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Abstract—Virtual Machine (VM) can not only release the 
processor designers from the burden of ensuring cross-
platform compatibility but also provide new opportunities 
for innovation.  Instruction Set Architecture (ISA) 
emulation is the key aspect of a VM. This paper describes 
the design and implementation of TransARM-IU, a use-level 
ISA emulator that supports IA-32 applications on ARM-
based systems. This paper also discusses several dedicated 
solutions to several crucial issues related to the development 
of TransARM-IU, such as the Executable and Linking 
Format resolution and hybrid threaded interpretation. In 
particular, conventional interpretation is implemented in a 
centralized style which consumes much more execution time. 
A hybrid threaded interpretation method is proposed to 
improve the efficiency of the emulator by appending a 
portion of the simple decoding and dispatching code to the 
end of each of the instruction interpreter routines. For 
performance evaluation, we selected 6 benchmarks from 
MiBench and carried out the experiments on two real 
ARM-based systems. Experimental results demonstrate the 
correctness of TransARM-IU in terms of ISA emulation and 
indicate that TransARM-IU is competitive to other ISA 
emulators.  
 
Index Terms—virtualization, interpretation, emulation 
 

I.  INTRODUCTION 

Computer architects are confronted by two 
fundamental issues: (1) Architecture innovations, which 
enable efficient system designs to achieve higher 
reliability, lower power consumption with lower 
complexity and cost, are required; (2) after decades of 
development, a huge amount of applications/software 
have been accumulated for legacy Instruction Set 
Architectures (ISAs), especially for x86 architecture. 
Unfortunately, the two issues seems to conflict with each 
other by nature. Software designed for one ISA can not 
directly execute on another because of the incompatibility 
problem. This has inhibited modern processor designers 

from developing new ISAs and limits the reuse of the 
large amount of existing applications.  

Virtual Machine (VM) [1][2][3] is implemented by 
adding a software layer to an execution platform to give 
users the appearance of a different platform. A wide 
range of computer system resources, such as processors, 
memory, and I/O devices, including network resources 
can be virtualized. Thus, VMs can not only release the 
processor designers from the burden of ensuring cross-
platform compatibility but also provide new opportunities 
for innovation.  

There exists a wide variety of VMs developed by 
different groups. There are underlying technologies that 
are common to a number of virtual machines while each 
VM also has its unique characteristics. Especially, the 
source architecture and the target architecture have 
significant impact on the implementation of a VM. 
Computer architecture is evolving continuously, and a 
large amount of open problems left for VM designers. 
This motivates us to explore the design of the VMs 
crossing specific source and target architectures.    

This study aims to implement a VM which can enable 
IA-23 [4] (the most widely used x86 architecture) 
applications to run on the ARM-based platforms. ARM is 
the de facto industry standard for 32-bit embedded 
processors, which can be found in billions of mobile 
phones, Apple iPods, and other products and systems. On 
the other hand, the x86 architecture dominates personal 
computer systems and has the support of the most 
software resources comparing to other architectures. It is 
desirable to directly execute software resources the x86 
architecture on ARM-based platforms. We anticipate that 
this will be feasible with the support of the virtual 
machine technology. 

There exist a number of VM approaches, such as 
process VMs and system VMs, co-designed VMs [3]. 
Despite the variety of VMs, any cross-platform VM needs 
to provide the ability of ISA virtualization so as to support 
a binary executable compiled for one ISA on the target 
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platform which has a different ISA. ISA 
virtualization/emulation is the first step to implement a 
full system VM across x86 and ARM. Virtualization at 
the instruction set architecture level is a basic method for 
implementing a VM. To distinguish it from the more 
powerful ‘full’ virtualization that takes all the hardware 
resources into account, we used instruction architecture 
emulation to improve accuracy. This paper discusses the 
implementation of an ISA emulator named TransARM-IU 
(“I” and “U” stands for interpretation and user level 
respectively), which adopts interpretation support IA-32 
applications on ARM-based systems at user level. 

