
Research on Formal Verification Technique for
Aircraft Safety-Critical Software

Yongfeng Yin, Bin Liu

Department of System Engineering of Engineering Technology, Beihang University, Beijing, China
Email: {yyf, liubin}@buaa.edu.cn

Duo Su

Center of Aviation Safety Technology, Civil Aviation Administration of China, Beijing, China
Email: suduo@263.net

Abstract—As an important part of airborne avionics system,
aircraft safety critical software (ASCS) plays an essential
role to the safety of the aircraft, and to ensure its quality
and reliability is one of the key problems we are facing.
Formal methods have become important means for
modeling and verifying safety critical software. In this
paper, formal method is introduced into the ASCS
verification field and the real-time extended finite state
machine model (RT-EFSM) is studied, which includes the
detailed real-time extension schemes and its validation
methods. The verification process of ASCS based on RT-
EFSM is also proposed. Furthermore, combined with the
verification of an aircraft inertial/satellite navigation
systems, a timed unique input/output sequence (t_UIO) is
presented and the automatic generation algorithm of sub-
transfer sequences based on t_UIO is given. Finally, the test
adequacy criteria are discussed and a time condition
coverage criterion is proposed. The actual engineering
project application shows that the method proposed in this
paper is of great value for the ASCS, which can be generally
and effectively used in engineering.

Index Terms—real-time embedded software; aircraft; safety
critical software; RT-EFSM; formal methods; verification;
test sequence

I. INTRODUCTION

As the development of computer technique, a wide
range of complex hardware and software systems
embedded in a large number of safety-critical systems,
and play an irreplaceable role. In general, Safety-critical
systems are computer, electronic or electromechanical
systems in which failure may have severe consequences
such as injury or illness, death of humans, serious
environmental damage or failure of important mission.
Safety-critical software, as a part of the safety-critical
systems, is an important factor to safety-critical
systems[1][2].

The software verification technique based on formal
methods can eliminate ambiguity, enhance the accuracy
and consistency of verification and improve the
automation level and efficiency. Both European Space
Agency (ESA) and NASA highly recommend using
formal methods for the development and testing of
safety-critical software[3]. Therefore, the verification

technique based on formal methods is an effective way to
ensure the quality of ASCS, also it guarantees the safety
critical software meets the airworthiness requirements
[15]. ASCS usually shows the state based behaviors
wholly or partly, and one of the most commonly used
formal method for testing this kind of embedded software
is FSM or EFSM [10] [11] [12] [13]. Literature [4]
proposed an assertion-based extended EFSM model p-
EFSM for embedded software testing; literature [5]
proposed a real-time finite state machine (RTFSM) model
for numerical control system micro-fabrication (NCS);
literature [6] presented a testing method which is based
on incremental conformance; literature [7] proposed a
kind of EFSM-based test input data automatically
selected method; literature [8] showed an time extended
finite state machine to describe the system modeling with
time characteristics; literature [9] presented a testing
method based on statecharts and temporal logic that
oriented reactive system; literature [14] gave a EFSM
model based testing method combined with hardware
structure, and adopting fault injection method.

From the existing research, we can see that there is
lack of a universal and effective formal verification
method which has practical value in engineering for
ASCS. The problems of the existing research are as
fallows:

• Existing verification methods can not meet real-
time requirements of ASCS, such as the lack of
the temporal characteristics description during the
state transition.

• The cross-linked devices, interfaces, state types
and transition of ASCS are complex, while the
existing methods to solve these problems is not
well.

• The temporal characteristics description and time-
related test adequacy criteria of existing test
sequence generation method is obviously
insufficient.

In this paper, grounding on abundant experience and
research on real-time embedded software testing
technique, we introduced formal method into the ASCS
verification field and proposed a real-time extension of
EFSM model, named RT-EFSM, and gives its validation
methods. At the same time, we put forward a timed

1152 JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER
doi:10.4304/jcp.5.8.1152-1159

unique input/output sequence (t_UIO) and its automatic
generation algorithm. Finally, we applied the method to
the verification of an aircraft inertia/satellite navigation
system, and the results proved the correctness and
validity of the method.

