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Abstract — This paper presents a novel adaptive multi-
objective particle swarm optimization algorithm and with 
adaptive multi-objective particle swarm algorithm for 
solving objective constrained optimization problems, in 
which Pareto non-dominated ranking, tournament selection, 
crowding distance method were introduced, simultaneously 
the rate of crowding distance changing were integrated into 
the algorithm. Finally, ten standard functions are used to 
test the performance of the algorithm, experimental results 
show that the proposed approach is an efficient and achieve 
a high-quality performance. 
 
Index Terms—Particle Swarm Optimization Algorithm; 
Adaptability Multi-objective Optimization; Constrained 
optimization; Test functions 

I.  INTRODUCTION 

In recent years, using particle swarm algorithm (PSO) 
[1] for solving numerical optimization problems has 
received increasing attention and wide applications. To 
our knowledge, there is little published research work on 
constrained optimization so far. However, many practical 
problems in scientific research and engineering 
applications involve a number of constraints that the 
decision solutions need to satisfy. Therefore, solving 
objective constrained optimization problems based on 
particle swarm optimization has great value in real-world 
applications. 

Generally, a constrained optimization problem (COP) 
[2] can be described as follows: 

 
)(min xfy =  

subject to  1( ) ( ( ),..., ( )) 0,lg x g x g x= ≤   

      1( ) ( ( ),..., ( )) 0l mh x h x h x+= = , 

    1 2( , ,..., ) n
nx x x x X R= ∈ ⊆  ,               (1) 

1 2{( , ,..., ) | }n i i iX x x x l x u= ≤ ≤ , 
 
 

 

1 2 n 1 2( , ,..., ), ( , ,..., )nl l l l u u u u= = .                                   
Where T

nxxxx ],...,,[ 21=  denotes the decision 

solution vector, l  is the number of inequality constraints 
and m  is the number of equality constraints, y is 
objective function. In a common practice, an equality 
constraint 0)( =xhj  can be replaced by a couple of 
inequality constraints. 
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In recent years, particle swarm optimization algorithm 
made great progress in the applied research of multi-
objective optimization. Its processing method is similar to 
multi-objective evolutionary algorithm (MOEA) [3]. 
Many successful strategies such as external archives 
based on MOEA are introduced into the multi-objective 
particle swarm optimization (MOPSO) [4]. On the other 
hand, MOPSO do not have to conduct fitness assignment 
so that simplify the algorithm. But it must choose an 
appropriate global best position for each particle from 
external archives. However, there is little published 
research work on constrained optimization based on 
multi-objective optimization algorithm. In this paper, an 
effective adaptive multi-objective particle swam 
algorithm (AMPSO) is proposed for constrained 
optimization problems by applying MPSO and employing 
the notion of the rate of crowding distance changing. In 
the AMPSO, Pareto non-dominated ranking, tournament 
selection, crowding distance method were introduced, 
simultaneously the rate of crowding distance changing 
were integrated into the algorithm. Simulation results 
based on some famous constrained test functions 
demonstrate the effectiveness and efficiency of the 
proposed AMPSO. 
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II.  BASIC CONCEPTS 
In many science and engineering disciplines, it is 

common to encounter a large number of constrained 
optimization problems. In this paper, we first give the 
relevant description of multi-objective optimization 
problems and the basic definitions related to multi-
objective optimization. A multi-objective optimization 
problem (MOP) with n  decision variables and m  
objective functions has the following form: 

))(),...,(),(()(min 21 xfxfxfxfy m==
         （3） 

Where n
n RXxxxx ⊂∈= ),...,,( 21  is the decision 

vector, mRYy ⊂∈  is the objective vector. 
 

