
An Emulator for Executing IA-32 Applications
on ARM-Based Systems

Wei Chen

School of Computer, National University of Defense Technology, Changsha 410073, Hunan, China
Email: jizhuchenwei@hotmail.com

Zhiying Wang

School of Computer, National University of Defense Technology, Changsha 410073, Hunan, China
Email: zywang@nudt.edu.cn

 Dan Chen
School of Computer Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom

Email: d.chen@cs.bham.ac.uk

Abstract—Virtual Machine (VM) can not only release the
processor designers from the burden of ensuring cross-
platform compatibility but also provide new opportunities
for innovation. Instruction Set Architecture (ISA)
emulation is the key aspect of a VM. This paper describes
the design and implementation of TransARM-IU, a use-level
ISA emulator that supports IA-32 applications on ARM-
based systems. This paper also discusses several dedicated
solutions to several crucial issues related to the development
of TransARM-IU, such as the Executable and Linking
Format resolution and hybrid threaded interpretation. In
particular, conventional interpretation is implemented in a
centralized style which consumes much more execution time.
A hybrid threaded interpretation method is proposed to
improve the efficiency of the emulator by appending a
portion of the simple decoding and dispatching code to the
end of each of the instruction interpreter routines. For
performance evaluation, we selected 6 benchmarks from
MiBench and carried out the experiments on two real
ARM-based systems. Experimental results demonstrate the
correctness of TransARM-IU in terms of ISA emulation and
indicate that TransARM-IU is competitive to other ISA
emulators.

Index Terms—virtualization, interpretation, emulation

I. INTRODUCTION

Computer architects are confronted by two
fundamental issues: (1) Architecture innovations, which
enable efficient system designs to achieve higher
reliability, lower power consumption with lower
complexity and cost, are required; (2) after decades of
development, a huge amount of applications/software
have been accumulated for legacy Instruction Set
Architectures (ISAs), especially for x86 architecture.
Unfortunately, the two issues seems to conflict with each
other by nature. Software designed for one ISA can not
directly execute on another because of the incompatibility
problem. This has inhibited modern processor designers

from developing new ISAs and limits the reuse of the
large amount of existing applications.

Virtual Machine (VM) [1][2][3] is implemented by
adding a software layer to an execution platform to give
users the appearance of a different platform. A wide
range of computer system resources, such as processors,
memory, and I/O devices, including network resources
can be virtualized. Thus, VMs can not only release the
processor designers from the burden of ensuring cross-
platform compatibility but also provide new opportunities
for innovation.

There exists a wide variety of VMs developed by
different groups. There are underlying technologies that
are common to a number of virtual machines while each
VM also has its unique characteristics. Especially, the
source architecture and the target architecture have
significant impact on the implementation of a VM.
Computer architecture is evolving continuously, and a
large amount of open problems left for VM designers.
This motivates us to explore the design of the VMs
crossing specific source and target architectures.

This study aims to implement a VM which can enable
IA-23 [4] (the most widely used x86 architecture)
applications to run on the ARM-based platforms. ARM is
the de facto industry standard for 32-bit embedded
processors, which can be found in billions of mobile
phones, Apple iPods, and other products and systems. On
the other hand, the x86 architecture dominates personal
computer systems and has the support of the most
software resources comparing to other architectures. It is
desirable to directly execute software resources the x86
architecture on ARM-based platforms. We anticipate that
this will be feasible with the support of the virtual
machine technology.

There exist a number of VM approaches, such as
process VMs and system VMs, co-designed VMs [3].
Despite the variety of VMs, any cross-platform VM needs
to provide the ability of ISA virtualization so as to support
a binary executable compiled for one ISA on the target

JOURNAL OF COMPUTERS, VOL. 5, NO. 7, JULY 2010 1133

© 2010 ACADEMY PUBLISHER
doi:10.4304/jcp.5.7.1133-1141

platform which has a different ISA. ISA
virtualization/emulation is the first step to implement a
full system VM across x86 and ARM. Virtualization at
the instruction set architecture level is a basic method for
implementing a VM. To distinguish it from the more
powerful ‘full’ virtualization that takes all the hardware
resources into account, we used instruction architecture
emulation to improve accuracy. This paper discusses the
implementation of an ISA emulator named TransARM-IU
(“I” and “U” stands for interpretation and user level
respectively), which adopts interpretation support IA-32
applications on ARM-based systems at user level.

A complete ISA consists of instructions, register
architecture, memory architecture, trap and interrupt
architecture. TransARM-IU focuses on emulating the
operation of user-level instructions in the absence of
exceptions (traps and interrupts). ISA emulation can be
carried out using a variety of methods that require
different amount of computing resources and offer
different performance characteristics. At one end of the
spectrum is Dynamic Binary Translation (DBT), while on
the other is interpretation. Though the interpretation
technique may incur a larger execution overhead than
DBT does, it involves a much smaller cost of initial
emulation [3]. Furthermore, the implementation of
interpretation is much easier than DBT’s. It enables an
easier architecture mapping without concerning issues
like context switching and control transfer chaining [5] in
contrast to DBT. Therefore, TransARM-IU adopts
interpretation as its basis. In our previous work [6][7], we
identified that conventional interpretation may cause
larger execution cost because of the redecoding
operations, and this problem has been properly addressed
via a Pcache solution. TransARM-IU uses a hybrid
threaded interpretation infrastructure evolved from the
Pcache approach to minimize the interpretation overhead.

