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Abstract—Multifilter banks having all properties of 
symmetry, balancing, optimum time-frequency resolution, 
arbitrary order vanishing moment, orthogonality and  
compactly supported together are constructed for the first 
time. Thus overcome the shortcoming of the present 
orthogonal optimum time-frequency resolution multifilter 
banks that have only the properties of symmetry and 2-
order vanishing moment but not balanced. Balanced 
symmetric orthogonal multifilter banks with good regularity 
and time-frequency resolution are also provided. Due to the 
excellent properties, application experiments in image 
denoising and compression showed that, most of our 
multifilter banks outperform the best tools known as 
multiwavelet SA4 and wavelet CDF9-7 in denoising with 
texture image and smooth image. They also outperform 
multiwavelet SA4 or approximate wavelet DB4 in 
compression with texture image.  
 
Index Terms—multifilter bank, symmetry, balanced, 
vanishing moment, time-frequency resolution, regularity  
 

 

I. INTRODUCTION 
Multiwavelet is attracting more and more attention for 

its good properties such as orthogonality, symmetry, 
compactly supported, high vanishing moment and balance 
contrast with the traditional wavelet. These properties, 
along with optimum time-frequency resolution (OPTFR) 
are all very important in image processing. Generally, 
multiwavelet with i) orthogonality can keep energy 
conserved and make less redundancy; ii) the property of 
symmetry adapts to the function of human eyes. Image 
distortion can be reduced by symmetric extension 
transform of signals with finite length; iii) higher 
vanishing moment can lead to energy concentration in the 
part of low-frequency, with more zero values in the high 
frequency part; iv) in image processing, smooth error is 
more tolerable for human eyes than non-regular error that 
has the same energy, which emphasizes the importance of 
regularity for multiwavelet to improve the quality of 
reconstructed image; v) the property of locational time-
frequency also plays a vital role in the great task of 
coding with stable image compacting or digital 
video[1][2], especially when extracting high frequency 

components such as textures, edges and movements; vi) 
in image denoising with balanced multiwavelet, the 
aliasing of low-frequency and high-frequency signals can 
be avoid, and good performance can be expected without 
pre-filtering. Therefore, how to design the balanced 
multifilter banks with all the properties of symmetry, 
time-frequency resolution, high vanishing moment, 
regularity and orthogonality together is a valuable issue to 
pay attention to. 

In 1998, Jiang[4] first introduced the concept of time-
frequency resolution of multiwavelets. Using OPTFR 
orthogonal multiwavelets, Jiang got some ideal result in 
image compressing. To present, Jiang’s work is known as 
the best in dealing with OPTFR multiwavelet and its 
application. However, with only 2-order vanishing 
moment, the capability of approximating to smooth 
function for Jiang’s OPTFR orthogonal multiwavelets is 
limited. Moreover, the orthogonal OPTFR multiwavelets 
in Jiang[4] are not balanced. Although we can get 
balanced orthogonal scaling functions and mutliwavelets 
by rotating them for / 4π  angle, the symmetry of the 
scaling functions, multiwavelets and their multifilter 
banks would be lost, which are not optimum in its time-
frequency property any longer. Later in 2000, Jiang[6] 
introduced the parameterized representation of the 
symmetric orthogonal multiwavelet with different length 
of filter banks. But he only provided the example of the 
smoothest multifilter banks, without considering the time-
frequency property.  

With the properties of symmetry, balancing, optimum 
time-frequency resolution, arbitrary order vanishing 
moment and orthogonality synthetically concerned, 
construction method of multiwavelets is improved, and 
balanced symmetric orthogonal multifilter banks with 
arbitrary vanishing moment and optimum in time-
frequency resolution were obtained. Furthermore, 
application in image denoising and compression showed 
their advantages.  

II. RELEVANT THEORY 
Suppose a set of compactly supported scaling functions 

 whose integer translates form an 2
1, , ( )r L Rφ φ ∈
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orthogonal basis of , then (0V jV ) is called an orthogonal 
MRA. If the integer translates of a set functions 1, , rψ ψ  
form an orthogonal basis of , then 0W 1, , rψ ψ  is a set of 
orthogonal multiwavelets. Assume that P ,  are Q r r×  
matrix filter with matrix coefficient kP  and  satisfying 

 and (  and ，

kQ

0kP = r 0k rQ = 0k < k N> N Z+∈ ) , and  

1( , , )T
rφ φΦ = ,  are compactly supported 

refinable vector-valued function satisfying                 
1( , , )T

rψ ψΨ =

0
( ) 2 (2 )N

kk
x P x k

=
Φ = Φ −∑ ,

0
( ) 2 (2 )N

kk
x Q xΦ k

=
Ψ = −∑           (1) 

or equivalently satisfying                    

  , ,             (2) ˆ ˆ( ) ( / 2) ( / 2)Pω ω ωΦ = Φ ˆ ˆ( ) ( / 2) ( / 2)Pω ω ωΨ = Ψ

where 
0

( ) N ik
kk

P P e ωω −

=
= ∑ ，

0
( ) N ik

kk
Q Q e ωω −

=
= ∑ . If Ψ  is a 

compactly supported orthogonal multiwavelet, then P ,  
generate an orthogonal multiwavelet basis. The pair 