II. RT-EFSM MODEL AND ITS VALIDATION

A. RT-EFSM Model
The traditional EFSM model is a six-tuple <S, S0, I,

O,T, V>:
S: non-empty set of finite states;
S0: the initial state;
I: non-empty finite set of input;
O: non-empty finite set of output;
T: non-empty finite set of transition;
V: non-empty set of variables.
The traditional EFSM model is lack of the ability to

describe the complexity and real time characteristic for
ASCS, as a result, it can’t meet the requirements of
modeling for ASCS. As we consider, the ASCS model
and validation theory which is based on real time
extended EFSM have to solve the problems below, as it is
shown in Table 1.

TABLE I. THE PROBLEMS SHOULD BE SOLVED FOR RT-EFSM

No. Description

1 How to describe the static and dynamic behavior of
ASCS

2 How to describe the real time characteristic of ASCS

3 How to describe the time characteristic in transition of
ASCS

4 How to solve the problem of states explosion

5 How to describe the complicated transition relationship
of ASCS

6 How to ensure the correctness and consistency of the
ASCS models

7 How to lay the foundation for the test cases automatic
generation

Based on the analysis above, in this paper we propose

the RT-EFSM model as the theoretical basis and extend
the EFSM from six-tuple to eight-tuple.

RT-EFSM＝<S*,S0,I,O,T,V,C,E>,and:
S*:non-empty set of finite states, and

S*=<Se,Si,S>,and Se is the set of states with
embedded relationship; Si is the set of states with
inherited relationship; S is the set of the other states;

S0: the initial state;
I: non-empty finite set of input;
O: non-empty finite set of output;
T: non-empty finite set of transition; and

T=<Head(t),I(t),P(t),operation,O(t),Tail(t),TM>;
and Head(t) is the start state of transition; I(t) is the
input message included in set I; P(t) is the
precondition of transition t and it could be empty;
operation is the operation during transition process,

usually it includes assignment statement and output
statement; O(t) is the output message included in set
O; Tail(t) is the end state of transition; TM is
transition time, which is three-tuple<tf, tF, tI >[8], tf
indicates that the transition time is a fix time, tF
indicates that the transition time is a stochastic time
complies to some distribution function; tI indicates
that the transition time is a time interval;

V: non-empty set of variables, and V=<IV, CV, OV>;
IV is the set of input variables, and they are under
tester’s control; OV is the set of output variables;
CV is the set of environment variables, which can be
local variables or global variables, and the variables
that are neither input variables nor output variables
can be called environment variables; both CV and
OV are out of the tester’s control, their values are
decided by state transition operation.

C: the set of static information of each state,
C=<NAME(S*),Variable(S*),Action(S*)>, and
NAME(S*) is state label, Variable(S*) is the related
variable to the state ; Action(S*) is the action and
activity of the state;

E: non-empty set of directed edge; it is an extension to
the original EFSM edge, and connection,
combination connection, selection joint are added,
which can describe the system dynamic behaviors
better, as it is shown in figure 1.

Figure 1. Extended directed edge in RT-EFSM

For the complex real-time embedded system as ASCS,
the state number is usually large, which leads to great
problems for testing. However, there often exists some
kind of relationship between the states, making some
rules for us to follow. For example, some state is
embedded in another one or some state is inherited from
another one. So, we extend the tuple S in EFSM to S*. S*
is defined as the non-empty set of finite states, and Se is
the set of states with embedded relationship; Si is the set
of states with inherited relationship; S is the set of the
other states. After extending, the RT-EFSM model can
describe the system under test more clearly and
accurately, helping the testers to understand the states and
the relationships between them. Meanwhile, the extension
can solve the state space explosion problem to a certain
extent.

The tuple TM in T describe three different time
situations when transferring from one state to another:fix
time, a stochastic time complies to some distribution
function and time interval. The fix time means that the
time a certain transition costs each time is the same fix
time, such as 50 time periods; a stochastic time complies
to some distribution function means that although the

JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010 1153

© 2010 ACADEMY PUBLISHER

time a transition costs are different each time, it follows
certain rules, namely it complies to a distribution function,
such as uniform distribution and index distribution; time
interval means that the transition time is an interval,
namely [t1, t2], and this interval could be open, closed, or
half open half closed, which can describe the delay
transition.

The tuple C is the set of static information of each state,
which can be detailed to C=<NAME(S*),Variable(S*),
Action(S*)>. When testing some state of the ASCS, the
testers can get the related variables, operation information
with it easily. Meanwhile, the test platform can read
related information from this state information table to
support automatic generation test cases.