A complete ISA consists of instructions, register 
architecture, memory architecture, trap and interrupt 
architecture. TransARM-IU focuses on emulating the 
operation of user-level instructions in the absence of 
exceptions (traps and interrupts). ISA emulation can be 
carried out using a variety of methods that require 
different amount of computing resources and offer 
different performance characteristics. At one end of the 
spectrum is Dynamic Binary Translation (DBT), while on 
the other is interpretation. Though the interpretation 
technique may incur a larger execution overhead than 
DBT does, it involves a much smaller cost of initial 
emulation [3]. Furthermore, the implementation of 
interpretation is much easier than DBT’s. It enables an 
easier architecture mapping without concerning issues 
like context switching and control transfer chaining [5] in 
contrast to DBT. Therefore, TransARM-IU adopts 
interpretation as its basis. In our previous work [6][7], we 
identified that conventional interpretation may cause 
larger execution cost because of the redecoding 
operations, and this problem has been properly addressed 
via a Pcache solution. TransARM-IU uses a hybrid 
threaded interpretation infrastructure evolved from the 
Pcache approach to minimize the interpretation overhead.  

ISA emulation also involves issues like architecture 
mapping (register mapping, memory space mapping), 
executable file resolving. These issues have been 
properly addressed in the implementation of TransARM-
IU.  

The goal of this study is to provide a transparent, high 
performance instruction emulator and to explore the 
platform-dependent issues as well as the common 
underlying issues in implementing the cross-platform 
VMs. The scope and objectives of this paper can be as 
follows: 

• To design a user-level instruction emulator that 
supports IA-32 applications on ARM-based 
systems; 

• To speed up the instruction emulation process; 
• To enable architecture mapping and executable 

file resolving.  
The rest of this paper is organized as follows. We first 

introduce some related works (Section II). We then 
present an overview of the TransARM-IU infrastructure 
(Section III). We discuss several crucial issues involved 
in TransARM-IU (Section IV). We then present our 

experimental results (Section V), and finally conclude 
(Section VI).  

II. RELATED WORK 

A software emulation system can be interpretation 
based, translation based, or hybrid. For example, 
Transmeta Crusoe [8] processor’s underlying architecture 
is VLIW (Very Long Instruction Word) while the source 
ISA is the Intel IA-32. It employs a “Code Morphing 
Software” (CMS) layer logically surrounding the 
hardware engine. CMS is a two-stage emulation software 
which uses interpretation to emulate x86 code initially 
and translates the frequently executed portions of the 
source code into native VLIW code, no matter the source 
code originally works at user level or system level.  

Bochs [1][10] is a highly portable open source IA-32 
emulator written purely in C++. It is a full system 
emulator includes emulation of the CPU engine, common 
I/O devices, and custom BIOS. Bochs can be compiled to 
emulate any modern x86 CPU architecture, including 
most recent Core2 Duo instruction extensions. Bochs 
uses pure interpretation to emulate the x86 ISA. The 
interpretation infrastructure is organized as a central loop 
of fetching, decoding and dispatching instructions. To 
reduce the emulation time, Bochs utilizes some 
optimization techniques such as lazy flags updating, 
staged memory reference resolving, decoded instruction 
trace cache, et al. 

QEMU [11][12] is another fast machine emulator 
which emulates several ISAs (x86, PowerPC, ARM and 
Sparc) on multiple targets (x86, PowerPC, ARM, Sparc, 
Alpha and MIPS). It is the unique emulation system 
reported that can emulate x86 instructions on ARM. The 
QEMU itself runs on the target operating system (OS) 
and supports full system emulation. The kernel of QEMU 
is a portable dynamic translator, which performs a 
runtime conversion of the source CPU instructions into 
the target ISA. Each of the source instructions are first 
split into several simpler instructions called micro 
operations. A micro operation is first implemented by a 
small piece of C code and then compiled by GCC to an 
object file. However, QEMU does not apply in emulating 
x86 architecture on ARM platform.  

Other well-know software emulation systems include: 
(1) IA-32 EL [13], which converts IA-32 instructions into 
Itanium instructions via dynamic binary translation; (2) 
Digital FX!32 [14], which supports running x86 
Windows applications on DEC Alpha platforms; and 
(3)DAISY [15], which interprets PowerPC instructions 
before invoking “tree-region” translation.  

