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Abstract— Feature subset selection is the most important 
and difficult task in the field of fatigue fracture image 
identification. In this paper, a new method which is hybrid 
of linear prediction, called LP-Based Multi-Objective 
Genetic Algorithms (LP-MOGA) is proposed for fatigue 
fracture feature subset selection. In LP-MOGA, predicted 
new solutions with elite solutions by liner prediction to 
improve the local search ability. For fatigue fracture 
identification, texture character and fractal dimension 
feature are extracted for original features; and then, feature 
subset selection is performed by LP-MOGA, in which, the 
objective functions minimize error identification rate, 
undetected identification rate and selected featured number; 
at last, the identification is executed by quadratic distance 
classifier. Compared with other methods, the experiment 
results of actual data demonstrate the presented algorithm 
is effective. 
 
Index Terms—Multi-objective Genetic Algorithm, Liner 
Prediction, Feature Extraction, Feature Subset Selection, 
Fatigue Fracture Identification  
 

I.  INTRODUNCTION 

Fatigue fracture failure analysis is a most import 
part in failure analysis, and the fatigue fracture 
identification is a previous work. Feature subset selection 
is a process of choosing a small subset of features that is 
necessary and sufficient to describe fatigue fracture. For 
fatigue fracture identification, the goal of feature subset 
selection is to find the subset of features that produces 
the best identification result and requires the least 
computational effort. The importance of feature subset 
selection is due to the potential for speeding up the 
processes of both concept learning and classification, 

reducing the cost of classification, and improving the 
quality of classification. Feature selection has long been 
the focus of researchers of many fields such as pattern 
recognition, image understanding and machine learning 
[1, 2, 3, 4, and 5]. 

Genetic algorithm (GA) is widely used in feature 
subset selection [6, 7, 8, 9, 10], but in previous literatures, 
the fitness function of genetic algorithm is considered as 
a single objective function [11, 12]. In fact, the feature 
subset selection is a multi-objective optimization which 
trades off between identification rate, undetected 
identification rate and cost computation. In the past two 
decades, several Multi-objectives GA (MOGA) such as 
Vector Evaluated Genetic Algorithm (VEGA) [13] and 
Non-dominated Sorted Genetic Algorithm (NSGA) have 
been proposed [14]. However, it is impractical to find the 
true Pareto-optimal solutions of combinatorial 
optimization problems. In this case, a proposed approach 
is to improve the local search ability of MOGA to try to 
drive populations to true Pareto-optimal solutions as 
close as possible for obtaining a variety of near 
Pareto-optimal solutions. After optimal feature subsets 
are generated, ensemble classifier can be constituted.  
In this paper, we present a feasible approach to fatigue 
fracture identification based on improved multi-objective 
genetic algorithm which is hybrid of linear prediction, 
called LP-MOGA. In LP-MOGA, near Pareto-optimal 
solutions, i.e. feature subsets, through linear prediction 
which makes them converge to the true Pareto-optimal 
front better. After that, the most accurate and diverse 
members, which are trained by corresponding feature 
subsets, are selected to constitute fatigue fracture 
identification model.  
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TABLE I.  LIST OF SYMBOLS 

List of symbols 
MO: Multi-objective Optimization  

SO : Signal Objective Optimization  

GA : Genetic Algorithm  

MOGA: Multi-objective 

Optimization Genetic Algorithm 

NSGA: Non-dominated Sorted 

Genetic Algorithm 

LP: Linear Prediction   

GLCM: Gray-Level 

Co-occurrence Matrix 

FD: Fracture Dimension  

EIR: Error Identification Rate  

UIR: Undetected Identification 

Rate  

 
The remainder of this paper is organized as follows: 

Section 2 presents the multi-objective optimization 
principles. Section 3 describes feature extraction and the 
mathematical model of feature subset selection consider 
in this paper. In Section 4, the proposed algorithm 
namely LPMOGA is offered. The experimental and 
comparative results are offered in Section 5. Finally, the 
conclusions are presented in Section 6. The symbols 
which appear in the paper are listed in Table I.  

Ⅱ.MULTI-OBJECTIVE OPTIMIZATION 

Considering that we have p objective functions to be 
optimized (p>1), these objective functions are usually in 
conflict with each other. Let fi(x) be the ith objective 
function, where x is feasible solution. A general 
multi-objective function optimization problem is defined 
as follows:  

Minimize f1(x), f2(x) …fi(x)…fp(x).   
Where x is feasible solution. 