ISA emulation also involves issues like architecture
mapping (register mapping, memory space mapping),
executable file resolving. These issues have been
properly addressed in the implementation of TransARM-
IU.

The goal of this study is to provide a transparent, high
performance instruction emulator and to explore the
platform-dependent issues as well as the common
underlying issues in implementing the cross-platform
VMs. The scope and objectives of this paper can be as
follows:

• To design a user-level instruction emulator that
supports IA-32 applications on ARM-based
systems;

• To speed up the instruction emulation process;
• To enable architecture mapping and executable

file resolving.
The rest of this paper is organized as follows. We first

introduce some related works (Section II). We then
present an overview of the TransARM-IU infrastructure
(Section III). We discuss several crucial issues involved
in TransARM-IU (Section IV). We then present our

experimental results (Section V), and finally conclude
(Section VI).

II. RELATED WORK

A software emulation system can be interpretation
based, translation based, or hybrid. For example,
Transmeta Crusoe [8] processor’s underlying architecture
is VLIW (Very Long Instruction Word) while the source
ISA is the Intel IA-32. It employs a “Code Morphing
Software” (CMS) layer logically surrounding the
hardware engine. CMS is a two-stage emulation software
which uses interpretation to emulate x86 code initially
and translates the frequently executed portions of the
source code into native VLIW code, no matter the source
code originally works at user level or system level.

Bochs [1][10] is a highly portable open source IA-32
emulator written purely in C++. It is a full system
emulator includes emulation of the CPU engine, common
I/O devices, and custom BIOS. Bochs can be compiled to
emulate any modern x86 CPU architecture, including
most recent Core2 Duo instruction extensions. Bochs
uses pure interpretation to emulate the x86 ISA. The
interpretation infrastructure is organized as a central loop
of fetching, decoding and dispatching instructions. To
reduce the emulation time, Bochs utilizes some
optimization techniques such as lazy flags updating,
staged memory reference resolving, decoded instruction
trace cache, et al.

QEMU [11][12] is another fast machine emulator
which emulates several ISAs (x86, PowerPC, ARM and
Sparc) on multiple targets (x86, PowerPC, ARM, Sparc,
Alpha and MIPS). It is the unique emulation system
reported that can emulate x86 instructions on ARM. The
QEMU itself runs on the target operating system (OS)
and supports full system emulation. The kernel of QEMU
is a portable dynamic translator, which performs a
runtime conversion of the source CPU instructions into
the target ISA. Each of the source instructions are first
split into several simpler instructions called micro
operations. A micro operation is first implemented by a
small piece of C code and then compiled by GCC to an
object file. However, QEMU does not apply in emulating
x86 architecture on ARM platform.

Other well-know software emulation systems include:
(1) IA-32 EL [13], which converts IA-32 instructions into
Itanium instructions via dynamic binary translation; (2)
Digital FX!32 [14], which supports running x86
Windows applications on DEC Alpha platforms; and
(3)DAISY [15], which interprets PowerPC instructions
before invoking “tree-region” translation.

Existing emulation systems employ optimization
techniques to accelerate the emulation process and to
simplify implementation, i.e., software interpretation
and/or dynamic binary translation. Interpretation is
portable but also much slower than direct execution on
the target processor. On the other hand, dynamic
translators are usually difficult to be ported because the
whole code generator must be rewritten according to the
target ISA. Binary translation has a smaller execution
cost but a larger initial translation cost than the

1134 JOURNAL OF COMPUTERS, VOL. 5, NO. 7, JULY 2010

© 2010 ACADEMY PUBLISHER

interpretation does. An appropriate method should be
selected according to the characteristics and the
performance requirements when designing an emulation
system. The proposed emulation system in this study (1)
aims at emulating complex IA-32 instructions on ARM
based platforms, (2) bases on interpretation to offer
portability, acceptable start-up performance, and low
memory requirement, (3) considerably reduces the
interpretation overhead thus to improve the performance
of the entire emulation system, and (4) can handle most
user-level instructions.

III. GENERAL ARCHITECTURE OF TRANSARM-IU

TransARM-IU is targeted for user-level emulation
only and is implemented in C to ensure portability.
TransARM-IU is loaded to the same user space as the
native application. The entire emulation process is
transparent to the user who feels like operating on a
normal ARM-based environment. An overview of the
infrastructure of TransARM-IU is shown in Fig. 1(a).
From a user’s perspective, TransARM-IU looks like a
sandbox where the inputs are user-level executables
compiled on the IA-32 platform with the option “-static”
and “-msoft-float”. The first option “-static” appends the
source code of the library calls to the executable file and
the second option “-msoft-float” coverts the floating-

point instructions to the software routines emulating the
behaviors of the floating-point instructions.