Existing emulation systems employ optimization 
techniques to accelerate the emulation process and to 
simplify implementation, i.e., software interpretation 
and/or dynamic binary translation. Interpretation is 
portable but also much slower than direct execution on 
the target processor. On the other hand, dynamic 
translators are usually difficult to be ported because the 
whole code generator must be rewritten according to the 
target ISA. Binary translation has a smaller execution 
cost but a larger initial translation cost than the 
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interpretation does. An appropriate method should be 
selected according to the characteristics and the 
performance requirements when designing an emulation 
system. The proposed emulation system in this study (1) 
aims at emulating complex IA-32 instructions on ARM 
based platforms, (2) bases on interpretation to offer 
portability, acceptable start-up performance, and low 
memory requirement, (3) considerably reduces the 
interpretation overhead thus to improve the performance 
of the entire emulation system, and (4) can handle most 
user-level instructions. 

III. GENERAL ARCHITECTURE OF TRANSARM-IU 

TransARM-IU is targeted for user-level emulation 
only and is implemented in C to ensure portability. 
TransARM-IU is loaded to the same user space as the 
native application. The entire emulation process is 
transparent to the user who feels like operating on a 
normal ARM-based environment. An overview of the 
infrastructure of TransARM-IU is shown in Fig. 1(a). 
From a user’s perspective, TransARM-IU looks like a 
sandbox where the inputs are user-level executables 
compiled on the IA-32 platform with the option “-static” 
and “-msoft-float”. The first option “-static” appends the 
source code of the library calls to the executable file and 
the second option “-msoft-float” coverts the floating-

point instructions to the software routines emulating the 
behaviors of the floating-point instructions.  

Calls to the library routines such as ‘printf’ are 
assumed by many emulation systems, such as UQDBT 
[16] and FX!32 [14], existing on the source as well as the 
target machine. This assumption is not restrictive as long 
as there is a mapping from a source library routine to its 
equivalent on the target machine, i.e., libraries of the 
source architecture can be reproduced on the target 
machine via translation or rewriting. In fact, it is not 
trivial to establish a map from the IA-32 C library to the 
standard ARM C library. Therefore, only statically 
compiled programs are taken into account in TransARM-
IU. The compiling option ‘-static’ can appends the source 
code of the required library routines to the executable file.  

Currently, TransARM-IU mainly concerns the 
emulation of integer instructions. There are two reasons 
for ignoring floating-point instructions: First, the Vector 
Floating-Point (VFP) architecture [17] is a coprocessor 
extension to the ARM architecture. Some ARM-based 
systems may not provide the floating-point instruction set. 
Secondly, most floating-point instructions can be 
converted into software functions of the integer 
instructions by setting the option ‘-msoft-float’ during 
compiling, i.e., the software function can be exploited to 
‘emulate’ the floating-point instruction. 
 

 

 

Figure 1.  General Architecture of TransARM-IU. (a) The infrastructure of TransARM-IU; (b) An example of an instruction interpreter routine.

User-specified commands intended to run the 
executable files are intercepted by a modified command 
line shell, which invokes the ELF (Executable and 
Linking Format) analyzer (see Fig. 1) when necessary. An 
executable file’s ELF format (details see Section IV) will 
first be resolved to identify its target architecture. The 
executable file can get direct execution if it’s architected 
for ARM. When the executable file’s source architecture 
is IA-32, TransARM-IU will load the executable file to 
the memory space following a direct mapping strategy, 
and it starts the kernel process of the emulation. 

Interpretation is the key aspect in our design. An 
interpretation based system normally reads source 
instructions one at a time, performing each instruction 

interpreter routine in turn on software maintained version 
of the source architecture's state, including all architected 
registers and main memory. The resource holding the state 
does not necessarily have to be the same type as it does on 
the source platform. The key point of state mapping is that 
for all the resource holding the source state which is 
necessary for the execution of a source program, the 
associated resource in the target is readily defined. Hence, 
we use a straightforward mapping in TransARM-IU 
which means that all of the useful registers of IA-32 are 
mapped to the target memory. A context table will be 
created to contain the image of various components of the 
IA-32 architecture state, such as general-purpose registers 
(e.g., EAX, EBX), the program counter (EIP), condition 
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codes (EFLAG), and miscellaneous control registers (e.g., 
ES, CS) as shown in Fig. 1(a). Architecture mapping of 
interpretation is much flexible as it does not occupy any 
hardware resource of the target architecture, which can 
not be avoided in DBT in contrast. 

