 for pre-condition is 

TRUE; 

3) if there are state transitions with pre-conditions still to be deal 

with, we continue to divide the state.   

4) if all the state transitions in out(Si) are done, S*= S*- Si, if S*=Φ, 

end the division, otherwise go to 1). 

 

2). Reachability Validation 

An unreachable state means that there is no event 
sequence from the start state of RT-EFSM model to make 
the system reach the state. The reachability of RT-EFSM 
model refers to there is no unreachable state in it. The 
unreachable state is redundant and we should delete it and 
its related transitions. The algorithm is: 
Input:RT-EFSM model M=< S*，S0，I，O，T，V，C，E > 

Output:RT-EFSM model after deleting unreachable states M’=< S*’，

S0，I，O，T’，V，C’，E > 

Remove_Unreachable_State(Si，ti) 

 { 

   Sa={S0}，Sb ={S0}; 

   while(Sb!=Φ) 

 { 

        get Si  from Sb; 

        for_each(ti ∈T && Head(ti)== Si ) 

           if(Tail( ti )!∈Sa) 

 { 

               Sa = Sa∪Tail (ti ); 

               Sb = Sb∪Tail( ti ); 

} 

         remove Si  from Sb; 

} 

S*’= Sa; 

T’={t| Head(ti)∈S*’∩ Tail(ti) ∈S*’}; 

return M’; 

} 

 

3). Consistency Validation 

The consistency of RT-EFSM model means that there 
is no confliction or redundancy in it. Specifically, it 
means that there is no equivalent state or unreachable 
state in it. By the premise of modeling ASCS with RT-
EFSM model, we should consider the value range of state 
variables and if there is confliction between state 
transitions. Thus, the consistency of RT-EFSM model 
includes no state repetition or state-transition confliction. 

Equivalent state refers that there are such two states 
that they transfer to the same target state when triggered 
by same event or condition. Namely, there is equivalent 
state in a RT-EFSM model if the following condition is 
satisfied. 

* *S , , (S ), (S )i j i i j jS S S t T t T∃ ∈ ∃ ∈ ∈ ∈ ,and: 

[ ( ) ( ) . . . . . . . . ]i j i j i j i j i jTail t Tail t t I t I t P t P t o t o t O t O== == == == ==I I I I

    The algorithm to judge and delete equivalent state in a 
RT-EFSM model is: 

Input:RT-EFSM model M=< S*,S0,I,O,T,V,C,E > 

Output: RT-EFSM model after deleting equivalent state M’=< 

S*’,S0,I,O,T’,V,C’,E >  

Remove_ Equivalent_State(Si, Sj, ti, tj) 

{ 

   M’=M; 

   for_each Si, Sj∈S* 

 { 

      T1={t|Head(t)= Si}; 

      T2={t|Head(t)= Sj}; 

      for_each ti∈T1 

         if(tj∈T2((Tail(ti)==Tail(tj) &&(ti.I== tj.I)&&( ti.P== 

tj.P)&&( ti.o== tj.o)&&( ti.O== tj.O))) { 

                    remove tj from T2 

} 

if(Φ==T2) 

{ 

   T3={t|Head(t)=Sj || Tail(t)=Sj}; 

   remove Sj from S*’; 

   remove T3 from T’; 

} 

} 

return M’; 

} 
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State-transition confliction refers that when trying to 
transfer from one state to another, there is confliction 
between pre-condition and the variables, as a result the 
transition can’t happen. Namely, there is state-transition 
confliction in a RT-EFSM model if the following 
condition is satisfied. 

*
iS , [ ( . . ) . ]i i i i iS t T t P t I S V∃ ∈ ∈ = ∅U I  

The algorithm to check if there is state-transition 
confliction in a RT-EFSM model is: 

Input:RT-EFSM model M=< S*,S0,I,O,T,V,C,E > 

Output:state-transition confliction couple set STcof={<S1, t1>…} 

State_Transition_Conflict 

{ 

  for_each Si∈S* 

      for_each(ti∈T&&Head(ti)= Si) 

         if(((ti.P|| ti.I)∩Si.V)= Φ)      

            STcof.add (< Si, ti>); 

  return STcof ; 

} 

4). Consistency Validation 

For the real time embedded system modeled with RT-
EFSM, there is synchronization problem between 
different test ports transitions. We classify the 
synchronization problem into the First Class 
synchronization problem and the Second Class 
synchronization problem and we discuss them separately.  