In general, there is no solution that minimizes all of 
the objective functions simultaneously. Non-dominated 
solution: solution x is said to dominate solution z if only 
if: 

( ) ( ) ( ) { }
( ) ( ) ( ) { }
1 1,2,...,

2 1,2,...,
i i

i i

f x f z i p

f x f z i p

≤ ∀ ∈

< ∃ ∈
 

Pareto optimality: Let x be a feasible solution. Solution x 
is called Pareto-optimal if and only there is no feasible 
solution that dominates solution x. Pareto-optimal 
solutions are also called non-interior solutions.  These 
Pareto-optimal solutions form the Pareto front [15].  

Ⅲ LP-MOGA 

There are several well-known MOGAs. NSGA-II 
[16] is one of the most popular algorithms. NSGA-II was 
proposed as an improvement of NSGA [14]. Although 

MOGAs are able to escape from local optima by means 
of the crossover and mutation operator, they are weak in 
fine-tuning near local optimum points and disabled to 
find a perfect solution because of premature convergence 
[17, 18, and 19]. This makes the obtained solutions be 
not as close as possible and uniformly spread-out 
towards the true Pareto-optimal front. To improve the 
search capability of MOGAs, in this section, a new 
method hybrid with linear prediction, which is called 
LP-MOGA, is developed to improve the efficiency of 
existing multi-objective genetic algorithms. In the 
LP-MOGA, first, a liner prediction is defined. Then, in 
each generation of GA, predicted solutions are obtained 
through elite solutions (Pareto-optimal solutions) 
performed by liner prediction.  

We denote the present elite solutions (chromosomes) 
and predicted chromosomes as (x1 x2… xk) and x̂ .The 
linear predictor inputs the elite solutions (xi1 xi2… x kL), 
and creates the output x̂  as a linear combination of the 
previous kL inputs. This is formulated as 

ˆ
1

Lk
x xi ii

ω= ∑
=

 (1)

   Where ωi is the weight on the elite solutions and kL is 
the linear prediction order. And the weight can be 
evaluated by Levinson-Durbin method [20].  

The statement of LP-MOGA:  
Step0:  Initialize the NSGA- . Set the crossover and Ⅱ
mutation probabilities, the number of generations Nol, 
and the linear prediction order kL and max linear 
prediction number Nlp. Set the initial generation i=0 and 
initial prediction number n=0. 
Step1:  Run the multi-objective genetic algorithm. 
Evaluate current population and determine the fist 
frontier chromosome (elite solution) of current 
population. 
Step 2:  Predict the chromosome x̂  through the 
frontier chromosome using Eq. 1, n=n+1. 
Step 3:  Calculate the fitness values of new 
chromosome x̂ . If x̂  dominates the frontier 
chromosome, update the Pareto frontier; else, if n < Nlp , 
go to step 2.  
Step4: i=i+1. If i< Nol, go to step 1, else go to step 5. 
Step5: End.  
Figure 1 shows the relationship between the 
NSGA- and Ⅱ LP-MOGA. In this figure, Pt is parent 
population, Qt is children population, and F_j is the jth 
frontier population in NSGA-Ⅱ algorithm. 
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Figure 1.  Relationship between the NSGA- and LPⅡ -MOGA 

Ⅳ. PROBLEM DEFINITION 

    The feature subset selection in fatigue fracture 
identification is a multi-objective optimum problem, 
presented in this paper, the objectives functions should 
minimize error identification rate, minimize undetected 
identification rate and cost computation. This section first 
introduces the features extraction, and then, establishes 
mathematic mode of feature subset selection, at last 
feature subset selection is performed by the LP-MOGA 
which is mentioned in Section 3.  

A  Feature extraction  
The goal of feature extraction is to project the 

original image data onto a feature space which can reflect 
the important inherent structure of the original images. 
Generally, multi-texture is contained in fracture surface 
image; therefore, statistic property of gray- level 
co-occurrence matrix (GLCM) which describes texture 
character can be treated as features. The concept of 
fractal dimension(FD), used to describe irregular surfaces 
with a self-similar (or self-affine) nature, provides a basis 
for the quantitative characterization of the tortuosity of 
fracture surfaces, and the potential linkage between the 
fractal dimension and mechanical properties[21, 22], so 
FD can be as  features according  to characterize 
roughness in image. 
Feature 1-feature 28 