The mapped state will be updated during the emulation 
of each source instruction in order to emulate the results 
of the source program’s native execution. However, 
computing all the condition code for a given source 
instruction needs many target instructions which can slow 
down the emulation considerably. In fact, although the 
condition register (EFLAG) is updated frequently, they 
are seldom used. Thus, updating the emulated condition 
register at an instruction granularity is not necessary. 
TransARM-IU adopts the lazy evaluation on the condition 
flag register, where the operands and operation that 
impact the condition register are saved instead of the 
condition register settings themselves [10]. This is shown 
in the example of an interpreter routine in Fig. 1(b). An 
interpreter routine contains one or several target 
instructions emulating a source instruction. Fig. 1(b) is an 
example of an interpreter routine (written in C language) 
corresponding to the IA-32 instruction that adds an 
immediate value to a general purpose register. 
TransARM-IU contains hundreds of interpreter routines, 
each corresponding to a dedicated type of the source 
instruction. For those simple user-level instructions such 
as arithmetic instructions, the interpreter routine is quite 
simple: the source instruction’s behaviour is emulated 
straightforward like the example in Fig. 1(b).  

Furthermore, IA-32 processors are “little-endian” 
machines [4]. Fortunately, since most ARM processors 
provide both the little-endian and big-endian modes [17]. 
The endianness issue can be ignored in TransARM-IU.   

In summary, when a user runs an executable file, the 
TransARM-IU fist intercepts the commands and analyzes 
the ELF format of the executable file in order to identify 
the required architecture. If the executable targets on an 
ARM platform, the native executions can be directly 
performed. Otherwise, the executable file is loaded into 
the memory space following a direct mapping strategy. 
The emulation system then fetches the source code, 
decodes it and dispatches an interpreter routine according 
the instruction type in order to achieve the same effect as 
the source instruction does.  

IV. DESIGN AND IMPLEMENTATIONS 

How to organize the emulation procedure and dispatch 
the interpreter routines is crucial to the performance of an 
emulator.  This section discusses the organization of the 
emulation procedure and other techniques in details. 

A.  ELF Analyzer and Loader 
The first task of TransARM-IU is to identify the 

required ISA architecture of the executable file/program 
and to load the code and data into memory. This task is 
performed through the analysis of the Executable and 
Linking Format (ELF) [18] of the executable file.  

An ELF file is the binary representation of a program. 
It contains information which participates in program 

linking (building a program) and program execution 
(running a program), such as instructions, data, symbol 
table, and relocate information. Fig. 2 shows an 
executable file’s ELF organization: the left sub-figure 
indicates the binaries of the entire executable file; the 
right sub-figure shows the corresponding ELF 
organization of these binaries.  

 

 

Figure 2.  Executable and linking format of an executable file  

When an executable file begins to execute on the target 
ARM processor, it is the OS that resolves the file’s ELF 
and loads the file into memory. Normally, the OS first 
checks the machine architecture the executable file 
requires. If the required architecture is ARM, the OS 
creates the memory image (code, data etc) and invokes the 
dynamic linker. Otherwise, an error occurs. In our design, 
the OS can be modified to identify the IA-32 executable 
file. To ensure user transparency and to avoid the efforts 
of modifying the OS kernel, we customized a dedicated 
command line shell to identify the executable file’s 
machine architecture.  

A user still executes an application/program by typing a 
command like “./executable_file_name” as normal. The 
command line shell (also known as command line 
interpreter) intercepts the command and invokes the ELF 
analyzer to identify the required architecture through 
“e_machine” of the ELF header. “e_machine” specifies 
the required architecture for an individual file as shown in 
Fig. 3. The values 3 and 40 represent the IA-32 
architecture and ARM respectively. The circled value 
(“e_machine”) in Fig. 2 indicates that this ELF file’s 
required architecture is ARM. If the value is 40, the 
command line shell directly leaves the executable file with 
the OS. A value “3” means that IA-32 is required, the 
entire binaries of the file will be loaded into memory 
without the need for loading and linking.  