The tuple E is an extension of the original EFSM
model general edge for the complex states transition
relationship in ASCS, and connection, combination
connection, selection joint are added. Connection is used
to connect more than one transition or divide one
transition into an array of continuous segments.
Regardless the number of transition segments, they are all
executed in one process from running to completion.
Combination connection is a kind of connection, which
connects more than one transition to an entrance ‘or’ state
transition, especially several transitions triggered by
different events share the same action list and/or guard
condition, or transferring to the same state. Selection joint
connection is a kind of connection that connects its action
list before entering the next transition segment, which
allows binding the actions to the first transition segment
in order to be executed before the following guard
expressions valued. The extension to the edge makes RT-
EFSM model more suitable to model ASCS, and the test
cases number can be decreased and efficiency can be
enhanced when automatic generating test cases.
From the analysis above we can see that, the proposition
of RT-EFSM model can solve all the problems listed in
Table 1 efficiently.

B. The Verification Process of ASCS Based on RT-
EFSM model

The verification process of ASCS based on RT-EFSM
is shown in figure 2.

Figure 2. The verification process of ASCS based on RT-EFSM

In this paper we focus on the most important three
steps in figure2, including modeling based on RT-EFSM,
model validation and test sequence generation.

C. Model Validation Method
After modeling ASCS based on RT-EFSM, the RT-

EFSM model needs to be validated to guarantee its
consistency, determinacy (includes static determinacy
and dynamic determinacy), reachability and
synchronicity. The static determinacy can guarantee the
RT-EFSM model is minimal; the dynamic determinacy
can guarantee the RT-EFSM model is completed; the
rechability can guarantee the RT-EFSM model is strong
connected. We have researched on all the four aspects
mentioned above and figured out corresponding
algorithms.

1). Determinacy Validation

• Static Determinacy
Static determinacy for RT-EFSM model means that in

any state, the target state is unique for a determinate
transition. If a RT-EFSM model is not determinate, it
means the system could execute different state transitions
in the same situation which makes the test can’t be
carried on.

The algorithm to judge indeterminacy for RT-EFSM
model is:

Input: RT-EFSM model M=< S*，S0，I，O，T，V，C，E >

Output: return false if M is indeterminate, else return true

M_Certain(Si， ti， tj)

{

for_each Si∈S*

for_each ti， tj∈T(Head(ti)==Head(tj)=Si)

if((ti.I== tj.I)&&(ti.P== tj.P)&&(ti.o== tj.o)&&(ti.O==

tj.O)&&(Tail(ti)!=Tail(tj)))

return false

return true

}

• Dynamic Determinacy

The tuple V of RT-EFSM eight tuples is a three-
tuple<IV, CV, OV>, and CV refers to the set of
environment variables. CV is out of control of testers and
its value depends on the operation of state transition. As a
result, if there is pre-condition in state transition and there
are inner environment variables in pre-condition, the RT-
EFSM model is indeterminate, that is because the next
state not only depends on the current state and input, but
also depends on the environment variables in the pre-
condition. We call this kind of indeterminacy dynamic
indeterminacy. For the RT-EFSM model whose pre-
condition includes input variables, we still consider it
determinate, since the input variables are under tester’s
control. As long as we choose appropriate input variables
values, all the pre-conditions will be TRUE, thus the pre-
conditions will not impact the state transition, so this kind
of RT-EFSM model is determinate.

1154 JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER

We can use the state decomposing method to
convert an indeterminate RT-EFSM model to a
determinate RT-EFSM model. The key point is to
eliminate the state transition indeterminacy incurred by
inner environment variables, namely after conversion, all
the transitions are not constrained by inner environment
variables. Adopting the equivalence class partition
method, we divide the state whose transition is
constrained by inner environment variables into sub states
which are independent to each other. We use M to
represent RT-EFSM model, S* is the state set of M, Si∈
S*, for ti∈out(Si) (out(Si) is the set of transitions that
started from Si), if there is pre-condition in ti and
environment variables in this pre-condition, we divide Si
into two states. The algorithm is:

S* is the state set of original M=< S*，S0，I，O，T，V，C，E

>,and:

1) choose a state Si from S*, and set the transition set started from Si

out(Si);

2) if the state transition in out(Si) with pre-condition and it includes

environment variables, the state Si can be divided into Si1 and Si2 two sub

states, and Si1 for pre-condition is FALSE, and Si2 for pre-condition is

TRUE;

3) if there are state transitions with pre-conditions still to be deal

with, we continue to divide the state.