The GLCM is a technique that allows for the 
extraction of statistical information from the image 
regarding the distribution of pairs of pixels. It is 
computed by defining a direction and a distance(d), and 
pairs of pixels separated by this distance, computed 
across the defined direction(θ),are analyzed. A count is 
then made of the number of pairs of pixels that possess a 
given distribution of gray-level values. There may be 
many GLCM computed for an image, one for each pair 
of distances and directions defined. In this paper, a set of 
8 GLCM are computed, for two different distances 1 and 
3, in the horizontal, vertical, and two diagonal directions. 
The GLCM G=[gGLCM(m,n)] is  

( )
( ) ( )( )

,

, , cos , sin
GLCMg m n

P f x y m f x d y d nθ θ

=

= + + =
(2)

In Eq. 2, f (x, y) is the image gray-level at the point (x, y). 
The statistic property of GLCM are Angular Second 

Moment (ASM), Contrast(CON), Correlation 
(COR),Variance(VAR), Inverse Difference 
Moment(IDM), Sum Average (SA), Sum Variance(SV), 
Sum Entropy(SE), Entropy (ENT), Difference Variance 
(DV), Difference Entropy(DE), Information Measure of 
CorrelationⅠ(IMCⅠ), Information Measure of 
Correlation (IMC ) and Maximal Correlation Ⅱ Ⅱ
Coefficient(MCC). The mathematic expression for each 
of these can be found in [23]. When d=1, 
θ=0°,45°,90°,135°, the mean value of  each statistic 
property respectively in four directions  is composed of  
feature1-feature14; similarity, when d=3, 
θ=0°,45°,90°,135°, the mean value of  each statistic 
property respectively in four directions  is composed of  
feature15-feature28. 
Feature 29-feature 33 

Mandelbrot et al. [21, 22] first introduced fractal 
dimension concept to materials science in 1984.FD is a 
feature proposed to characterize roughness in image. 
Mandelbrot [21] stated that the FD of a set A in 
Euclidean n-space can be derived from the relation 

1. =FD
r rN  (3)

or           )/1log(/)log(lim
0

rNFD rr→
= (4)

Where Nr, is the union of nonoverlapping copies of 
A scaled down by a ratio r. However, it is difficult to 
compute FD by using Eq.3 directly. Sarkar and 
Chaudhuri[23] described an efficient box-counting 
approach, named Differential Box-Counting (DBC) that 
uses differences on computing Nr, and gives satisfactory 
results in all range of FD. The FD in this method is given 
by Eq. 4 where Nr is counted in a different manner from 
the others box-counting methods. 

Consider that the image of size M×M pixels has 
been scaled down to a size s×s, where M/2 > s > 1 and s 
is an integer. Then we have an estimate of r = s / M. Now, 
consider the image as a 3-D space with (x, y) denoting 

Pt+1 

F_3 

F_1 

F_2 

Pt  

Qt  Rejected 

Non-Dominated sorting  Crowding Distance sorting  

ˆ
1

Lk
x xi ii

ω= ∑
=
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2-D position and the third coordinate (z) denoting 
gray-level. The (x, y) space is partitioned into grids of 
size s×s. On each grid there is a column of boxes of size 
s×s×s’. If the total number of gray levels is G, then [G/s’] 
= [M/s]. Assign number 1, 2 ... n to the boxes as shown 
in Figure 2. If the minimum gray-level of the image in 
the grid (i,j) felled in number k box, and the maximum 
gray level of the same grid felled in number p box, then 

nr (i,j)=p-k+l , Nr =∑nr (i,j) (5)
Nr is counted for different values of r and s. Then 
applying Eq. 4, FD can be estimated from the least 
squares linear fit of log (Nr) against log (l/r). 

 

Figure 2 . Determination of Nr by DBC method 

We propose to use five features in order to 
discriminate directional information. They are based on 
the FD of the original image (feature 29), the horizontally 
smoothed image (feature 30), the vertically smoothed 
image (feature 31), diagonally smoothed image (feature 
32, feature 33). The smoothed image at different 
direction (θ) in windows (2ω+1×2ω+1) is described as: 

( ) ( )∑
−=

+
+

=
ω

ωω k
kjiIjiI ,

12
1,2 ,θ=0° (6)

( ) ( )∑
−=

+
+

=
ω

ωω k
jkiIjiI ,

12
1,3 ,θ=90° (7)

( ) ( )∑
−=

++
+

=
ω

ωω k

kjkiIjiI ,
12

1,4 ,θ=45° (8)

( ) ( )∑
−=

−+
+

=
ω

ωω k
kjkiIjiI ,

12
1,5 ,θ=135° (9)

After feature extraction, 33 raw features are obtained, 
which detailed on Table Ⅱ.   
 