 
 

 

Figure 3.  ELF header specifying the required architecture of an 
individual executable file. 

The information specified for dynamic linking and 
loading in the original IA-32 executable file is no longer 
valid in the ARM environment. Therefore, TransARM-IU 
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ignores the normal linking and loading steps. Instead, it 
loads all the binaries of the executable file (with the ELF 
information) into the virtual memory space according to 
the entry point (the beginning address of the executable 
file in the virtual memory) specified in the ELF header. In 
fact, TransARM-IU system treats all the binaries of an 
executed file as ordinary data, no matter they are text, data, 
or stack. As such, a straightforward mechanism has been 
established for “loading” the executable file without 
losing any necessary information. 

There is an interesting observation in the 
implementation of TranARM IU that there is no conflict 
while loading the executable file into the virtual memory 
space of the ARM system at the address declared in the 
executable file. Both the data and text from the source IA-
32 program can be mapped exactly at the same virtual 
address as it would normally have. According to the 
specification of the Application Binary Interface (ABI) 
[19] for Intel IA-32 architecture, a process’s text segment 
typically resides at the virtual address of 0x8048000. This 
is also the beginning of an executable/ELF file. On the 
other hand, according to the ABI for ARM [20], address 
0x8000 is usually used as the begging of an executable 
file. TransARM-IU itself is a user-level application and 
will be loaded into the memory with the beginning at 
0x8000. Therefore, for most source applications, there 
will be no conflict if we load the executable file into the 
memory space of ARM from its original beginning 
address at 0x8048000. In fact, the straightforward 
memory mapping method avoids the overhead of address 
resolution. The source application’s code and data remain 
unchanged, similar to their layouts on the original IA-32 
platform.  

B.  Pcache-Based Hybrid Threaded Interpretation 
The interpreter takes over on the completion of ELF 

analyzing and loading steps. A typical interpretation 
process, referred to as decode-and-dispatch interpretation, 
involves a cycle of fetching a source instruction, decoding 
and dispatching it to a required instruction interpreter 
routine. A conventional interpretation routine process can 
be viewed as a central loop (as shown in Fig. 4(a)), which 
is likely to be quite slow [3]. TransARM-IU adopts a 
hybrid threaded interpretation method to address this 
drawback based on our previous work [6][7].  

In a conventional interpretation process, each 
interpreter routine finally turns back to the central decode 
and dispatches routines. These branches tend to 
deteriorate performance as they alternate the control flow. 
Threaded interpretation [21][22] reduces some of the 
branches by appending a portion of the decoding and 
dispatching code to the end of each of the instruction 
interpreter routines as illustrated in Fig. 4(b). This 
approach works efficiently with RISC ISAs. Because a 
modern RISC ISA such as the PowerPC has the regular 
instruction format (all instructions have the same length, 
and each field in the instruction is fixed),  the interpreter 
can extract the opcode and then immediately dispatch it to 
the indicated instruction interpreter routine through a 
relatively small amount of code. On the other hand, a 
CISC ISA has a much more complicated format with 

varied instruction lengths and even field lengths. 
Appending the decoding codes (for a CISC instruction) 
into each interpreter routine will dramatically increase the 
interpreter routine’s size, which may offset the 
performance improvement. For example, it costs 
TransARM-IU 650 lines of C code to decode and dispatch 
one IA-32 instruction (for the RISC ISA, the decoding 
and dispatching may consume only several lines of C 
code). Therefore, threaded interpretation is not appropriate 
to be directly adopted by interpretation of the CISC ISA.  