Calls to the library routines such as ‘printf’ are
assumed by many emulation systems, such as UQDBT
[16] and FX!32 [14], existing on the source as well as the
target machine. This assumption is not restrictive as long
as there is a mapping from a source library routine to its
equivalent on the target machine, i.e., libraries of the
source architecture can be reproduced on the target
machine via translation or rewriting. In fact, it is not
trivial to establish a map from the IA-32 C library to the
standard ARM C library. Therefore, only statically
compiled programs are taken into account in TransARM-
IU. The compiling option ‘-static’ can appends the source
code of the required library routines to the executable file.

Currently, TransARM-IU mainly concerns the
emulation of integer instructions. There are two reasons
for ignoring floating-point instructions: First, the Vector
Floating-Point (VFP) architecture [17] is a coprocessor
extension to the ARM architecture. Some ARM-based
systems may not provide the floating-point instruction set.
Secondly, most floating-point instructions can be
converted into software functions of the integer
instructions by setting the option ‘-msoft-float’ during
compiling, i.e., the software function can be exploited to
‘emulate’ the floating-point instruction.

Figure 1. General Architecture of TransARM-IU. (a) The infrastructure of TransARM-IU; (b) An example of an instruction interpreter routine.

User-specified commands intended to run the
executable files are intercepted by a modified command
line shell, which invokes the ELF (Executable and
Linking Format) analyzer (see Fig. 1) when necessary. An
executable file’s ELF format (details see Section IV) will
first be resolved to identify its target architecture. The
executable file can get direct execution if it’s architected
for ARM. When the executable file’s source architecture
is IA-32, TransARM-IU will load the executable file to
the memory space following a direct mapping strategy,
and it starts the kernel process of the emulation.

Interpretation is the key aspect in our design. An
interpretation based system normally reads source
instructions one at a time, performing each instruction

interpreter routine in turn on software maintained version
of the source architecture's state, including all architected
registers and main memory. The resource holding the state
does not necessarily have to be the same type as it does on
the source platform. The key point of state mapping is that
for all the resource holding the source state which is
necessary for the execution of a source program, the
associated resource in the target is readily defined. Hence,
we use a straightforward mapping in TransARM-IU
which means that all of the useful registers of IA-32 are
mapped to the target memory. A context table will be
created to contain the image of various components of the
IA-32 architecture state, such as general-purpose registers
(e.g., EAX, EBX), the program counter (EIP), condition

JOURNAL OF COMPUTERS, VOL. 5, NO. 7, JULY 2010 1135

© 2010 ACADEMY PUBLISHER

codes (EFLAG), and miscellaneous control registers (e.g.,
ES, CS) as shown in Fig. 1(a). Architecture mapping of
interpretation is much flexible as it does not occupy any
hardware resource of the target architecture, which can
not be avoided in DBT in contrast.

The mapped state will be updated during the emulation
of each source instruction in order to emulate the results
of the source program’s native execution. However,
computing all the condition code for a given source
instruction needs many target instructions which can slow
down the emulation considerably. In fact, although the
condition register (EFLAG) is updated frequently, they
are seldom used. Thus, updating the emulated condition
register at an instruction granularity is not necessary.
TransARM-IU adopts the lazy evaluation on the condition
flag register, where the operands and operation that
impact the condition register are saved instead of the
condition register settings themselves [10]. This is shown
in the example of an interpreter routine in Fig. 1(b). An
interpreter routine contains one or several target
instructions emulating a source instruction. Fig. 1(b) is an
example of an interpreter routine (written in C language)
corresponding to the IA-32 instruction that adds an
immediate value to a general purpose register.
TransARM-IU contains hundreds of interpreter routines,
each corresponding to a dedicated type of the source
instruction. For those simple user-level instructions such
as arithmetic instructions, the interpreter routine is quite
simple: the source instruction’s behaviour is emulated
straightforward like the example in Fig. 1(b).

Furthermore, IA-32 processors are “little-endian”
machines [4]. Fortunately, since most ARM processors
provide both the little-endian and big-endian modes [17].
The endianness issue can be ignored in TransARM-IU.

In summary, when a user runs an executable file, the
TransARM-IU fist intercepts the commands and analyzes
the ELF format of the executable file in order to identify
the required architecture. If the executable targets on an
ARM platform, the native executions can be directly
performed. Otherwise, the executable file is loaded into
the memory space following a direct mapping strategy.
The emulation system then fetches the source code,
decodes it and dispatches an interpreter routine according
the instruction type in order to achieve the same effect as
the source instruction does.

IV. DESIGN AND IMPLEMENTATIONS

How to organize the emulation procedure and dispatch
the interpreter routines is crucial to the performance of an
emulator. This section discusses the organization of the
emulation procedure and other techniques in details.