 
 
 
 
 

TABLE Ⅱ.   RAW FEATURE SET 

number feature parameter number feature parameter 
feature 1 ASM  

 
 

d=1 
θ=0° 
θ=45° 
θ=90° 

θ=135° 
 

feature 18 VAR  
 
 

d=1 
θ=0° 

θ=45° 
θ=90° 
θ=135° 

 

feature 2 CON feature 19 IDM 
feature 3 COR feature 20 SA 
feature 4 VAR feature 21 SV 
feature 5 IDM feature 22 SE 
feature 6 SA feature 23 ENT 
feature 7 SV feature 24 DV 
feature 8 SE feature 25 DE 
feature 9 ENT feature 26 IMCⅠ 

feature 10 DV feature 27 IMCⅡ 
feature 11 DE feature 28 MCC 
feature 12 IMCⅠ feature 29 FD  
feature 13 IMCⅡ feature 30 FD θ=0° 
feature 14 MCC feature 31 FD θ=90° 
feature 15 ASM  feature 32 FD θ=45° 
feature 16 CON feature 33 FD θ=135° 
feature 17 COR    
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B. Mathematic Model 

 
Figure 3. The framework of fatigue fracture image identification 

Fatigue fracture image identification is a two-class 
judgment problem, the inputs are valid feature set, and 
the output is Yes/No, that is either fatigue fracture image 
or not. The fatigue fracture image identification 
framework is show in figure 3. The classifier is fixed in 
identification, which is a quadratic distance classifier, but 
the set of features that is input into the classifier is 
variable. In feature subset selection for classification, the 
task is discerning out of the several valid features of 
fracture images to be used for efficient classification. For 
the fatigue fracture identification, more features means 
more complex model, hence, lower error identification 
rate and lower undetected identification rate is expected. 
We propose the following objective functions for 
LP-MOGA to minimum, namely minimizing error 
identification rate (EIR) ne, undetected identification rate 
(UIR) nu and cost computation.  
Mathematic model: 

chromesome: Ci is a chromosome coding the 
selected set of features, L is the total number of features 
extracted from each fracture image, k is the number of 
features selected (Ci has k bits of 1 and L - k bits of 0). 

Multi-objective function:  It is easy to see that the 
fewer the number of features selected, the smaller the 
number of images misclassified and smaller number of 
undetected, the classification is better. Thus, the objective 
functins  minimize  (f1(x), f2(x) f3(x)), and f1(x)=-log(k), 
f2(x)=log(ne), f3(x)= log(nu), and ne is the number of 
images misclassified, and nu is the number of fatigue 
fracture image judged to be not fatigue. 

ne : Assumed that the fatigue fracture is classed to 
be Y1 , non-fatigue fracture class to be Y2, features 
subsets are  (fk1 , fk2 , ⋯, fkM, k=1,2, M is the training 
images number of Yk ), thus, the mean and variance are: 

( )( )
1 1

1 1,
M M T

k kj kj k kj k
j j

f f f
M M

μ μ μ
= =

= Σ = − −∑ ∑ (10)

For a certain images, if the selected feature is f, the 
quadratic distance between feature vector and class Yk is: 

( ) ( )1T
k k k kd f fμ μ−= − Σ −  (11)

For each image, if d1 <d2, it is judged to be fatigue 
fracture image, else, to be non-fatigue fracture image. 

Therefore, ne can be defined as the total number judging  
Yi as Yj (i,j=1,2; i≠j). 

nu :the total numbers that judging Y1  to Y2. 
Other parameters:  

Population size:  120 Probability of crossover:  0.7
Number of generation: 400 Probability of mutation: 0.1

C. Feature Subset Selection Based on LP-MOGA  
The main procedures of feature subset selection by 

LP-MOGA algorithm are described as follows. 
Procedure: 
1. Generate randomly an initial population P0, t=0; 
2. Create a children population Q0 of size n; 
3. Combine parent and children population Rt=Pt∪Qt; 
4. Evaluate the populations;  
5. Generate all non-dominated fronts F=(F_1,F_2,…) 
of Rt, let number of F_i front chromosome be hi ; 
6. Predict p1 new chromosomes Vt1 through F_1 
frontier chromosomes and p2 new chromosomes Vt2 
through F_2 frontier chromosomes by liner predict which 
motioned in Section 3, and p1 =0.2*h1, p2 =0.2*h2,  
Rt=Pt∪Qt∪Vt1∪Vt2; 
7. Generate all non-dominated fronts F=(F_1,F_2,…) 
of Rt; 
8. Sort the non-dominated fronts. i ≺j , if ((irank < jrank) 
or ((irank = jrank) and (idistance > jdistance))) ; 
9. Choose the best solutions needed to fill the 
population; 
10. Use selection, crossover and mutation to create a 
new population Qt+1, t=t+1; 
11. If the maximum number of generations is not 
reached, go to (3), else go to (12); 
12. End. 