TransARM-IU defines a Pcache for saving the decoded 
instruction information. In our previous work [6][7], it has 
been observed that instruction fetching and decoding 
contribute about 50% to the interpretation overhead, 
especially in the case of CISC ISA. It has also been noted 
that most instructions are reinterpreted many times, and 
this causes a considerable redundancy. Hence, the 
repeated decoding of source instructions forms a 
bottleneck of interpretation. We then proposed using an 
interpreted code cache (Pcache) to avoid most of the 
replicated decode operations by saving the interpreted 
instruction information for reuse. Each Pcache line 
contains the opcode, operand’s addressing modes and the 
address of the dedicated interpreter routine of a source 
instruction, as depicted in Fig. 1(a). We have 
demonstrated that Pcache can dramatically reduce the re-
decode operations thus improve the performance of the 
interpretation. Pcache can be implemented in the form of 
both software and hardware. TransARM-IU simply 
organizes Pcache as a hash table which contains 1024 
Pcache lines. Each Pcache line contains the decoded 
information of a source instruction. Thus, the CISC ISA 
can be converted into an intermediate form with fixed 
length and fields. Saving the decoded instructions in 
Pcache can not only avoid most re-decoding operations [6] 
but also enable the threaded interpretation of the CISC 
ISA. Different from the threaded interpretation which 
replicates the decode-and-dispatch code, our method 
appends a small amount of match-and-dispatch code at the 
end of each of the interpreter routine. During 
interpretation, the interpreter will access the Pcache first 
according to the address of the source instruction. If the 
required instruction is found in Pcache, the interpreter will 
bypass the decoding process and directly turn to the next 
interpreter routine whose address is specified in the 
related Pcache line. If the required instruction is not found, 
the interpreter will return to the central decode-and-
dispatch routine. The central decode-and-dispatch routine 
fetches the source code from the main memory through 
the data cache, and it performs a complex decoding 
operation and finally saves the decoded instruction 
information in Pcache for reuse. The hybrid threaded 
interpretation method can be illustrated in Fig. 4(c).  

Fig. 4 highlights the differences in control and data 
flow between three different interpretation methods. For 
the traditional decode-and-dispatch method (Fig. 4(a)), 
control flow continuously exits from, and returns to, the 
central decode-and-dispatch routine. For the traditional 
threaded interpretation method (Fig. 4(b)), code pieces are 
replicated at the end of each of the interpreter routines. 
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For those CISC ISAs, the complicated decoding process 
always consumes tens even hundreds lines of C codes 
which dramatically increases the size of each of the 
interpreter routine. For our hybrid threaded interpretation 
method based on Pcache (Fig. 4(c)), simple match-and-
dispatch code is appended into each of the instruction 
interpreter routine. For most common cases, required 
source instruction’s information can be found in Pcache, 
thus one interpreter routine can directly turn to the next 
with the complicated decoding process avoided. The 
complex centralized decode-and-dispatch routine is 
seldom executed. An evaluation of our hybrid threaded 
interpretation method can be found in Section V. 
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decode & 
dispatch 
routine

Source 
code Interpreter 

routines

.

.

.

Source 
code Interpreter 

routines
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decode & dispatch

Interpreter
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Source 
code Interpreter 

routines
Pcache
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Central decode and 
dispatch routine active 
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Control flow

Data flow

Simple match-
and-dispatch

Interpreter

 

Figure 4.  Control flow and data flow of different interpretation 
methods. (a) Central decode-and-dispatch interpretation; (b) normal 
threaded interpretation; (c) threaded interpretation based on Pcache, 
data flow from the decode-and-dispatch routine to Pcache is omitted.  

 

V. EVALUATION 

This section presents an evaluation on the performance 
of TransARM-IU.  

A. Experiment Environment 
We first compiled the source programs on an IA-32 

platform with the option ‘-msoft-float’ and ‘-static’. The 
executable files were then executed on two ARM 
platforms (named ARM platform 1 and platform 2) 
respectively. TransARM-IU ran on Linux on top of the 
ARM platform with user transparency supported. 
Detailed configuration settings of the source and target 
platforms are provided in Table II. 

We carried out experiments on MiBench [23][24], a 
free and representative embedded benchmark suite. The 
large dataset provideed by MiBench for ‘stringsearch’ 

were used. MiBench totally consists of six categories of 
38 benchmarks. We select one benchmark form each of 
the categories. Table III gives the brief description of the 
selected benchmarks.  