A. ELF Analyzer and Loader
The first task of TransARM-IU is to identify the

required ISA architecture of the executable file/program
and to load the code and data into memory. This task is
performed through the analysis of the Executable and
Linking Format (ELF) [18] of the executable file.

An ELF file is the binary representation of a program.
It contains information which participates in program

linking (building a program) and program execution
(running a program), such as instructions, data, symbol
table, and relocate information. Fig. 2 shows an
executable file’s ELF organization: the left sub-figure
indicates the binaries of the entire executable file; the
right sub-figure shows the corresponding ELF
organization of these binaries.

Figure 2. Executable and linking format of an executable file

When an executable file begins to execute on the target
ARM processor, it is the OS that resolves the file’s ELF
and loads the file into memory. Normally, the OS first
checks the machine architecture the executable file
requires. If the required architecture is ARM, the OS
creates the memory image (code, data etc) and invokes the
dynamic linker. Otherwise, an error occurs. In our design,
the OS can be modified to identify the IA-32 executable
file. To ensure user transparency and to avoid the efforts
of modifying the OS kernel, we customized a dedicated
command line shell to identify the executable file’s
machine architecture.

A user still executes an application/program by typing a
command like “./executable_file_name” as normal. The
command line shell (also known as command line
interpreter) intercepts the command and invokes the ELF
analyzer to identify the required architecture through
“e_machine” of the ELF header. “e_machine” specifies
the required architecture for an individual file as shown in
Fig. 3. The values 3 and 40 represent the IA-32
architecture and ARM respectively. The circled value
(“e_machine”) in Fig. 2 indicates that this ELF file’s
required architecture is ARM. If the value is 40, the
command line shell directly leaves the executable file with
the OS. A value “3” means that IA-32 is required, the
entire binaries of the file will be loaded into memory
without the need for loading and linking.

Figure 3. ELF header specifying the required architecture of an
individual executable file.

The information specified for dynamic linking and
loading in the original IA-32 executable file is no longer
valid in the ARM environment. Therefore, TransARM-IU

1136 JOURNAL OF COMPUTERS, VOL. 5, NO. 7, JULY 2010

© 2010 ACADEMY PUBLISHER

ignores the normal linking and loading steps. Instead, it
loads all the binaries of the executable file (with the ELF
information) into the virtual memory space according to
the entry point (the beginning address of the executable
file in the virtual memory) specified in the ELF header. In
fact, TransARM-IU system treats all the binaries of an
executed file as ordinary data, no matter they are text, data,
or stack. As such, a straightforward mechanism has been
established for “loading” the executable file without
losing any necessary information.

There is an interesting observation in the
implementation of TranARM IU that there is no conflict
while loading the executable file into the virtual memory
space of the ARM system at the address declared in the
executable file. Both the data and text from the source IA-
32 program can be mapped exactly at the same virtual
address as it would normally have. According to the
specification of the Application Binary Interface (ABI)
[19] for Intel IA-32 architecture, a process’s text segment
typically resides at the virtual address of 0x8048000. This
is also the beginning of an executable/ELF file. On the
other hand, according to the ABI for ARM [20], address
0x8000 is usually used as the begging of an executable
file. TransARM-IU itself is a user-level application and
will be loaded into the memory with the beginning at
0x8000. Therefore, for most source applications, there
will be no conflict if we load the executable file into the
memory space of ARM from its original beginning
address at 0x8048000. In fact, the straightforward
memory mapping method avoids the overhead of address
resolution. The source application’s code and data remain
unchanged, similar to their layouts on the original IA-32
platform.

B. Pcache-Based Hybrid Threaded Interpretation
The interpreter takes over on the completion of ELF

analyzing and loading steps. A typical interpretation
process, referred to as decode-and-dispatch interpretation,
involves a cycle of fetching a source instruction, decoding
and dispatching it to a required instruction interpreter
routine. A conventional interpretation routine process can
be viewed as a central loop (as shown in Fig. 4(a)), which
is likely to be quite slow [3]. TransARM-IU adopts a
hybrid threaded interpretation method to address this
drawback based on our previous work [6][7].

In a conventional interpretation process, each
interpreter routine finally turns back to the central decode
and dispatches routines. These branches tend to
deteriorate performance as they alternate the control flow.
Threaded interpretation [21][22] reduces some of the
branches by appending a portion of the decoding and
dispatching code to the end of each of the instruction
interpreter routines as illustrated in Fig. 4(b). This
approach works efficiently with RISC ISAs. Because a
modern RISC ISA such as the PowerPC has the regular
instruction format (all instructions have the same length,
and each field in the instruction is fixed), the interpreter
can extract the opcode and then immediately dispatch it to
the indicated instruction interpreter routine through a
relatively small amount of code. On the other hand, a
CISC ISA has a much more complicated format with

varied instruction lengths and even field lengths.
Appending the decoding codes (for a CISC instruction)
into each interpreter routine will dramatically increase the
interpreter routine’s size, which may offset the
performance improvement. For example, it costs
TransARM-IU 650 lines of C code to decode and dispatch
one IA-32 instruction (for the RISC ISA, the decoding
and dispatching may consume only several lines of C
code). Therefore, threaded interpretation is not appropriate
to be directly adopted by interpretation of the CISC ISA.