Definition 1 (Pareto Dominance) [4]. A vector 
),...,,( 21 muuuu =  is said to Pareto dominate another 

vector ),,...,,( 21 mvvvv = , denoted as vu p , if 

{1,..., }, {1,..., },i i j ji m u v j m u v∀ ∈ ≤ ∧∃ ∈ <  
 
Definition 2 (Pareto Optimality) [4]. Xxu ∈  is said 

to be Pareto optimal in X  if and only if 
,, uvXxv p∈¬   where 

).,...,,()( 21 mu uuuxfu ==  
 
Definition 3 (Pareto Optimal Set) [4]. For a 

given )(xMOPf , the Pareto optimal set, denoted as *ρ , 
is defined as 

},|{ uvXxXx vu p∈¬∈=∗ρ  
 
Definition 4 (Pareto Front)[4][5]. For a given 

)(xMOPf , according to the Pareto optimal set, the 
Pareto front, denoted as *fρ , is defined as 

})({ ∗∗ ∈== ρρ uxfuf  
 

Definition 5 (Crowding Distance) [6] to get an 
estimate of the density of solutions surrounding a 
particular solution in the population, we calculate the 
average distance of two points on either side of this point 
along each of the objectives. This quantity tandis cei  serves 
as estimate of the size of the largest cuboids enclosing the 
point i  without including any other point in the 
population (we call this the crowding distance). 

 

III. ADAPTIVE MULTI-OBJECTIVE PARTICLE SWARM 
ALGORITHM  

A. The Basic PSO Algorithm 
PSO is a stochastic global optimization method 

which is based on simulation of social behavior of bird 

flocks or fish schools. In contrast to other evolution 
algorithm, its principle is simple and easy to program. 

The core operations of PSO are two updating 
equations of the velocity and position for each particle. 
The actual position and velocity of a particle is 
associated with a particular design vector x  and v . 
Each particle’s own best historical position is denoted 
by vector pbest , and the best historical position that 
the entire swarm has passed is denoted by 
vector gbest . The new velocity and position of each 
particle for the next generation are calculated as 
follows: 

 
)]([())()1( ,,1,, txpbestrandctVtV jijijiji −××+=+ ω

                          )]([() ,,2 txgbestrandc jiji −××+    (4) 
 )1()()1( ,,, ++=+ tVtxtx jijiji , .,...,2,1 dj =      (5)    

Where 1c and 2c are two positive constants called 
acceleration coefficients, ω is called the inertia factor, 

()rand is random numbers uniformly distributed in 
the range of [0,1] . 

B.  Adaptive Multi-Objective PSO Algorithm 
The optimal values of the control parameters 

regarding convergence rates and diversity are strong 
problem dependent, especially the inertia factor. It 
influences the trade-off between global and local 
exploration abilities. A larger inertia factor facilitates 
global exploration while a smaller inertia factor tends 
to facilitate local exploration to fine-tune the current 
search area. Therefore, an optimal inertia factor is 
necessary to improve performance of algorithm. There 
are a lot of published research works on that. Ren Zi-
Hui, Wang Jian presented a new adaptive particle 
swarm optimization algorithm with dynamically 
changing inertia weight (DCWPSO) [7]. Hence, in this 
paper, we introduce crowding distance [6]. 

 

( )kI d = ( )kI d + max min

( 1). ( 1).

m m

I k m I k m
f f

+ − −
−

      (6) 

 
Where, ( ).I k m refers to the m -th objective function 
value of the i -th individual in the set I . 

Furthermore we present the rate of crowding 
distance changing value. 
 

Definition 6 (The Rate of Crowding Distance 
Changing Value): 

The c      The current rate of crowding distance changing value 
k  is defined as 

 
MaxID MeanIDk

MaxID
−

=                        (7)                         
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Where MaxID  and MeanID  are calculated as 
follows 

2

1
( ( ) )

m

id id
i

p x
MeanID

m
=

−
=
∑

                       (8)                                              

2max( )id idMaxID p x= −                            (9)                                
 
Where, idp  is crowding distance of the optimal 

position of entire swarm, idx  is best historical position 
of particle. 

We first calculate the crowding distance of each 
individual in the evolution process, then receive 
corresponding MaxID and MeanID . Finally, we 
can determine what to do in the next step. 