TABLE I.  MACHINE CONFIGURATION SETTINGS  

IA-32 
Processor Intel Pentium Dual CPU E2140 1.6GHz 

Linux version Linux Red Hat Enterprise3, 
Linux kernel 2.4.21-4.EL 

GCC 3.2.3 
Compiling 
option -msoft-float  -static 

ARM 
 ARM platform 1 ARM platform 2 
Processor 
version/ 
ARM 
architecture 

OMAP 3530/ 
CortexTM-A8 

Samsung S3C2440/
ARM920T 

Frequency 600 MHz 400 MHz 

Linux ubuntu 8.04, 
Linux kernel 2.6.28-r18 Linux kernel 2.6.13

GCC version 4.2.1 3.4.1 
I-Cache 16 KB 16 KB 
D-Cache 16 KB 16 KB 
L2 Cache 256 KB None 

Memory system 

64 KB shared SRAM 
on chip, 112 KB ROM 
on chip, 256 MB, 166 
MHz mDDR, 512 MB  

Nand Flash 

64 MB SDARM, 64 
MB Nand Flash, 
2MB Nor flash 

 

B.  Performance Evaluation  
We first executed the benchmarks directly on the 

ARM platforms for reference. The benchmarks were 
compiled by the native compiler on the ARM platform. 
The second column in Table IV lists the native execution 
times required by each of the selected benchmarks. Since 
modern IA-32 processors run definitely much faster than 
the ARM processors, the IA-32’s native execution times 
were bypassed when evaluating the performance of 
TransARM-IU.  

TABLE II.  DESCRIPTION OF BENCHMARKS 

Benchmark Category Description 

adpcm 
(encode) telecomm 

takes 16-bit linear Pulse Code 
Modulation samples and converts 
them to 4-bit samples 

dijkstra network 

calculates the shortest path between 
every pair of nodes in an adjacency 
matrix (representing a large graph) 
using Dijkstra’s algorithm 

qsort 

automotive 
& 
industrial 
control 

sorts a large array of strings into 
ascending order using the well 
known quick sort algorithm  

sha security produces a 160-bit message digest 
for a given input 

stringsearch office 
searches for given words in phrases 
using a case insensitive comparison 
algorithm  

typeset consumer 
devices 

captures the processing required to 
typeset an HTML document 

 
We then compiled all the selected benchmarks on IA-

32 platform and evaluate the emulation performance of 
these benchmarks on TransARM-IU. The last column of 
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Table IV list the number of the source instructions of 
each benchmark. As these entire source instructions were 
interpreted, the last column also reveals the numbers of 
the interpreted source instructions. The executable files 
with the input data files were then migrated to the ARM 
platform. All benchmarks are successfully emulated by 
TransARM-IU on the two ARM platforms. This 
demonstrates the correctness of our emulation method. 

TABLE III.  NATIVE EXECUTION TIME AND INTERPRETED 
INSTTUCTIONS OF EACH OF THE BENCHAMARKS   

Benchmark 

Native 
execution time 
on ARM 
platform 1  

Native 
execution time 
on ARM 
platform 2 

Source 
instruction 
No.  

adpcm.enc 0.92 s 1.47 s 38458788 
dijkstra 0.65 s 0.99 s 49534305 
qsort 0.52 s 0.80 s 43890779 
sha 0.22 s 0.35 s 12904042 
stringsearch 0.02 s 0.03 s 4345763 
typeset 0.41 s 0.62 s 29354972 

(s: second) 
 

Comparing to the native execution on ARM, emulation 
definitely introduces extra overhead which causes 
performance degradation. Typically, the emulation speed 
of a software interpreter is 10X to 100X slower than 
native execution [1]. Since performance is a crucial issue 
an emulation system. The emulation time of the 
benchmarks on TransARM-IU which adopts Pcache-
based hybrid threaded interpretation method, is on 
average 35 times as much as their native execution time 
on the 600MHz ARM platform and 44 times on the other 
ARM platform. Fig. 7 shows the ratio of the emulation 
time to the native execution time for each benchmark. For 
evaluation of TransARM-IU on the ARM platform 1, the 
reference is the native execution on platform 1. Similarly, 
for evaluation of TransARM-IU on the ARM platform 2, 
the reference is the native execution on platform 2. 
TransARM-IU causes much larger performance 
degradation on the ARM platform 2 than on the ARM 
platform 1. The main reason is that platform 2 does not 
have a L2 cache. Cache misses have a big impact on the 
emulation performance. 
 