TransARM-IU defines a Pcache for saving the decoded
instruction information. In our previous work [6][7], it has
been observed that instruction fetching and decoding
contribute about 50% to the interpretation overhead,
especially in the case of CISC ISA. It has also been noted
that most instructions are reinterpreted many times, and
this causes a considerable redundancy. Hence, the
repeated decoding of source instructions forms a
bottleneck of interpretation. We then proposed using an
interpreted code cache (Pcache) to avoid most of the
replicated decode operations by saving the interpreted
instruction information for reuse. Each Pcache line
contains the opcode, operand’s addressing modes and the
address of the dedicated interpreter routine of a source
instruction, as depicted in Fig. 1(a). We have
demonstrated that Pcache can dramatically reduce the re-
decode operations thus improve the performance of the
interpretation. Pcache can be implemented in the form of
both software and hardware. TransARM-IU simply
organizes Pcache as a hash table which contains 1024
Pcache lines. Each Pcache line contains the decoded
information of a source instruction. Thus, the CISC ISA
can be converted into an intermediate form with fixed
length and fields. Saving the decoded instructions in
Pcache can not only avoid most re-decoding operations [6]
but also enable the threaded interpretation of the CISC
ISA. Different from the threaded interpretation which
replicates the decode-and-dispatch code, our method
appends a small amount of match-and-dispatch code at the
end of each of the interpreter routine. During
interpretation, the interpreter will access the Pcache first
according to the address of the source instruction. If the
required instruction is found in Pcache, the interpreter will
bypass the decoding process and directly turn to the next
interpreter routine whose address is specified in the
related Pcache line. If the required instruction is not found,
the interpreter will return to the central decode-and-
dispatch routine. The central decode-and-dispatch routine
fetches the source code from the main memory through
the data cache, and it performs a complex decoding
operation and finally saves the decoded instruction
information in Pcache for reuse. The hybrid threaded
interpretation method can be illustrated in Fig. 4(c).

Fig. 4 highlights the differences in control and data
flow between three different interpretation methods. For
the traditional decode-and-dispatch method (Fig. 4(a)),
control flow continuously exits from, and returns to, the
central decode-and-dispatch routine. For the traditional
threaded interpretation method (Fig. 4(b)), code pieces are
replicated at the end of each of the interpreter routines.

JOURNAL OF COMPUTERS, VOL. 5, NO. 7, JULY 2010 1137

© 2010 ACADEMY PUBLISHER

For those CISC ISAs, the complicated decoding process
always consumes tens even hundreds lines of C codes
which dramatically increases the size of each of the
interpreter routine. For our hybrid threaded interpretation
method based on Pcache (Fig. 4(c)), simple match-and-
dispatch code is appended into each of the instruction
interpreter routine. For most common cases, required
source instruction’s information can be found in Pcache,
thus one interpreter routine can directly turn to the next
with the complicated decoding process avoided. The
complex centralized decode-and-dispatch routine is
seldom executed. An evaluation of our hybrid threaded
interpretation method can be found in Section V.

Central
decode &
dispatch
routine

Source
code Interpreter

routines

.

.

.

Source
code Interpreter

routines

Distributed
decode & dispatch

Interpreter

Central
decode &
dispatch
routine

Source
code Interpreter

routines
Pcache

Complex

Central decode and
dispatch routine active

when required instruction
is not in Pcache

(a) (b)

(c)

Control flow

Data flow

Simple match-
and-dispatch

Interpreter

Figure 4. Control flow and data flow of different interpretation
methods. (a) Central decode-and-dispatch interpretation; (b) normal
threaded interpretation; (c) threaded interpretation based on Pcache,
data flow from the decode-and-dispatch routine to Pcache is omitted.

V. EVALUATION

This section presents an evaluation on the performance
of TransARM-IU.

A. Experiment Environment
We first compiled the source programs on an IA-32

platform with the option ‘-msoft-float’ and ‘-static’. The
executable files were then executed on two ARM
platforms (named ARM platform 1 and platform 2)
respectively. TransARM-IU ran on Linux on top of the
ARM platform with user transparency supported.
Detailed configuration settings of the source and target
platforms are provided in Table II.

We carried out experiments on MiBench [23][24], a
free and representative embedded benchmark suite. The
large dataset provideed by MiBench for ‘stringsearch’

were used. MiBench totally consists of six categories of
38 benchmarks. We select one benchmark form each of
the categories. Table III gives the brief description of the
selected benchmarks.