The value of the ω  is adaptively adjusted by the 
mapping: 

1

1 2

2

( | | /2.0) | ln |,
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k

≤
≤ ≤

<
          (10)                        

where 1a =0.3, 2a =0.2, r  is random numbers 
uniformly distributed in the range of [0,1] .Note that, 
with the mapping function, not purely with time or 
with the generation number. Hence, the adaptive 
inertia factor is expected to be changed efficiently 
according to the evolutionary states. It not only adjusts 
efficiently the global search and local search 
capabilities, but also maintains the diversity of 
population. 
 

IV. ADAPTIVE MULTI-OBJECTIVE PSO (AMPSO) 
ALGORITHM 

A. Constraints Treatment 
Taking advantage of multi-objective optimization 

techniques to handle constraints is a new idea raised in 
recent years. Generally, constraints can be regards as 
one or more objectives. One objective is taking into 
account the original objective function )(xf , and the 
other one is considering the degree of constraint 
violation of an individual x , i.e., )(xG , where 

 
max{0, ( )}

( )
| ( ) |

j
j

j

g x
G x

h x
⎧⎪= ⎨
⎪⎩

,   
1

1
j l

l j m
≤ ≤
+ ≤ ≤

 

1
( ) ( )m

jj
G x G x

=
=∑ .                                        (11)                            

In this paper, constraints can be regards as one 
objective ( )G x , then ( )G x and ( )f x constitute two 
target vectors ( )F x = ( ( )f x , ( )G x ). In this way, 
constraint problems that contain n  decision, one target 
function, l  inequality constraints and 1m −  equality 
constraints can be regarded as n  decision vectors and 
two target vectors. Therefore, it avoids using penalty 
function and can get a Pareto optimal set that 
uniformly distributed and diversity. When ( ) 0G x = , 
we can get the Pareto optimal solution according to 
search results. 

 

B. Adaptive Multi-Objective PSO (AMPSO)algorithm 
 So far, there are many mature approaches published 

search work. Laumanns presented a unified model for 
multi-objective evolutionary algorithms with elitism [8] 
that co-evolution of individual species and elite 
populations. De.betal presented a fast and elitist multi-
objective genetic algorithm: NSGA-II[6]. The elitist 
strategy is defined as priority individual will not be 
excluded from the gene pool when poor individuals 
impact. In this paper, we use fast non-inferior 
classification for grading the whole population. First 
introduce the elite search strategy to expand the 
sample space, which can maintain the priority 
individual into the next generation, then get partial 
order results through non-inferior rank. The 
experiment show that this method can quickly 
converge to the area of non-inferior solutions. 
Pseudo code of two operations as follow: 
 
Pseudo code 1: Non-inferior classification 

Initialize pS = ∅ .   // the collection includes all 
individuals dominated by p . 

Initialize 0pn = .  //The number of individuals 
dominated p  

For each individual q in P  
  If p dominated q  then 
     pS = pS ∪ { q } 
       Else if q dominates p then 
     pn = pn +1 

If pn =0 rankp ＝1, 1 1 { }F F p= ∪  

Initialize 0i =       //Initialize the number of front 

While iF ≠ ∅  
  Q = ∅  
  For each individual p in front iF ; 

           For each individual q in pS
;
 

qn = qn -1 
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If qn =0 

rankq =i+1, Q q= ∅∪  

,1+= ii  iF Q=  
 

 Pseudo code 2: Crowding distance 
Initialize ( )i jF d =0.        //The j crowding distance 

of Front iF  
For each objective function m  

  Sort ( iF , m ). 

1( )I d = ∞ and ( )nI d = ∞  

For k =2 to ( 1n− ) 

)()( kk dIdI = + max min

( 1). ( 1).

m m

I k m I k m
f f

+ − −
−

.    