Ⅴ EXPERIMENT 

A. Database  
   The fracture images used in this work were taken 

from the real failure analysis experiment. The database 
consists of a set of 242 samples, in which 82 fatigue 
fracture images, 160 non-fatigue fracture images such as 
cleavage, intergranular and dimple. Examples for each 
class fracture surface images are show in Figure 4.   

Best feature
subset Result 

Input fracture 
image 

Extracted 
features Feature 

extraction 
Feature 
selection

Classifier  

Yes  

No  

Feedback 
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Figure 4. Metal fracture surface images (from left to right, top to bottom, followed by cleavage, fatigue, dimple, intergranular) 

B Experiment  
In accordance with the established program, the 

process of the experiment may be summarized by: first, 
randomly selected 42 fatigue images and 80 non-fatigue 
images as training database, while the remaining images 
as test database. Then, extracted features mentioned in 
section 4 for each training image, and then, the optimal 
feature subset sequence obtained by performing 

LP-MOGA to entire training images features set. Feature 
subset selection using the proposed LP-MOGA based on 
training database, Experiment execute 10 times 
independently, the optimal feature subset sequence is [2 3 
5 8 11 13 24 26 28 29 30 31 33 ]. The classification 
results by using quadratic distance classifier are listed at 
Table  Ⅲ. In order to compare, the classification by all 
features is also list in Table Ⅲ.

TABLE Ⅲ. THE FATIGUE FRACTURE IMAGE IDENTIFICATION RESULT 

 Training database Test database 

 ne nu k ne nu k 

Optimal feature subset   9    1   13    9      0   13 

All feature   20    6   33    17      4    33 

 
From the table above, we can see that identification by 
all features is worse than the feature subset selected by 
LP-MOGA, because of redundancy between the features.  

C. Compared with other GA  
In previous literatures [11, 12], the feature selection 

is viewed as signal objective optimum. Considering the 
same factors as in MOGA, the fitness function of SO can 
be modified as Eq. 12  

( ) ( ) ( ) ( )( )10 10 10log log loge uF f q L n n n m= − + + (12)

Feature selection preformed by SGA, the feature subset 
and the identification result are shown in Table Ⅳ. The 
NSGA-Ⅱis a classical MOGA, so, feature selection by 
NSGA-Ⅱis also performed and the result is listed in 
Table Ⅳ. 
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TABLE Ⅳ COMPARED THE FATIGUE FRACTURE IMAGE IDENTIFICATION RESULT BASED ON LP-MOGA AND SGA  

Methods Optimal feature subset Training database Test database 

  ne nu k ne nu k 

LP-MOGA [2 3 5 8 11 13 24 26 28 29 30 31 33]   9    1   13    9      0 13 

NSGA-Ⅱ [2 4 6 8 11 12 24 26 27 29 30 31 33] 10    4   13    9      2 13 

SGA [1 4 5 6 8 11 24 26 28 29 32]   12    6   11    11      4 11 

From table  Ⅳ, it can conclude that the feature subset 
selected by MO is better than SO, that is to say, the 
feature subset selection problem is a multi-objective 
optimization. Compared with NSGA-Ⅱ, the selected 
features number is the same, but the number of the 
misclassified and undetected images is less, so we can 
conclude that the LP-MOGA is better than NSGA-Ⅱin 
feature selection which used in fatigue fracture image 
identification.  

Ⅵ. CONCLUSION  

In this paper, we proposed newly LP-MOGA, and 
introduced LP-MOGA feature subset selection algorithm 
into a specific application domain to identify the fatigue 
fracture image from the fracture surface images. Feature 
extraction, LP-MOGA feature selection and final 
discrimination are successfully implemented and good 
results are obtained. Our experimental results show that 
the LP-MOGA selected a good subset of features. Our 
experimental results show that it balances the number of 
features selected and the error rate very well. In the 
future, we will plan to extend this approach to additional 
features and more complex background clutter. 
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