4) if all the state transitions in out(Si) are done, S*= S*- Si, if S*=Φ,

end the division, otherwise go to 1).

2). Reachability Validation

An unreachable state means that there is no event
sequence from the start state of RT-EFSM model to make
the system reach the state. The reachability of RT-EFSM
model refers to there is no unreachable state in it. The
unreachable state is redundant and we should delete it and
its related transitions. The algorithm is:
Input:RT-EFSM model M=< S*，S0，I，O，T，V，C，E >

Output:RT-EFSM model after deleting unreachable states M’=< S*’，

S0，I，O，T’，V，C’，E >

Remove_Unreachable_State(Si，ti)

 {

 Sa={S0}，Sb ={S0};

 while(Sb!=Φ)

 {

 get Si from Sb;

 for_each(ti ∈T && Head(ti)== Si)

 if(Tail(ti)!∈Sa)

 {

 Sa = Sa∪Tail (ti);

 Sb = Sb∪Tail(ti);

}

 remove Si from Sb;

}

S*’= Sa;

T’={t| Head(ti)∈S*’∩ Tail(ti) ∈S*’};

return M’;

}

3). Consistency Validation

The consistency of RT-EFSM model means that there
is no confliction or redundancy in it. Specifically, it
means that there is no equivalent state or unreachable
state in it. By the premise of modeling ASCS with RT-
EFSM model, we should consider the value range of state
variables and if there is confliction between state
transitions. Thus, the consistency of RT-EFSM model
includes no state repetition or state-transition confliction.

Equivalent state refers that there are such two states
that they transfer to the same target state when triggered
by same event or condition. Namely, there is equivalent
state in a RT-EFSM model if the following condition is
satisfied.

* *S , , (S), (S)i j i i j jS S S t T t T∃ ∈ ∃ ∈ ∈ ∈ ,and:

[() ()]i j i j i j i j i jTail t Tail t t I t I t P t P t o t o t O t O== == == == ==I I I I

 The algorithm to judge and delete equivalent state in a
RT-EFSM model is:

Input:RT-EFSM model M=< S*,S0,I,O,T,V,C,E >

Output: RT-EFSM model after deleting equivalent state M’=<

S*’,S0,I,O,T’,V,C’,E >

Remove_ Equivalent_State(Si, Sj, ti, tj)

{

 M’=M;

 for_each Si, Sj∈S*

 {

 T1={t|Head(t)= Si};

 T2={t|Head(t)= Sj};

 for_each ti∈T1

 if(tj∈T2((Tail(ti)==Tail(tj) &&(ti.I== tj.I)&&(ti.P==

tj.P)&&(ti.o== tj.o)&&(ti.O== tj.O))) {

 remove tj from T2

}

if(Φ==T2)

{

 T3={t|Head(t)=Sj || Tail(t)=Sj};

 remove Sj from S*’;

 remove T3 from T’;

}

}

return M’;

}

JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010 1155

© 2010 ACADEMY PUBLISHER

State-transition confliction refers that when trying to
transfer from one state to another, there is confliction
between pre-condition and the variables, as a result the
transition can’t happen. Namely, there is state-transition
confliction in a RT-EFSM model if the following
condition is satisfied.

*
iS , [(. .) .]i i i i iS t T t P t I S V∃ ∈ ∈ = ∅U I

The algorithm to check if there is state-transition
confliction in a RT-EFSM model is:

Input:RT-EFSM model M=< S*,S0,I,O,T,V,C,E >

Output:state-transition confliction couple set STcof={<S1, t1>…}

State_Transition_Conflict

{

 for_each Si∈S*

 for_each(ti∈T&&Head(ti)= Si)

 if(((ti.P|| ti.I)∩Si.V)= Φ)

 STcof.add (< Si, ti>);

 return STcof ;

}

4). Consistency Validation

For the real time embedded system modeled with RT-
EFSM, there is synchronization problem between
different test ports transitions. We classify the
synchronization problem into the First Class
synchronization problem and the Second Class
synchronization problem and we discuss them separately.

