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Abstract— Pseudoknotted RNA structure prediction is an
important problem in bioinformatics. Existing polynomial
time algorithms can handle only limited types of pseu-
doknots, or have too high time or space to predict long
sequences. In this paper a heuristic algorithm is presented
to maximize stems and predict arbitrary pseudoknots with
O(n®) time and O(n) space for a large scale of 5000 bases.
Compared with maximum weighted matching algorithm,
our algorithm reduce space complexity from O(n?) to O(n);
and the experimental results show that its sensitivity is
improved from 80% to 87.8%, and specificity is increased
from 53.7% to 75.9%. Compared with genetic algorithm with
the accuracy of 83.3% and simulated annealing algorithm
with the accuracy of 79.7%, our algorithm increases the
predicted accuracy to 87.5%.

Index Terms— RNA structure, algorithm, pseudoknots

I. INTRODUCTION

RNA structures prediction plays an important role in
functional analysis of RNA molecules. Among the most
prevalent RNA structures is a motif known as pseudoknot.
Pseudoknots play a variety of diverse roles in biology.
These roles include forming the catalytic core of various
ribozymes, self-splicing introns, and telomerase. Addi-
tionally, pseudoknots play critical roles in altering gene
expression by inducing ribosomal frameshifting in many
viruses [1]. Plausible pseudoknotted structures have been
proposed (Pleij et al.) in 1985 and confirmed (Kolk et al.)
in 1998 for the 3’ end of several plant viral RNAs, where
pseudoknots are apparently used to mimic tRNA structure
[2]. Recently, pseudoknots were confirmed in some RNAs
of humans and many other species [3], [4].

Currently pseudoknot is not included in the majority
of the study for RNA secondary structure prediction. The
best algorithm predicts RNA secondary structure without
pseudoknots with O(n?®) time and O(n?) space and
is implemented by MFOLD and ViennaRNA programs.
Finding the best secondary structure including arbitrary
pseudoknots has been proved to be NP-hard [5].

An approach to pseudoknot prediction is the maximum
weighted matching (MWM) algorithm, considering only
the base paired action and no stacking action. It folds an
optimal pseudoknotted structure in O(n3) time with low
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accuracy and seems best suited to folding sequences for
which a previous multiple alignment exists [6].

Another approach adopts dynamic programming to
predict the tractable subclass of pseudokonts based on
complex thermodynamic model in O(n*) — O(n®) time
[71-[91.

Most methods for RNA folding which are capable of
folding pseudoknots adopt heuristic search procedures and
sacrifice optimality. Examples of these approaches include
genetic algorithms and simulated annealing algorithms
[10], [11].

Adjacent base pairs form stack, stacking and base pair-
ing actions in RNA molecules are the most primary and
stable actions. The adjacent continuous stack constitute
stem, and crossed stems construct pseudoknots, so search
the optimal structures based on combination with stem
zones has become new method to RNA structure pre-
diction, such as stem zone stacking algorithm presented
by Benedeti and stem zone random stacking algorithm
presented by Li WIJ [12], [13], predict nested secondary
structures. Recently Ruan give a heuristic algorithm based
on stem zone to predict secondary structure containing
pseudoknots with O(n*) time and O(n?) space [14].

Now the existing polynomial time algorithms can han-
dle only limited types of pseudoknots, or have too high
time and space to predict long RNA molecular. In this
paper for pseudoknotted RNA secondary structure pre-
diction, considering only stacking energy and neglecting
other secondary role, a heuristic algorithm is presented to
predict pseudoknotted RNA structure to maximize stems.
It takes O(n®) time and O(n) space to predict RNA
sequences with 5000 bases, and have good accuracy with
the sensitivity of 87.5% and specificity of 78.9% for the
sequences in Pseudobase database[15].

In section 2 we give the energy model for pseudoknot-
ted RNA secondary structure prediction. In section 3 a
heuristic algorithm is presented. In section 4 we briefly
conclude the paper.