We introduce a new particle update strategy, which 
choose the best position of entire swarm based on 
comparing Pareto dominated sorting with crowding 
distance. The whole procedure of AMPSO is described 
as follows: 

 
Step 1. Let t=0, and randomly initialize 

swarm ( )P t , evaluate these objectives value for all 
particles. 

Step 2. Repeat until a stopping criterion is satisfied: 
Step 2.1. Sorting-based Pareto dominance 

relationship in accordance with fitness (Pseudo code 1), 
calculate the crowding distance of each individual 
(Pseudo code 2), and choose in front of half of the 
individual through elitist strategy. Select particle’s best 
Position pbest and the best position of the entire 
swarm gbest . 

Step 2.2. Calculate the rate of crowding distance 
changing value, and determine w . 

Step 2.3. Update the velocities and positions 
using Eq. (4) and Eq. (5). 

Step 2.4. Merging new and old swarms ( )Q t , 
Sorting-based Pareto dominance relationship in 
accordance with fitness (Pseudo code 1), calculate the 
crowding distance of each individual (Pseudo code 2), 
and choose in front of half of the individual through 
elitist strategy. 

Step 2.5. Get partial order results through non-
inferior rank, and let 1t t= + . 

Step 3.Output Pareto optimal set. 
 

 
V. SIMULATION TEST AND ANALYSIS 

A. Parameter Setting 
In this section, we will carry out numerical 

simulation based on some well-known constrained 
problems to investigate the performances of the 

proposed SMPSO. In simulation test, parameters of 
AMPSO are set as follows: swarm size 200n = , 
1 2c c= =2.0, _ 2tour size = . The statistical 

simulation results of 30 independent run for each 
example. 
 
Example 1[9]. 

1 1 2min ( ) 4 3f x x x= − −  

1 2

1 2

1 2

2 3 6 0
3 2 3 0

. .
2 4 0
0 2, 1,2i

x x
x x

s t
x x

x i

+ − ≤⎧
⎪− + − ≤⎪
⎨ + − ≤⎪
⎪ ≤ ≤ =⎩

 

The Example 1 is a linear programming problem, the 
optimal value is 1( *) 9.0f x = − . 
 
Example 2[9]. 

2 1 2min ( )f x x x= − −  
4 3 2

1 1 1 2
4 3 2

1 1 1 1 2

1

2

2 8 8 2 0

4 32 88 96 36 0. .
0 3
0 4

x x x x

x x x x xs t
x
x

⎧− + − + − ≤
⎪
− + − + + − ≤⎪
⎨

≤ ≤⎪
⎪ ≤ ≤⎩

 

All constraints of example 2 are non-linear inequality, 
the optimal value is 2( *) 5.5079f x = − . 
. 
Example 3 [10]. 

4 132
3 1 2 3 4 1 5

min ( ) 5 5 5 5 5 i ii i
f x x x x x x x

= =
= + + + − −∑ ∑

1 2 10 11

1 3 10 11

2 3 11 12

1 10

2 11

3 12

4 5 10

6 7 11

8 9 12

13

2 2 10
2 2 10
2 2 10

8 0
8 0
8 0

. .
2 0
2 0
2 0

0 1, 1,...,9
0 100, 10,11,12
0 1

i

j

x x x x
x x x x
x x x x

x x
x x
x x

s t
x x x
x x x
x x x
x i
x j
x

+ + + ≤⎧
⎪ + + + ≤⎪
⎪ + + + ≤
⎪
− + ≤⎪
⎪− + ≤
⎪
− + ≤⎪
⎨− − + ≤⎪
⎪− − + ≤
⎪
− − + ≤⎪
⎪ ≤ ≤ =
⎪

≤ ≤ =⎪
⎪

≤ ≤⎩

 

 
The number of the decision vector is 13, the number of 
the constrained is 9, and the optimal value 
is 3 ( *) 15f x = − . 
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Example 4[10]. 
2