TABLE I. MACHINE CONFIGURATION SETTINGS

IA-32
Processor Intel Pentium Dual CPU E2140 1.6GHz

Linux version Linux Red Hat Enterprise3,
Linux kernel 2.4.21-4.EL

GCC 3.2.3
Compiling
option -msoft-float -static

ARM
 ARM platform 1 ARM platform 2
Processor
version/
ARM
architecture

OMAP 3530/
CortexTM-A8

Samsung S3C2440/
ARM920T

Frequency 600 MHz 400 MHz

Linux ubuntu 8.04,
Linux kernel 2.6.28-r18 Linux kernel 2.6.13

GCC version 4.2.1 3.4.1
I-Cache 16 KB 16 KB
D-Cache 16 KB 16 KB
L2 Cache 256 KB None

Memory system

64 KB shared SRAM
on chip, 112 KB ROM
on chip, 256 MB, 166
MHz mDDR, 512 MB

Nand Flash

64 MB SDARM, 64
MB Nand Flash,
2MB Nor flash

B. Performance Evaluation
We first executed the benchmarks directly on the

ARM platforms for reference. The benchmarks were
compiled by the native compiler on the ARM platform.
The second column in Table IV lists the native execution
times required by each of the selected benchmarks. Since
modern IA-32 processors run definitely much faster than
the ARM processors, the IA-32’s native execution times
were bypassed when evaluating the performance of
TransARM-IU.

TABLE II. DESCRIPTION OF BENCHMARKS

Benchmark Category Description

adpcm
(encode) telecomm

takes 16-bit linear Pulse Code
Modulation samples and converts
them to 4-bit samples

dijkstra network

calculates the shortest path between
every pair of nodes in an adjacency
matrix (representing a large graph)
using Dijkstra’s algorithm

qsort

automotive
&
industrial
control

sorts a large array of strings into
ascending order using the well
known quick sort algorithm

sha security produces a 160-bit message digest
for a given input

stringsearch office
searches for given words in phrases
using a case insensitive comparison
algorithm

typeset consumer
devices

captures the processing required to
typeset an HTML document

We then compiled all the selected benchmarks on IA-

32 platform and evaluate the emulation performance of
these benchmarks on TransARM-IU. The last column of

1138 JOURNAL OF COMPUTERS, VOL. 5, NO. 7, JULY 2010

© 2010 ACADEMY PUBLISHER

Table IV list the number of the source instructions of
each benchmark. As these entire source instructions were
interpreted, the last column also reveals the numbers of
the interpreted source instructions. The executable files
with the input data files were then migrated to the ARM
platform. All benchmarks are successfully emulated by
TransARM-IU on the two ARM platforms. This
demonstrates the correctness of our emulation method.

TABLE III. NATIVE EXECUTION TIME AND INTERPRETED
INSTTUCTIONS OF EACH OF THE BENCHAMARKS

Benchmark

Native
execution time
on ARM
platform 1

Native
execution time
on ARM
platform 2

Source
instruction
No.

adpcm.enc 0.92 s 1.47 s 38458788
dijkstra 0.65 s 0.99 s 49534305
qsort 0.52 s 0.80 s 43890779
sha 0.22 s 0.35 s 12904042
stringsearch 0.02 s 0.03 s 4345763
typeset 0.41 s 0.62 s 29354972

(s: second)

Comparing to the native execution on ARM, emulation
definitely introduces extra overhead which causes
performance degradation. Typically, the emulation speed
of a software interpreter is 10X to 100X slower than
native execution [1]. Since performance is a crucial issue
an emulation system. The emulation time of the
benchmarks on TransARM-IU which adopts Pcache-
based hybrid threaded interpretation method, is on
average 35 times as much as their native execution time
on the 600MHz ARM platform and 44 times on the other
ARM platform. Fig. 7 shows the ratio of the emulation
time to the native execution time for each benchmark. For
evaluation of TransARM-IU on the ARM platform 1, the
reference is the native execution on platform 1. Similarly,
for evaluation of TransARM-IU on the ARM platform 2,
the reference is the native execution on platform 2.
TransARM-IU causes much larger performance
degradation on the ARM platform 2 than on the ARM
platform 1. The main reason is that platform 2 does not
have a L2 cache. Cache misses have a big impact on the
emulation performance.

Figure 5. Performance evaluation of TransARM-IU. “hybrid” means
the TransARM-IU system adopts the Pcache-based hybrid threaded

interpertation method and “central” presents the conventional central
looped interpretaion method.

We also evaluated the performance of TransARM-IU
which uses the conventional centralized interpretation
method with Pcache used. Experimental results indicate
that the emulation time is on average 63 times of the
native execution time on ARM platform 1 and 78 times
on ARM platform 2. This indicates that the Pcache-based
hybrid threaded interpretation method can dramatically
reduce the emulation overhead.

A well-known interpretation-based emulation system
was utilized for reference. We derived the ISA emulation
part from Bochs 2.4.1 where the source ISA and the
target ISA are the same IA-32. We measured the
emulation time of the 6 MiBench benchmarks on Bochs
running on the IA-32 platform. We also measured the
native execution time of the benchmarks on the same IA-
32 platform. The average ratio of the emulation time to
the native execution time is 87, as shown in Table V.
Because the source ISA and target ISA are the same, the
emulation process of Bochs is much simpler than a cross-
platform emulator. This indicates that TransARM-IU,
especially when adopting Pcache-based hybrid
interpretation, is competitive to Bochs.