Q

{ , }P Q  is called multifilter bank, and P  ( Q , respectively) 
is called a matrix lowpass filter (matrix highpass filter, 
respectively). For a multifilter bank, the matrix filters P , 

are called finite impulse responses (FIR).   Q
If the compactly supported refinable vector Φ  is stable, 

then ˆ ˆ( ) lim ( )nn
ω ω

→∞
Φ = Φ , where                 

( ) 1
1

2
0 1

sin 2ˆˆ ( ) : ( )
2

n
n

i
n n n

v e ω
ω

ω ω
ω

+
+

−

+
Φ = ϒ             (3) 

ˆ ( ) :
2 2n n

P Pω ωω ⎛ ⎞ ⎛ ⎞ϒ = ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, 

and  is the normalized right 1-eigenvector of [7] 
[8]. 

0v (0)P

If  approximate Ψ , then  nΨ

           ˆ ˆ( ) ( 2) ( 2)n Qω ω ωΨ = Φn .                            (4) 

Let ( )mH ω  denote the modulation matrix of an FIR 
multifilter bank { , }P Q  defined by 

( ) ( )
( ) :

( ) ( )m

P P
H

Q Q
ω ω π

ω
ω ω π

+⎡ ⎤
= ⎢ ⎥+⎣ ⎦

. 

If  { , }P Q  generates an orthogonal multiwavelet, then 
( )mH ω  is lossless, i.e., ( )mH ω  is unitary for all ω : 

( ) ( ) ( ) ( ) , [ , ],
( ) ( ) ( ) ( ) , [ , ],
( ) ( ) ( ) ( ) 0 , [ ,

r

r

r

P P P P I
Q Q Q Q I
P Q P Q ],

ω ω ω π ω π ω π π
ω ω ω π ω π ω π π
ω ω ω π ω π ω π π

∗ ∗

∗ ∗

∗ ∗

+ + + = ∈ −

+ + + = ∈ −

+ + + = ∈ −  
where *B  denotes the Hermitian adjoint of the matrix B , 

rI  and 0 denote the r  identity matrix and zero matrix 
respectively[13]. 

r r×

Let  denote the space of all r  matrices with 
trigonometric polynomial entries whose Fourier 
coefficients are real and supported in . The 
transition operator  corresponding to 

NΗ r×

[1 , 1]N N− −

PΤ P  is defined on 
 by NΗ

( ) : ( ) ( ) ( ) ( ) ( ) ( ),
2 2 2 2 2 2P NH P H P P H P Hω ω ω ω ω ωω π π∗ ∗ πΤ = + + + + ∈Η

Thus, the representation matrix  of the operator PT PΤ  is 

2 1 , 1: (2 )P i j N i jT A N− − ≤ ≤ −= ， 

where 
0

: N

j k j kk
A P −=

P= ⊗∑ . 
If a matrix or an operator  satisfier Condition E, then 

the spectral radius of  is 1, 1 is the unique eigenvalue of 
 on the unit circle and 1 is simple. 

A
A

A
If transition operator PΤ  associated with P  satisfies 

Condition E, then there exists a unique compactly 
supported solution Φ  with ˆ (0) 0Φ ≠ . Furthermore Φ is a 
scaling function, i.e. Φ generates a multiwavelet Ψ [3]. In 
this case, { , }P Q  generates the scaling function Φ  and the 
multiwavelet Ψ . 

For , it is said that a function 0s ≥ f  is in Sobolev 
space  if ( )sW R 2 2 2ˆ(1 ) ( ) ( )s L Rω ω+ Φ ∈ , where f̂  denotes 
the Fourier transform of f . 

If the compactly supported refinable vector Φ  is stable, 
then the property that  Φ  has approximation of order m  
is equivalent to that P  satisfies the vanishing moment 
conditions of order [10].  m

Proposition 1: It is said that P  satisfies the vanishing 
moment conditions of order m  if there exist real 1 r×  row 
vectors with 0

0 0l ≠ , 0 mβ≤ < , such that  

0 0
0

0
0

(2 ) (0) 2 ,

(2 ) ( ) 0,

i l D P l

i l D P

α β α β α β β

α β

α β α β α

α β

β
α

β
π

α

− − −

≤ ≤

− −

≤ ≤

⎧ ⎛ ⎞
=⎪ ⎜ ⎟

⎪ ⎝ ⎠
⎨

⎛ ⎞⎪ =⎜ ⎟⎪ ⎝ ⎠⎩

∑

∑
 

where ( )D Pβ α ω−  denotes the matrix formed by the 
( β α− )th derivatives of the entries of ( )P ω [10]. 