4 3 1 5 1min ( ) 5.3578547 0.8356891 37.293239 4.792.141f x x xx x= + + −
. .s t  

⎧
⎪
⎪
⎨
⎪
⎪⎩

2 5 1 4 3 5
2

2 5 1 2 3

3 5 1 3 3 4

1 2

0 85.334407 0.0056858 0.0006262 0.0022053 92

90 80.51249 0.0071317 0.0029955 0.0021813 110
20 9.300961 0.0047026 0.0012547 0.0019085 25
78 102,33 45,27 45,( 3i

x x xx xx

xx xx x
xx xx xx

x x x i

≤ + + − ≤

≤ + + + ≤

≤ + + + ≤
≤ ≤ ≤ ≤ ≤ ≤ = ,4,5)

 

The optimal value is 4 ( *) 3.665.539f x = − . 
 
Example 5[10]. 

3 3
5 1 1 2 2min ( ) 3 0.000001 2 0.000002 / 3f x x x x x= + + +

 

3 4 1

3 3 4 2

4 4 3

4 3

3 4

1000sin( 0.25) 1000sin( 0.25) 894.8 0
1000sin( 0.25) 1000sin( 0.25) 894.8 0
1000sin( 0.25) 1000sin( 0.25) 12948 0

. . 0.55 0
0.55 0

0 1200, 1,2
0.55 0.55, 3,4

i

j

x x x
x x x x
x x x

st x x
x x

x i
x j

⎧ − − + − − + − =

− + − − + − =
− + − − + =

− + ≥

− + ≥
≤ ≤ =

− ≤ ≤ =

⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪⎩

 
The optimal value is 5 ( *) 5126.4981f x = . 
 
Example 6 [10]. 
 

3 3
6 1 2min ( ) ( 10) ( 20)f x x x= − + −  

2 2
1 2

2 2
1 2

1

2

( 5) ( 5) 100 0

( 6) ( 5) 82.81 0. .
13 100
0 100

x x

x xs t
x

x

⎧ − + − − ≥
⎪
− − − − + ≥⎪
⎨

≤ ≤⎪
⎪ ≤ ≤⎩

 

The optimal value is 6 ( *) 6961.81388f x = − . 
 
Example 7 [10]. 
 

2
4

4
3

2
2

2
17 )10(3)12(5)10()(min −++−+−= xxxxxf  

7676
4
7

3
6

6
5 8104710 xxxxxxx −−−+++  

2 4 2
1 2 3 4 5

2
1 2 3 4 5

2 2 2
1 2 1 2 3 6 7

127 2 3 4 5 0

282 7 3 10 0
. . 196 23 1 22 6 62 8 7 0

4 3 2 5 11 0
10 10, 1,...,7i

x x x x x

x x x x x
s t x x x x

x x x x x x x
x i

⎧ − − − − − ≥
⎪

− − − − + ≥⎪
⎪ − − − + ≥⎨
⎪− − + − − + ≥⎪
⎪− ≤ ≤ =⎩

 

The optimal value  is 7 ( *) 680.600573f x =  

Example 8[10]. 
  

2 2
8 1 2min ( ) ( 1)f x x x= + −  

2
2 1 0

. .
1 1, ( 1, 2)i

x x
s t

x i
⎧ − =
⎨
− ≤ ≤ =⎩

 

 
The optimal value is 8 ( *) 0.75f x = . 
 
Example 9[10]. 

2 2 2
9 1 2 3max ( ) (100 ( 5) ( 5) ( 5) ) /100f x x x x= − − − − − −  

2 2 2
1 2 3( ) ( ) ( ) 0.0625 0

. .
0 10, ( 1,2,3), , , 1,...,9i

x p x q x r
s t

x i p q r
⎧ − + − + − − ≤⎪
⎨

≤ ≤ = =⎪⎩
 

Feasible region is compose of 39  discrete sphere, 
vector 1 2 3( , , )x x x is feasible if and only if , ,p q r  

meet these constraints, the optimal value is 9 ( *) 1f x = . 
 
Example 10[11].  
The welded beam design problem. 
 