• The First Class synchronization problem 
Set t is a transition in Mi, S is a local state in Mj (i≠j), if 

there is t’ (S=head（t’）) which has the same input as t, 
then S is a synchronous input state of t, and the set 
comprises of S is marked Con(t). 

Set tx, ty are transitions in Mi, and Mj, (i≠j), if 
transition sequence tx … ty satisfy:  

(1) Tail(tx)∈Con(ty),  
(2) if any transition tz (z≠x, y) is not in Mi, then the 

transition sequence is called the First Class synchronous 
input transition sequence. 

We call the test sequence that includes the First Class 
synchronous input transition sequence existing First Class 
synchronization problem. The test sequence R with First 
Class synchronization problem may lead to test sequence 
R’ be executed which is different from R. To avoid First 
Class synchronization problem, we add synchronization 
Lock declaration for Ti:   

Check Lock L; // check L is 0 or not 

Lock L; // L++, L is 1, synchronization Lock 

// L is locked 

Unlock L;// L--, L is 0 

 

Lock L executes operation L++, Unlock L executes 
operation L--, Check Lock L is to check L is 0 or not. The 
operation Lock L and Unlock L are unblocked. If the 
synchronization Lock L is locked (L≠0), the operation 
Check Lock L is blocked, otherwise it is unblocked. 

The algorithm to solve the First Class synchronization 
problem is as below: 

Input: local transition sequence set E (E1, E2, …En) of RT-EFSM 

model, and Ei is a continuous transition sequence; 

Output: test sequence R; 

 (1) build a synchronization Lock queue Q. For t in non-empty 

set Con(t), if there is S∈Con（t）traversed by E, then t is defined 

as a synchronization Lock Li=0;   

 (2) empty all test drive Ti; 

 (3) for each t in E: 

① if t is a transition in Q, then before the declaration related 

to t and the declaration Check Lock Li; 

②  if Tail(t) ∈ Con(t’), t’ is a transition in Q, and its 

corresponding synchronization Lock is Lj, then before the 

declaration related to t add the declaration Check Lock Lj; 

③ if the input of transition t in Mi is global input A, then add 

“Input A” in the end of queue Ti; 

④ if the input of transition t in Mi is local input B from Mj, 

then add “Receive B” in the end of queue Ti; 

⑤ if the output of transition t in Mi is local output C pointing 

to Mj, then add “Send C to Mj” in the end of queue Ti; 

⑥ if Head(t)∈Con(t’), and t’ is a transition of Q, and its 

corresponding synchronization Lock is Lj, then after the 

declaration related to t add the declaration Check Lock Lj. 

 (4) deal with each declaration in T, if all the declarations 

corresponding to a local transition are done, then output the 

transition to the test sequence.  

 
• The Second Class synchronization problem 

Set tx, ty are transitions in Mi and Mj (i≠j), if transition 
sequence tx … ty satisfy: 

(1) Head(tx)∈Con(ty), 
(2) if any transition tz (z≠x, y) is not in Mj, then the 

transition sequence is called the Second Class 
synchronous input transition sequence. 

We call the test sequence that includes the Second 
Class synchronous input transition sequence existing 
Second Class synchronization problem. The test sequence 
R with Second Class synchronization problem may lead 
to test sequence R’ be executed which is different from R. 
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Input: local transition sequence set E (E1, E2, …En) of RT-

EFSM model, and Ei is a continuous transition sequence; 

Output: test sequence R; 

(1) as the same as the steps (1), (2), (3), (4); 

(2) if there is the Second Class synchronous input 

transition sequence tx … ty  in the test sequence generated 

above, then mark the transition ty, thus the input of this 

transition will not be generated when generating 

corresponding input sequence.  

III. TEST SEQUENCE GENERATION 

A.  Test Sequence Generation Method 
With the validation of the model, we got a minimal, 

completed and strong connected RT-EFSM model. Figure 
3 is a schematic diagram of an aircraft inertial/satellite 
navigation systems to transfer from alignment state to 
navigation state. After simplifying the RT-EFSM model 
shown in figure 4 is obtained. And S0 is alignment state, 
S1 is input course alignment state, S2 is memory course 
alignment state, S3 is GC alignment state, S4 is navigation 
state, t1 and t2 is time interval (0, 120ms], t3 and t4 are fix 
time, 10ms and 50ms respectively. This RT-EFSM model 
state transition is shown in Table 2. We will take it for 
example to explain how to automatically generate test 
sequences.   