• The First Class synchronization problem
Set t is a transition in Mi, S is a local state in Mj (i≠j), if

there is t’ (S=head（t’）) which has the same input as t,
then S is a synchronous input state of t, and the set
comprises of S is marked Con(t).

Set tx, ty are transitions in Mi, and Mj, (i≠j), if
transition sequence tx … ty satisfy:

(1) Tail(tx)∈Con(ty),
(2) if any transition tz (z≠x, y) is not in Mi, then the

transition sequence is called the First Class synchronous
input transition sequence.

We call the test sequence that includes the First Class
synchronous input transition sequence existing First Class
synchronization problem. The test sequence R with First
Class synchronization problem may lead to test sequence
R’ be executed which is different from R. To avoid First
Class synchronization problem, we add synchronization
Lock declaration for Ti:

Check Lock L; // check L is 0 or not

Lock L; // L++, L is 1, synchronization Lock

// L is locked

Unlock L;// L--, L is 0

Lock L executes operation L++, Unlock L executes
operation L--, Check Lock L is to check L is 0 or not. The
operation Lock L and Unlock L are unblocked. If the
synchronization Lock L is locked (L≠0), the operation
Check Lock L is blocked, otherwise it is unblocked.

The algorithm to solve the First Class synchronization
problem is as below:

Input: local transition sequence set E (E1, E2, …En) of RT-EFSM

model, and Ei is a continuous transition sequence;

Output: test sequence R;

 (1) build a synchronization Lock queue Q. For t in non-empty

set Con(t), if there is S∈Con（t）traversed by E, then t is defined

as a synchronization Lock Li=0;

 (2) empty all test drive Ti;

 (3) for each t in E:

① if t is a transition in Q, then before the declaration related

to t and the declaration Check Lock Li;

② if Tail(t) ∈ Con(t’), t’ is a transition in Q, and its

corresponding synchronization Lock is Lj, then before the

declaration related to t add the declaration Check Lock Lj;

③ if the input of transition t in Mi is global input A, then add

“Input A” in the end of queue Ti;

④ if the input of transition t in Mi is local input B from Mj,

then add “Receive B” in the end of queue Ti;

⑤ if the output of transition t in Mi is local output C pointing

to Mj, then add “Send C to Mj” in the end of queue Ti;

⑥ if Head(t)∈Con(t’), and t’ is a transition of Q, and its

corresponding synchronization Lock is Lj, then after the

declaration related to t add the declaration Check Lock Lj.

 (4) deal with each declaration in T, if all the declarations

corresponding to a local transition are done, then output the

transition to the test sequence.

• The Second Class synchronization problem

Set tx, ty are transitions in Mi and Mj (i≠j), if transition
sequence tx … ty satisfy:

(1) Head(tx)∈Con(ty),
(2) if any transition tz (z≠x, y) is not in Mj, then the

transition sequence is called the Second Class
synchronous input transition sequence.

We call the test sequence that includes the Second
Class synchronous input transition sequence existing
Second Class synchronization problem. The test sequence
R with Second Class synchronization problem may lead
to test sequence R’ be executed which is different from R.

1156 JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER

Input: local transition sequence set E (E1, E2, …En) of RT-

EFSM model, and Ei is a continuous transition sequence;

Output: test sequence R;

(1) as the same as the steps (1), (2), (3), (4);

(2) if there is the Second Class synchronous input

transition sequence tx … ty in the test sequence generated

above, then mark the transition ty, thus the input of this

transition will not be generated when generating

corresponding input sequence.

III. TEST SEQUENCE GENERATION

A. Test Sequence Generation Method
With the validation of the model, we got a minimal,

completed and strong connected RT-EFSM model. Figure
3 is a schematic diagram of an aircraft inertial/satellite
navigation systems to transfer from alignment state to
navigation state. After simplifying the RT-EFSM model
shown in figure 4 is obtained. And S0 is alignment state,
S1 is input course alignment state, S2 is memory course
alignment state, S3 is GC alignment state, S4 is navigation
state, t1 and t2 is time interval (0, 120ms], t3 and t4 are fix
time, 10ms and 50ms respectively. This RT-EFSM model
state transition is shown in Table 2. We will take it for
example to explain how to automatically generate test
sequences.