2
10 1 2 3 4 2min ( ) 1.10471 0.04811 (14.0 )f x x x x x x= + −

1

2

3 1 4

2
4 1 3 4 2

5 1

6

7

22
2

1 2

( ) ( ) 13000 0,
( ) ( ) 30000 0,
( ) 0,

( ) 0.10471 0.04811 (14.0 ) 5.0 0,
( ) 0.125 0,
( ) ( ) 0.25 0,
( ) 6000 ( ) 0,

( ) ( ') 2 ' '' ( '') ,
2

6000' , '' ,
2

g x x
g x x
g x x x

g x x x x x
g x x
g x x
g x Pc x

xx
R

MR
Jx x

τ
σ

δ

τ τ τ τ τ

τ τ

= − ≤
= − ≤
= − ≤

= + + − ≤
= − ≤
= − ≤
= − ≤

= + +

= =

2
21 32 2

2
21 32

1 2

2 3
4 3 3 4

3
3 3 4

1 2 3 4

6000(14 ), ( ) ,
2 4 2

2 2 [ ( ) ] ,
12 2

504000 2.1952( ) , ( ) ,

( ) 64746.022(1 0.0282346 )
0.1 2,0.1 10,0.1 10,0.1 2.

x xx xM R

x xxJ x x

x x
x x x x

Pc x x x x
x x x x

σ δ

+
= + = +

⎧ ⎫+
= +⎨ ⎬

⎩ ⎭

= =

= −
≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

 

 
Example 10 is a engineering constrained problem, the  
optimal value is 10 ( *) 1.724852f x = . 
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Figure 1. Non-dominated solutions with AMPSO on example 1. 

 
Figure 2. Non-dominated solutions with AMPSO on example 2 
 

 
Figure 3. Non-dominated solutions with AMPSO on example 3 
 

 
Figure 4. Non-dominated solutions with AMPSO on example 4. 
 
 

 
Figure 5. Non-dominated solutions with AMPSO on example 5. 
 

 
Figure 6. Non-dominated solutions with AMPSO on example 6. 
 

 
Figure 7. Non-dominated solutions with AMPSO on example 7 

 
Figure 8. Non-dominated solutions with AMPSO on example 8. 
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Figure 9. Non-dominated solutions with AMPSO on example 9.            Figure 10. Non-dominated solutions with AMPSO on example 10. 
 

TABLE I.   STATISTICAL RESULTS OF AMPSO AND OTHER METHODS FOR EXAMPLE 1-2 

Methods Function/ 
Optimal Value 

Status 

BPSO PSO-CA AMPSO 

Best -8.999700 -8.999900 -9 Example 1/ 
-9 Mean -8.999500 -8.999800 -9 

Best -5.507000 -5.507800 -5.508013 Example 2/ 
-5.5079 Mean -5.506800 -5.507500 -5.508013 

 

TABLE II.  STATISTICAL RESULTS OF AMPSO AND OTHER METHODS FOR EXAMPLE 3-9 

Methods Function/ 
Optimal 
Value 

Status 

SAFF SMES RY IS-PAES FSA IRY CW AMPSO 
Best -15.000 -15.000 -15.000 -15.000 -14.999 -15.000 -15.000 -15.000 
Mean -15.000 -15.000 -15.000 -14.494 -14.993 -15.000 -15.000 -15.000 
Worst -15.000 -15.000 -15.000 -12.446 -14.980 -15.000 -15.000 -15.000 

 
Example 3/ 
-15 

St.dev 0 0 0.0E+00 9.3E-01 4.8E-03 1.3E-13 1.3E-14 0 
Best -30665.50 -30665.539 -30665.539 -30665.539 -30665.538 -30665.539 -30665.539 -30665.539
Mean -30665.20 -30665.539 -30665.539 -30665.539 -30665.467 -30665.539 -30665.539 -30665.539
Worst -30663.30 -30665.539 -30665.539 -30665.539 -30664.688 -30665.539 -30665.539 -30665.539