TABLE IV. RATIO OF THE EMULATION TIME ON BOCHS TO THE
NATIVE EXECUTION TIME

Benchmark Ratio Benchmark Ratio
adpcm.enc 108 sha 81

dijkstra 96 stringsearch 48
qsort 73 typeset 115

Average 87

In TransARM-IU, Pcache is defined as a software hash

table, which consumes memory resource as it is actually
stored in the main memory. A software Pcache with 1024
entries need at least 12KB memory space. Software
Pcache can not only consumes the memory resource, but
can also add considerable burden to the data cache of the
underlying ARM processor. Moreover, the size of the data
cache is limited. Sometimes, the processor has to access
the Pcache from the main memory which consumes much
more time than access from the data cache. A solution to
this problem is to implement a hardware Pcache[6][7]. A
hardware Pcache do not consume the resource of the data
cache and is more faster. However, hardware Pcache has
to modify the underlying hardware as special Pcache
accessing instructions are needed [6][7]. This is easy to be
achieved as most ARM platform use customized ARM
processor IP cores.

VI. CONCLUSIONS AND FUTURE WORK

ISA emulation is a key aspect of a cross-platform
virtual machine.TransARM-IU, an ISA emulator, has
been developed to support user-level IA-32 applications
on ARM-based systems. TransARM-IU adopts an ELF
analyzer to resolve the executable file’s format, thus to
identify the required ISA architecture and other useful
information for execution. The source architecture
resource has been mapped to a software maintained
context block with interpretation of each source
instruction on the mapped architecture enabled.

JOURNAL OF COMPUTERS, VOL. 5, NO. 7, JULY 2010 1139

© 2010 ACADEMY PUBLISHER

As the conventional centralized interpretation method
causes much emulation overhead, especially when
interpreting the instructions of the CISC ISA, like IA-32.
Aiming at this problem, a hybrid threaded interpretation
method has been developed which appends a simple
decode-and-dispatch routine, optimized for the common
cases, to each instruction interpretation routine and use a
centralized decode-and-dispatch routine for more complex
cases. We selected six benchmarks from MiBench for
performance evaluation of TransARM-IU. The
experimental environments are two real ARM platforms
with different configuration settings. All the selected
benchmarks which are pre-compiled on the IA-32
platform have been successfully emulated by TransARM-
IU on both target platforms. This demonstrates the
correctness of our work. The experimental results also
indicate that the emulation can be dramatically accelerated
by our novel hybrid interpretation method. TransARM-IU
is competitive to other ISA emulators such as Bochs.

For future work, we will explore effective solutions to
floating point instruction emulation and library calls
emulation which are now addressed through indirect
method. Our ultimate goal is a full system VM across IA-
32 and ARM.

ACKNOWLEDGEMENT

This work is supported by China National Basic
Research Program under grant No.2007CB310901 and
National Nature Science of China under grant
No.60804036.

REFERENCES

[1] M. Rosenblum, T. Garfinkel, “Virtual Machine Monitors:
Current Technology and Future Trends,” Computer,
Vol.38, No.5, pp39-47, 2005.

[2] W. Huang, J. Liu, A. Bulent, D. K. Panda, “A Case for
High Performance Computing with Virtual Machines,”
Proceedings of the 20th Annual International Conference
on Supercomputing, New York, USA:ACM, pp125-134,
2006.

[3] J. E. Smith, R. Nair, Virtual Machines: Versatile Platforms
for Sysetms and Processes, Beijing: Publishing House of
Electronics Industry, 2006.

[4] Intel Corporation, Intel® 64 and IA-32 Architectures
Software Developer's Manual, vol.1: Basic Architecture,
2009.

[5] H. Kim, J. E. Smith, “Hardware Support for Control
Transfers in Code Caches,” Proceedings of the 36th
International Symposuim on Microarchitecture,
Washington, USA: IEEE CS, pp253-264, 2003.

[6] Wei Chen, Hongyi Lu, Li Shen, Zhiying Wang, Nong Xiao,
“A Hardware Approach for Reducing Interpretation
Overhead,” Proceedings of the 9th IEEE International
Conference on Computer and Information Technology,
Washington, USA: IEEE CS, pp98-103, 2009.

[7] Wei Chen, Li Shen, Hongyi Lu, Zhiying Wang, Nong Xiao,
“A Light-Weight Code Cache Design for Dynamic Binary
Translation,” Proceedings of the 15th International
Conference on Parallel and Distributed Systems,
Washington, USA: IEEE CS, 2009.