 

Figure 5.  Performance evaluation of TransARM-IU. “hybrid” means 
the TransARM-IU system adopts the Pcache-based hybrid threaded 

interpertation method and “central” presents the conventional central 
looped interpretaion method.  

We also evaluated the performance of TransARM-IU 
which uses the conventional centralized interpretation 
method with Pcache used. Experimental results indicate 
that the emulation time is on average 63 times of the 
native execution time on ARM platform 1 and 78 times 
on ARM platform 2. This indicates that the Pcache-based 
hybrid threaded interpretation method can dramatically 
reduce the emulation overhead.  

A well-known interpretation-based emulation system 
was utilized for reference. We derived the ISA emulation 
part from Bochs 2.4.1 where the source ISA and the 
target ISA are the same IA-32. We measured the 
emulation time of the 6 MiBench benchmarks on Bochs 
running on the IA-32 platform. We also measured the 
native execution time of the benchmarks on the same IA-
32 platform. The average ratio of the emulation time to 
the native execution time is 87, as shown in Table V. 
Because the source ISA and target ISA are the same, the 
emulation process of Bochs is much simpler than a cross-
platform emulator. This indicates that TransARM-IU, 
especially when adopting Pcache-based hybrid 
interpretation, is competitive to Bochs.  

TABLE IV.  RATIO OF THE EMULATION TIME ON BOCHS TO THE 
NATIVE EXECUTION TIME 

Benchmark Ratio Benchmark Ratio 
adpcm.enc 108 sha 81 

dijkstra 96 stringsearch 48 
qsort 73 typeset 115 

Average 87   
 

 
In TransARM-IU, Pcache is defined as a software hash 

table, which consumes memory resource as it is actually 
stored in the main memory. A software Pcache with 1024 
entries need at least 12KB memory space. Software 
Pcache can not only consumes the memory resource, but 
can also add considerable burden to the data cache of the 
underlying ARM processor. Moreover, the size of the data 
cache is limited. Sometimes, the processor has to access 
the Pcache from the main memory which consumes much 
more time than access from the data cache. A solution to 
this problem is to implement a hardware Pcache[6][7]. A 
hardware Pcache do not consume the resource of the data 
cache and is more faster. However, hardware Pcache has 
to modify the underlying hardware as special Pcache 
accessing instructions are needed [6][7]. This is easy to be 
achieved as most ARM platform use customized ARM 
processor IP cores.   

VI.    CONCLUSIONS AND FUTURE WORK 

ISA emulation is a key aspect of a cross-platform 
virtual machine.TransARM-IU, an ISA emulator, has 
been developed to support user-level IA-32 applications 
on ARM-based systems. TransARM-IU adopts an ELF 
analyzer to resolve the executable file’s format, thus to 
identify the required ISA architecture and other useful 
information for execution. The source architecture 
resource has been mapped to a software maintained 
context block with interpretation of each source 
instruction on the mapped architecture enabled.  
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As the conventional centralized interpretation method 
causes much emulation overhead, especially when 
interpreting the instructions of the CISC ISA, like IA-32. 
Aiming at this problem, a hybrid threaded interpretation 
method has been developed which appends a simple 
decode-and-dispatch routine, optimized for the common 
cases, to each instruction interpretation routine and use a 
centralized decode-and-dispatch routine for more complex 
cases. We selected six benchmarks from MiBench for 
performance evaluation of TransARM-IU. The 
experimental environments are two real ARM platforms 
with different configuration settings. All the selected 
benchmarks which are pre-compiled on the IA-32 
platform have been successfully emulated by TransARM-
IU on both target platforms. This demonstrates the 
correctness of our work. The experimental results also 
indicate that the emulation can be dramatically accelerated 
by our novel hybrid interpretation method. TransARM-IU 
is competitive to other ISA emulators such as Bochs. 

For future work, we will explore effective solutions to 
floating point instruction emulation and library calls 
emulation which are now addressed through indirect 
method. Our ultimate goal is a full system VM across IA-
32 and ARM.  
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