II. RNA STRUCTURE PREDICTION

Let s = s1,s9,...,8, be an RNA sequence, base
s; € {A,U,C,G},1 < i < n. The subsequence s; ; =
Si,Si41,---,5j isasegment of 5, 1 <7 <5 <n.

If si&sj € {A&U, C&G,U&GY, then s; and s; may
constitute base pair (i, 7). Each base can at most take part
in one base pair. RNA secondary structure S is a set of
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base pairs for s. If (4,7) and (i+1,5—1) € S, base pairs
(i,7) and (i4+1,j—1) constitute stack (i,i+1:j—1,7),
and m(> 2) consecutive stacks form the stem (i,7 4 m :
j —m,j) with the length of m + 1. The energy of stem
(i,i+m:j—m,j)is denoted as E(i,i+m: j—m,j).

If base pairs (4, j) and (k, 1) are parallel (i < j < k <
or k <l < i < j)ornested i < k <1l < j
or k < i < j < 1), then base pairs (¢,7) and (k,1)
are compatible, otherwise base pairs (¢,j) and (k,1)
constitute pseudoknots (i < k < j <lork <i<l<j)
as Fig.1.

The major driving force of structure formation for RNA
molecules is Watson-Crick base pair and wobble G, U
base pair, and in particular stacking of adjacent base pairs
[16]. Pseudoknotted RNA secondary structure is a set of
base pair. Base pair and internal unpaired bases construct
loops. Stack doesn’t contain unpaired bases, and any other
kinds of loops contain one or more unpaired bases. Since
unpaired bases are destabilizing, stack is the only type of
loops that stabilize the secondary structure [16]. Therefore
for pseudoknotted RNA structure prediction, we give the
general energy model considering only stacking energy
and neglecting other secondary role.

Definition 1: SEM (stacking energy model of pseudo-
knotted RNA structure prediction)

For RNA sequence s, s € {A,U,C,G}", a secondary
structure S is a set of base pairs such that if (i,j) € S
then

D (@5 € S, if (i,/)) N, 5") # O, then (i, j) =
(W', 5)-

2(i,5) € S, (i,4) € (4,0),(C,G),(U,G) and j —
i >4

3)if (i+1,j—1) € S, then (i,5) and (i + 1,5 — 1)
form stack with the energy of E(i,i+1:j5 — 1,7).

Hif (i 4+ 1,5 —-1),,5), @ +1,j/—1) € S5 =
Sity 85 = sj/and Si+1 = Si'+1,8j—1 = S5/—1, then E(Z, i+
1:5—1,5) = E@{,¢+1:35 —1,7). That is, the size
of stacking force is determined by base pair itself and
adjacent bases pair.

5)if (i+1,7—1) € S, then the energy of S is F(S) =
SicicjenE(i i+ 115 =1, 7).

So the problem of pseudoknotted RNA structure pre-
diction is to find a secondary structure S containing pseu-
doknots with minimal energy for given RNA sequence s
under SEM model.

III. HEURISTIC ALGORITHM

The maximum weighted matching algorithm considers
only the base paired action and no stacking action, so
calculated results contain many redundant base pairs,
which don’t exist in real structure.

Adjacent base pairs form stack, and the adjacent con-
tinuous stack constitute stem. A pseudoknot is the cross
of two stems. Stems reduce folding free energy of pseu-
doknots structure, and are the main action formation to
stabilize RNA structure. The more the number of base
pairs is, the more stable the stem is. So we study stem
problem to find the key to RNA structure prediction.
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A. Algorithm

Now existing polynomial time algorithms can handle
only limited types of pseudoknots, or have too high
time and space to predict long RNA molecular. Based
on relatively stable structure characteristics of stem, we
design a heuristic algorithm GS for pseudoknotted RNA
structure prediction to maximize stems as follows.