[8] J. C. Dehnert, et al., “The Transmeta Code MorphingTM
Software: Using Speculation, Recovery, and Adaptive

Retranslation to Address Real-Life Challenges,”
Proceedings of 1st Annual IEEE/ACM International
Symposium on Code Generation and Optimization,
Washington, USA: IEEE CS, pp15-24, 2003.

[9] Bochs, http://sourceforge.net/projects/bochs/files/bochs/.
[10] D. Mihocka, S. Shwartsman, “Virtualization Without

Direct Execution or Jitting: Designing a Portable Virtual
Machine Infrastructure,” Proceedings of the 1st Workshop
on Architectural and Microarchitectural Support for Binary
Translation,
http://bochs.sourceforge.net/Virtualization_Without_Hard
ware_Final.pdf.

[11] QEMU, http://www.qemu.org/download.html.
[12] F. Bellard, “QEMU, a fast and portable dynamic

translator,” Proceedings of the USENIX 2005 Annual
Technical Conference, Berkeley, CA, USA: USENIX
Association, pp41-46, 2005.

[13] L. Baraz, et al., “IA-32 Execution Layer: a two-phase
dynamic translator designed to support IA-32 applications
on Itanium®-based systems,” Proceedings of the 36th
International Symposium on Microarchitecture,
Washington, DC, USA: IEEE CS, pp191-204, 2003.

[14] R. J. Hookway, M. A. Herdeg, “Digital FX!32:
Combinning Emulation and Binary Translation,” Digital
Techncal Journal, Vol. 9, No. 1, pp3-12, 1997.

[15] K. Ebcioglu, E. R. Altman, “DAISY: Dynamic
Compilation for 100% Architectural Compatibility,”
Proceedings of 24th International Symposium on
Computer Architecture, New York, USA: ACM, pp26-37,
1997.

[16] D. Ung, C. Cifuentes, “Machine-Adaptable Dynamic
Binary Translation,” Proceedings of the ACM SIGPLAN
Workshop on Dynamic and Adaptive Compilation and
Optimization, New York, USA: ACM, pp41-51, 2000.

[17] ARM Limited, ARM Architecture Reference Manual,
http://www.arm.com/miscPDFs/14128.pdf.

[18] UNIX System Laboratories, Executable and Linkable
Format,
http://www.skyfree.org/linux/references/ELF_Format.pdf

[19] The Santa Cruz Operation Inc, SYSTEM V
APPLICATION BINARY INTERFACE Edition 4.1,

http://www.sco.com/developers/devspecs/gabi41.pdf.
[20] ARM Limited, Application Binary Interface for the

ARM® Architecture (The Base Standard),
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0036b
/IHI0036B_bsabi.pdf.

[21] P. Klint, “Interpretation Techniques,” Software-Practice
and Experience, Vol. 11, pp963-973, 1981.

[22] K. Casey, M. A. Ertl, D. Gregg, “Optimizing indirect
branch prediction accuracy in virtual machine
interpreters,” ACM Transactions on Programming
Languages and Systems, Vol.29, No.6, pp1-36, 2007.

[23] R. G. Matthew, et al., “MiBench: A free, commercially
representative embedded benchmark suite,” Proceedings of
the IEEE 4th Annual Workshop on Workload
Characterization, 2001,
http://www.eecs.umich.edu/mibench.

[24] MiBench, http://www.eecs.umich.edu/mibench/.
[25] Shiliang Hu, J. E. Smith, “Reducing Startup Time in Co-

Designed Virtual Machines,” Proceedings of the 33rd
Annual International Symposium on Computer
Architecture, Washington, DC, USA: IEEE CS, pp277-288,
2006.

1140 JOURNAL OF COMPUTERS, VOL. 5, NO. 7, JULY 2010

© 2010 ACADEMY PUBLISHER

Wei Chen was born in China in 1982. She is a Ph.D. candidate
in National University of Defense Technology, P. R China
(NUDT). She obtained her B.Sc. and M.Sc. in computer science
from NUDT in 2004 and 2006 respectively. Her research
interests include computer architecture, binary translation, and
computer virtualization.

Zhiying Wang was born in China in 1956. He is a Professor
with the School of Computer, National University of Defense
Technology, P. R China. He is a Senior Member of China
Computer Federation, and a member of IEEE. He received a
B.Sc., a M.Eng. and a Ph.D. from NUDT. His main research
interests include high performance computing, computer
architecture, asynchronous microprocessor, and information
security.

Dan Chen was born in China, in 1973. He is a joint HEFCE
Fellow with the University of Birmingham and the University of
Warwick (United Kingdom). He is also a Professor with the
Institute of Electrical Engineering, Yanshan University (China).
He received a B.Sc. in applied physics from Wuhan University
(China) and a M.Eng. in computer science from Huazhong
University of Science and Technology (China). After that, he
received another M.Eng. and a Ph.D. from Nanyang
Technological University (Singapore). His research interests
include computer-based modelling and simulation, high
performance computing.

JOURNAL OF COMPUTERS, VOL. 5, NO. 7, JULY 2010 1141

© 2010 ACADEMY PUBLISHER