Figure 3. A schematic diagram of an aircraft inertial / satellite
navigation systems

Figure 4. RT-EFSM model for the aircraft inertial / satellite navigation
systems

TABLE II THE STATE TRANSITIONS OF FIGURE 4

 A(t) B(t) C(t) D(t) A B C D

Start_state Output End_state

S0

S1
S2
S3
S4

0(t1) 1(t2) 0(t3) λ
/ 0 / /
/ / 1 /

/ / / 1(t4)
/ / / /

S1 S2 S3 S0
/ S4 / /
/ / S4 /
/ / / S4
/ / / /

Firstly, we add start state and end state to the model

and we get figure 5.

Figure 5. RT-EFSM model after adding start state and end state

Then we adopt depth-first search algorithm to traversal
figure5, forming Depth-First Search Tree (DST).
Adopting depth-first search algorithm we can not only
traversal the whole model, but also get the complete
transition of each branch.

JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010 1157

© 2010 ACADEMY PUBLISHER

Considering the real time characteristic of ASCS, in
this paper we propose a time extended UIO sequence
t_UIO:

t_UIO=[t]_?I / !O, and the ‘[]’ refers to optional, ‘?’
refers to input and ‘!’ refers to output.

According to the search algorithm above and t_UIO
expression, we generate the t_UIO sequences as it is
shown in Table 3.

TABLE III T_UIO SEQUENCE FOR FIGURE 4

State t_UIO

S0

S1
S2
S3
S4

t1_?D / !λ
_?B / !0
_?C / !1

t4_?D / !1
Ф

S0
S1

S2
S3
S4

t1_?D / !λ
_?B / !0
_?C / !1

t4_?D / !1
Ф

For each transition between states we generate sub
test sequence following the steps below:

• Reset RT-EFSM (input r) to get back to start
state.

• Find out the shortest path from S0 to Si;
• Input the symbol that makes the state transfer

from Si to Sj;
• Input the t_UIO sequence of Sj.

Following the 4 steps above we can get each
transition sequence:

r D D…………………S0->S0

r A(t1) B………………S0->S1

r B(t2) C………………S0->S2

r C(t3) D(t4)……………S0->S3

r A(t1) B………………S1->S4

r B(t2) C………………S2->S4

r C(t3) D(t4)……………S3->S4

In order to achieve a minimum cost to complete all of
the state traversal, merging the sub test sequence above,
optimization, that is, to remove repetitive sequences to
available integrated test sequence:

r D D r A(t1) B r B(t2) C r C(t3) D(t4)
 Based on the sub test sequences and integrated
sequence above, combining with testing strategy,
instancing corresponding state variables, test cases are
generated.

B. Test Coverage Adequacy Criteria
In EFSM-based testing method, the coverage criteria

that are commonly used and more mature nature is state
coverage, transition edge coverage and full predicate
coverage [16].

In this paper, considering the real time characteristic of
ASCS, we propose time condition coverage sufficiency

criteria besides the criteria mentioned above to analyze
the generated test sequences:

* *, , { }i j i jS S S S t T S S∃ ∈ ∃ ∈ ∀ ∈ → , and

{ | || || }f F It t t t t t t t= = ≤ ∈
According to the criteria, all the boolean conditions

related to time of transitions of RT-EFSM model are
valued true or false once. There are test sequences for
both satisfying the time constrains and not satisfying the
time constrains in order to ensure they satisfy sufficiency
requirement.

IV. CONCLUSIONS

In this paper, grounding on abundant experience and
research on real-time embedded software testing
technique, we introduced formal method into the ASCS
verification field and proposed a real-time extension of
EFSM model, named RT-EFSM, and gives its validation
methods. At the same time, we put forward a timed
unique input/output sequence (t_UIO) and its automatic
generation algorithm. Finally, we applied the method to
the verification of an aircraft inertia/satellite navigation
system, and the results proved the correctness and
validity of the method.

The future work is to improve the RT-EFSM model
extension scheme, research on how to generate test cases
automatically to make this theory and method guide
project practice better.

ACKNOWLEDGMENT

We owe our thanks to the anonymous reviewers and
Department of System Engineering of Engineering
Technology of Beihang University.

REFERENCES

[1] Qin Zhidong , Lei Hang , Sang Nan, Xiong Guangze , Gu
Youpeng. Study on the Reliability Demonstration Testing
Method for Safety-critical Software[J]. Chinese Journal of
Aeronautics.2005, Vol.26 No.3,pp.334-339.