GS algorithm:
Given sequence s, let I be the energy of the maximal
stem.
step 1:
Search the maximal stem.
min =0
Fori=1ton—8
Forj=9ton
If s;;41 and s;_1; form stack, calculate the
energy of maximal stem
If E < min, min = E, store the start position,
the end position and the length of maximal stem.
End for
End for
step 2:
If (min < 0), output the maximal stem with
minimal energy. Replace the bases in maximal
stem with empty string, then go to stepl.

First we calculate the energy of all impossible stems
in the sequence, and search the maximum stem. Then
marked the bases in the maximum stems and make them
can’t be paired in the back calculation. The same handle
is implemented until no stem.

If (4,7) € S, then several stems may both start with
(4,4). But we need only select the maximal stem from
them in GS algorithm, and the number of the selected
stems is at most O(n?).

In GS algorithm, the bases in maximal stem are re-
placed with empty, not be delete and be paired in the
back calculation. The sequence and position of the bases
in maximal stem are kept, so that the redundancy stack
is eliminated, which don’t exist in real structure, and the
accuracy of calculation is improved.

If we denote stem list with matrix, the space complexity
is O(n?). We use variables to store the positions and
length of two ends to stem, and only store the maximal
stem and no stem list in every loop, so the space com-
plexity is reduced to O(n).

B. Complexity

Only the data of maximal stem is stored in GS algo-
rithm to reduce the time and space complexity.

The dual loop were used in the search of stem, its time
complexity is O(kn?)(k is the length of stem). Let the
length of searched stem k1, ko, kyy,, then ky+ko++k,, <
n/2. So the time complexity of search for maximal stem
is O(k1n?+kon?+ +knn?) < O((n/2)n?) = O(n3/2),
and the time complexity of GS algorithm is O(n3).
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Only one-dimensional array and auxiliary variables are
used in the search of stem, so the space complexity of
GS algorithm is O(n).

C. Test results

There is no nested restriction to the stems in GS algo-
rithm, so the calculated structures can contain psudoknots.

We test the sequences in PseudoBase. Computer test
results show that the accuracy rate of GS algorithm is
more than 95 percent for about 20 percent sequences, and
more than 78 percent for about 60 percent sequences. The
algorithm can calculate the sequence with 5000 bases.

Four experimental examples are given as follows. They
are all computed in 1s. In the results, the unpaired bases
are denoted as :, and base pairs are denoted as () and [].

El:
brome mosaic virus
:((CLILCDY) =111
Output is as Fig.1.
H(@IHNIE
The accuracy is 100%.
E2:
physalis mottle virus
Sesstssssteesd ((CHITTTT)) B NN DD 83
Output is as Fig.2.
S((Crzz))CCELLTD )= 11110 0z
The accuracy is 100%.
E3:
odontoglossum ringspot virus
SCCCCCCCC LTItz nIIIMIMMININM))
RRNH IR
Output is as Fig.3.
SCCCCCCCC IOz (CCCCccczzmmIMMMMINMN)))
RSB
The accuracy is 100%.
E4:

Homo sapiens mRNA

R (ISR IE
SNSRI ERINEINESIEII

Output is as Fig.4.

S (@ IEsEIInE)
SINNINIBREERNINNIBER) R B

The accuracy is 50%.

Figure 1. The result of brome mosaic virus
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Figure 2. The result of physalis mottle virus
The above one is the result of comparative sequence
analysis, another is that of GS algorithm.

IV. COMPARISON OF PERFORMANCE

According to the valuation criterion of gene prediction
algorithm, presented by Burset and Guigo in 1996, we
compare the predicted result of GS algorithm with that
of comparative sequence analysis, using sensitivity and
specificity as a target. The equation of sensitivity and
specificity is as follows:

Sensitivity (Sn):

TP
N =TprFN W
Specificity (Sp):
TP
SP = TP+ FP @

TP (true positive): the correctly predicted number of
base pair for true base pairs.

FN (false negative): the incorrectly predicted number
of base pair for true base pairs.

FP (false positive): the predicted number of base pair
for true single bases.

The sensitivity and specificity of four experiments
with GS algorithm are showed in Table.I. The average
sensitivity of GS algorithm is 87.5% and the average
specificity of GS algorithm is 78.9%.