 
Example 4/ 
-30665.539 

St.dev 4.9E-01 0 2.0E-05 0 1.7E-01 2.2E-11 8.0E-12 2.3E-11 
Best 5126.989 5126.599 5126.497 NA 5126.4981 5126.4981 5126.4981 5126.4981 
Mean 5432.080 5174.492 5128.881 NA 5126.4981 5126.4981 5126.4981 5126.4981 
Worst 6089.430 5304.167 5142.472 NA 5126.4981 5126.4981 5126.4981 5126.4981 

 
Example 5/ 
5126.4981 

St.dev 3.9E+03 5.0E+01 3.5E+00 NA 0 6.2E-12 1.513E-12 8.0E-12 
Best -6961.800 -6961.814 -6961.814 -6961.814 -6961.814 -6961.814 -6961.814 -6961.814 
Mean -6961.800 -6961.284 -6875.940 -6961.813 -6961.814 -6961.814 -6961.814 -6961.813 
Worst -6961.800 -6952.482 -6350.262 -6961.810 -6961.814 -6961.814 -6961.814 -6961.811 

 
Example 6/ 
-6961.81388 

St.dev 0 1.9E+00 1.6E+02 8.5E-05 0 6.4E-12 1.8E-12 6.2E-05 
Best 680.64 680.632 680.630 680.630 680.630 680.630 680.630 680.630 
Mean 680.72 680.643 680.656 680.631 680.636 680.630 680.630 680.630 
Worst 680.87 680.719 680.763 680.634 680.698 680.630 680.630 680.630 

 
Example 7/ 
680.600573 

St.dev 5.9E-02 1.6E-02 3.4E-02 8.1E-04 1.5E-02 4.6E-13 4.7E-13 5.7E-12 
Best 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 
Mean 0.750 0.75 0.750 0.750 0.750 0.750 0.750 0.750 
Worst 0.750 0.75 0.750 0.751 0.750 0.750 0.750 0.750 

 
Example 8/ 
0.75 

St.dev 0 1.5E-04 8.0E-05 2.6E-04 0 9.6E-10 0.0E-00 1.3E-12 
Best -1.000 -1.000 -1.000 NA -1.000 -1.000 -1.000 -1.000 
Mean -1.000 -1.000 -1.000 NA -1.000 -1.000 -1.000 -1.000 
Worst -1.000 -1.000 -1.000 NA -1.000 -1.000 -1.000 -1.000 

 
Example 9/ 
1 

St.dev 0 0 0.0E+00 NA 0 9.6E-10 0.0E+00 0 
 
We analyze from the example 8 and decide to 
choose max( ( ))G x  as the second objective functions,  
 

 
Fig.9 shows that it can converge quickly the Pareto-
optimal set in this way. 
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 These figures and tables show that AMPSO can search 
local Pareto-optimal set, and the convergence and ability 
to find a diverse set of solutions. Especially, table 1 show 
that the best solutions obtained by AMPSO are better 
than the above mentioned approaches. For example 1, a 
typical solution found by our algorithm is: )0.1,5.1(=x  
with 9)( =xf . For example 2, a typical solution found 
by our algorithm is: x = (2.329520, 3.178493) with 

)(2 xf =-5.508013. For example 10, a typical solution 
found by our algorithm is: 

)002766366.1,09845.42,437500.0,812500.0( +=x
with )(10 xf = 6059.7143. Figures demonstrate the 
abilities of AMPSO in converging to the true front and in 
finding diverse set of solutions in the front. 
 
 

VI. CONCLUSION 
This paper has introduced a novel constraint-handling 

method — adaptive multi-objective particle swarm 
algorithm. In AMPSO, Pareto non-dominated ranking, 
tournament selection, crowding distance method were 
introduced, simultaneously the rate of crowding distance 
changing was integrated into the algorithm. Simulation 
results based on some well-known constrained problems 
and demonstrate the effectiveness, efficiency and 
robustness of the AMPSO. 
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