[2] Lin Bin, Gao Xiaopeng, Lu Mingyan, Ruan Lian, Study on
Reliability Simulation Soft-ware System for Embedded
Software[J], The Journal of Beijing University of Aero-
nautics and Astronautaics, 2000, Vol.26,No.4, pp.490-493.

[3] NASA software safety guidebook[C], NASA-GB-8719.13,
NASA, 2004.

[4] A.Guerrouat, H.Richter. A formal approach for analysis
and testing of reliable embedded systems[J]. Electronic
Notes in Theoretical Computer Science, 2005, Vol.141,
No.3, pp.91-106.

[5] Yao Xinhua, Pan Xuezeng, Fu Jianzhong, Chen Zichen.
Research on real-time FSM modeling for microfabrication
nc system[J]. Journal of zhejiang university (engineering
science). 2005, vol.39, no.12, pp.1965-1968.

[6] Wu Fenlan, Hu Chaoju, SongYu.Study on software test
method based on finite state machine[J]. Journal of North
China Electric Power University.2005, Vol.32,No.6, pp.60-
63.

[7] ZhangYong, Qian Leqiu Wang Yuanfeng.Automatic
Testing Data Generation in the Testing Based on
EFSM[J].Chinese Journal of computers. 2003, Vol.26,
No.1O.pp.1295-1303.

1158 JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER

[8] Mercedes G. Merayo, Manuel Nu′n˜ez, Ismael Rodrı′
Guez. Formal testing from timed finite state
machines[J].2008, Computer networks, 52(2008), pp.432–
460.

[9] Li Shuhao, Wang Ji, Dong Wei, Qi Zhichang. A
framework of property-oriented testing of reactive
systems[J]. CHINESE JOURNAL OF ELECTRONICS.
2004, Vol.32, No.12A, pp.222-225.

[10] A. V. Aho, A. T. Dahbura, D. Lee, and M.U. Uyar. An
optimisation technique for protocol conformance test
generation based on UIO sequences and Rural Chinese
Postman Tours[J]. In S. Aggarwal and K. Sabnani, editors,
Protocol Specification, Testing, and Verification, New
Jersey, 1988.

[11] S. Fujiwara, G.v. Bochmann, F. Khendek, M. Amalou, and
A. Ghedamsi. Test selection based on finite state
models[J]. IEEE transaction on Software Engineering.
1991, Vol.17, No.6, pp.591-603.

[12] M. Krichen, S. Tripakis, An expressive and implementable
formal framework for testing real-time systems[C], in:17th
International Conference on Testing of Communicating
Systems, TestCom’05, LNCS 3502, Springer, 2005,
pp.209–225.

[13] A. Khoumsi, A method for testing the conformance of
realtime systems, in:7th International Symposium on
Formal Techniques in Real-Time and Fault-Tolerant
Systems[J], FTRTFT’02, LNCS 2469, Springer, 2002, pp.
331–354.

[14] Franco,Fummi Cristina Marconcini Graziano Pravadelli.
Functional Verification based on the EFSM Model[C].
Ninth IEEE International High-Level Design Validation
and Test Workshop, HLDVT'04. 2004, pp.69-74.

[15] RTCA/DO-178B, Software considerations in airborne
systems and equipment certification, Requirements and
Technical Concepts for Aviation[M], Washington, D.C.,
December 1992. EUROCAE ED12B in Europe.

[16] Zhan Xuede. Research on software testing method based
on UML Startcharts[M]. PH.D dissertation. Shanghai
University.2005.7.

Yongfeng Yin was born in 1978. Now he is a lecturer and

Ph. D. candidate. He received the B. S. and M.S. degrees from
Beihang University, in 2000 and 2003. His research interests
include system engineering, real-time embedded software
testing and software reliability. E-mail: yyf@buaa.edu.cn

Bin Liu is a Ph. D. advisor and professor. His research

interests include system engineering, software testing and
software reliability. E-mail: liubin@buaa.edu.cn

Duo Su is a Ph. D. His research interests include System

security, airworthiness. E-mail: suduo@263.net

JOURNAL OF COMPUTERS, VOL. 5, NO. 8, AUGUST 2010 1159

© 2010 ACADEMY PUBLISHER