MWM algorithm is the optimal combination one,
PKNOTS algorithm is the minimal energy one, and ILM
is the heuristic one based on stem, so we compare GS
algorithm with above three algorithms. ILM algorithm use
six sequences to compute and compare the performance,
we use the same six sequences to compare their sensitivity
and specificity as Table.Il.

It is showed that the performance of GS algorithm is
better than MWM algorithm, and many redundant base
pairs are deleted, through replacing delete with mark.
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Figure 3. The result of odontoglossum ringspot virus
The left one is the result of comparative sequence analysis, another is that of GS algorithm
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Figure 4. The result of Homo sapiens mRNA
The above one is the result of comparative sequence analysis, another is that of GS algorithm

For single sequence, PKNOTS algorithm gets the op-  But compared with MWM, PKNOTS and ILM algorithm,
timal structure, ILM algortihm computes the optimal

GS algorithm remarkably reduces time and space, through
structure in each iterated loop, GS algorithm computes the ~ replacing base pairs with stem.
maximal stem in each iterated loop. So the accuracy of We compare GS algorithm with genetic and simulated
PKNOTS and ILM algorihm is better than GS algorithm. annealing algorithms as Table.IIl. It is showed that the
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TABLE 1.
EXPERIMENTAL DATA

Experiment 1th 2nd 3rd 4th Average

The number of bases 21 40 69 120 63

The number of base | 8 9 24 40 20

pairs

The number of predicted | 8 12 25 45 23

base pairs

The number of correct | 8 9 24 20 15

base pairs

Sensitivity 100%| 100%| 100%| 50% | 87.5%

Specificity 100%| 75% | 96% | 44.4% 78.9%
TABLE II.

COMPARISON OF GS ALGORITHM WITH MWM, PKNOTS AND ILM
ALGORITHM

Sequence MWM PKNOTS ILM GS

Target SN% SP%| SN% SP%| SN% SP%| SN% SP%

HIV-1-RT 100 | 84.6| 100 | 100 | 100 | 100 | 100 | 100

TYMV 100 | 63.2]| 100 | 96.0| 100 | 82.8| 100 | 100

TMV-3’up | 68.0| 41.5] 52.0| 59.1| 80.0| 80.0| 80.0| 60.6

TMV- 73.5| 49 97.0| 97.0| 76.5| 68.4| 58.8| 46.5

3’down

HDV 67.8| 45.2| 85.7| 75.0| 100 | 82.4| 96.4| 81.8

Anti-HDV 70.8| 38.6| 95.8| 69.7| 100 | 66.7| 91.7| 66.7

Average 80 53.7| 88.4| 82.8| 92.8| 80.0| 87.8| 75.9

predicted accuracy of GS algorithm is better than genetic
and simulated annealing algorithm.

TABLE IIL
COMPARISON OF GS ALGORITHM WITH GENETIC AND SIMULATED

ANNEALING ALGORITHM

Algorithm Accuracy
GS algorithm 87.5%
Genetic algorithm 83.3%
Simulated annealing algorithm 79.7%
Genetic and simulated annealing algorithms 87.0%

V. CONCLUSION

In this paper SEM model is built based on base pair
stacking force and neglecting other secondary role, and a
heuristic algorithm with O(n3) time and O(n) space is
presented to predict pseudoknotted RNA structure under
the model.

Computer test results show that the fast algorithm can
deal with a large scale of 5000 bases and have good
accuracy with the sensitivity of 87.5% and specificity of
78.9% for the sequences in Pseudobase database.

Compared with maximum weighted matching algo-
rithm, our algorithm reduce space complexity from O(n?)
to O(n); and the experimental results show that its sensi-
tivity is improved form 80% to 87.8%, and specificity is
increased from 53.7% to 75.9%. Compared with genetic
algorithm with the accuracy of 83.3% and simulated
annealing algorithm with the accuracy of 79.7%, our
algorithm increases the predicted accuracy to 87.5%.
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