 

Figure 3.  A schematic diagram of an aircraft inertial / satellite 
navigation systems 

 

Figure 4.  RT-EFSM model for the aircraft inertial / satellite navigation 
systems 

TABLE II   THE STATE TRANSITIONS OF FIGURE  4 

 A(t)  B(t)  C(t)  D(t) A  B  C  D 

Start_state Output End_state 

S0 

S1 
S2 
S3 
S4 

0(t1)  1(t2)  0(t3)   λ 
/     0     /    / 
/     /     1    / 

/     /     /   1(t4) 
/     /     /     / 

S1  S2  S3  S0 
/  S4    /   / 
/   /   S4   / 
/   /   /   S4 
/   /   /   / 

 
Firstly, we add start state and end state to the model 

and we get figure 5.    

 
Figure 5.  RT-EFSM model after adding start state and end state 

Then we adopt depth-first search algorithm to traversal 
figure5, forming Depth-First Search Tree (DST). 
Adopting depth-first search algorithm we can not only 
traversal the whole model, but also get the complete 
transition of each branch.  
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Considering the real time characteristic of ASCS, in 
this paper we propose a time extended UIO sequence 
t_UIO: 

t_UIO=[t]_?I / !O, and the ‘[ ]’ refers to optional, ‘?’ 
refers to input and ‘!’ refers to output. 

According to the search algorithm above and t_UIO 
expression, we generate the t_UIO sequences as it is 
shown in Table 3. 

TABLE  III  T_UIO SEQUENCE  FOR  FIGURE 4 

State t_UIO 

S0 

S1 
S2 
S3 
S4 

t1_?D / !λ 
_?B / !0 
_?C / !1 

t4_?D / !1 
Ф 

S0 
S1 

S2 
S3 
S4 

t1_?D / !λ 
_?B / !0 
_?C / !1 

t4_?D / !1 
Ф 

For each transition between states we generate sub 
test sequence following the steps below: 

• Reset RT-EFSM (input r) to get back to start 
state. 

• Find out the shortest path from S0 to Si; 
• Input the symbol that makes the state transfer 

from Si to Sj; 
• Input the t_UIO sequence of Sj. 

Following the 4 steps above we can get each 
transition sequence: 

r D D…………………S0->S0 

r A(t1) B………………S0->S1  

r B(t2) C………………S0->S2  

r C(t3) D(t4)……………S0->S3 

r A(t1) B………………S1->S4  

r B(t2) C………………S2->S4  

r C(t3) D(t4)……………S3->S4 

In order to achieve a minimum cost to complete all of 
the state traversal, merging the sub test sequence above, 
optimization, that is, to remove repetitive sequences to 
available integrated test sequence: 

r D D r A(t1) B r B(t2) C r C(t3) D(t4) 
    Based on the sub test sequences and integrated 
sequence above, combining with testing strategy, 
instancing corresponding state variables, test cases are 
generated.   

B. Test Coverage Adequacy Criteria 
In EFSM-based testing method, the coverage criteria 

that are commonly used and more mature nature is state 
coverage, transition edge coverage and full predicate 
coverage [16]. 

In this paper, considering the real time characteristic of 
ASCS, we propose time condition coverage sufficiency 

criteria besides the criteria mentioned above to analyze 
the generated test sequences: 

* *, , { }i j i jS S S S t T S S∃ ∈ ∃ ∈ ∀ ∈ → , and 

{ | || || }f F It t t t t t t t= = ≤ ∈  
According to the criteria, all the boolean conditions 

related to time of transitions of RT-EFSM model are 
valued true or false once. There are test sequences for 
both satisfying the time constrains and not satisfying the 
time constrains in order to ensure they satisfy sufficiency 
requirement. 

IV. CONCLUSIONS 

In this paper, grounding on abundant experience and 
research on real-time embedded software testing 
technique, we introduced formal method into the ASCS 
verification field and proposed a real-time extension of 
EFSM model, named RT-EFSM, and gives its validation 
methods. At the same time, we put forward a timed 
unique input/output sequence (t_UIO) and its automatic 
generation algorithm. Finally, we applied the method to 
the verification of an aircraft inertia/satellite navigation 
system, and the results proved the correctness and 
validity of the method. 

The future work is to improve the RT-EFSM model 
extension scheme, research on how to generate test cases 
automatically to make this theory and method guide 
project practice better. 
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