Lemma 1: If P satisfies the vanishing moment 
conditions of order 1, then  

0 0 0
0 0 0(0) , ( ) 0l P l l P π= =   ,                                 (5) 

where the real 1 r×  row vector . 0
0 0l ≠

Difinition 1. An orthonormal multiwavelet system is 
said to be balanced (of order 1) if and only if the lowpass 
synthesis operator  preserves the constant signals, i.e., TL

0 0
TL u u= , . 0 ( ,1,1,1,1, )Tu =

Symmetric properties of multifilter banks are very 
important in image applications. For symmetric filters, 
symmetric extension transforms of the finite length 
signals can be carried out, which will improve the rate-
distortion performance in image compression. This paper 
only discuss symmetric filters with the coefficients jh , jg  
having the form 

0 1 2 1 2 2 1

0 1 2 3 1 0

0 1 2 3 5 4 3 2 1 0

[ , , , , , ]

0 0 0 0
, , , ,

h h h h h

a a a a a a
b b b b b b b b b b

γ γ γ− + =

,
⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
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0 1 2 1 2 2 1

0 1 2 3 1 0

0 1 2 3 5 4 3 2 1 0

[ , , , , , ]

0 0 0 0
, , , , ,

g g g g g

c c c c c c
d d d d d d d d d d

γ γ γ− + =

⎡ ⎤− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣

,
⎦

(6) 

for some ,, , ,j j j ja b c d R∈ , 0j jh g = , ,0j < 2 1j γ> + . The 
corresponding scaling functions Φ  and multiwavelets Ψ  
are not symmetric or antisymmetric. However, as 
multifilter banks, the rows of and 

 are symmetric and antisymme-
tric respectively, which are more important than the 
symmetry of ,  in image applications. 

0 1 2 1 2 2 1[ , , , , , ]h h h h hγ γ γ− +

0 1 2 1 2 2 1[ , , , , , ]g g g g gγ γ γ− +

P

Φ Ψ
In this paper, we will discuss orthogonal multifilter 

banks { ,  with ,  having the form of (6). It is  }P Qγ γ Pγ Qγ
obtained that (6) is equivalent to  

2
(2 1)

2
0 ( ) ( )

0 1
zz P Jγ

γ γω ω− + ⎡ ⎤
− =⎢ ⎥

⎣ ⎦
, 

2
(2 1)

2
0 ( ) ( )

0 1

lzz Q Jγ
γ γ Qω ω− + ⎡ ⎤−

− =⎢ ⎥
−⎣ ⎦

,           (7) 

for some integer  and that l 1 1s = ± , .  2 1s = ±

Lemma 2. Assume that the multfilter bank { ,  is 
orthogonal and that ,  satisfy (7), then 

}P Qγ γ

Pγ Qγ 1 2 1s s= = − . 
Proposition 2. A Causal FIR filter bank { ,  is 

orthogonal and satisfies (7) if and only if it can be 
factorized as  

}P Qγ γ

2
4 0 0

0 0 0 22 2
1 1 1

0 0 0 2

( ) 2 ( )
( ) 4

1 1
( ) ( )

1 1

P
I B B z

Q

w w D I
U z U z

v v D z I

γ

γ

γ

ω
ω

−

− −

⎡ ⎤
= − + ×⎢ ⎥

⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦⎣ ⎦⎣ ⎦

,                (8) 

where ，and 0 0, (w v O∈ 2) 0
0

0 0
:

0
B

b
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

，

0
1: (1,0, 1) (1,0, 1
2

Tb = ± ± )，

2 2 1

2 2

1 1( )
2 2

k k
k T T

k k

I u I u
U z z

u I u I
−−⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
， [6]. (2)ku O∈

Lemma 3. Suppose ,  are the orthogonal filters 
defined by (8), then  satisfies the balanced conditions 
of order 1 if and only if  

Pγ Qγ
Pγ

0
4

w r π
−

= , or 0 3
4

w r Dπ= − 0 , 

where , 0
1 0
0 1

D ⎡ ⎤
= ⎢ ⎥−⎣ ⎦

cos sin
sin cos

r θ
θ

θ

α θ θ
α θ θ

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

, 1θα = ± . 

Definition 2. For a real  vector function 1r×
2

1( , , ) ( )T
rF f f L R= ∈  supported in , define the energy 

moments of 
[0, ]N

F  in the time domain by  

( ) : ( ) ( ) ,T
FI y x F x F x y dxβ β β

+∞

+−∞
= −∫ Z∈ . 

Definition 3. For a real  vector function 1r×
2

1( , , ) ( )T
rF f f L R= ∈  supported in , if [0, ]N F  is in 

Sobolev space  for some , define for ( )sW R 0s ≥ β , 

0 2sβ≤ ≤ , the energy moments of F  in the frequency 
domain by 

1 ˆ ˆ( ) : ( )
2F ( ) iD F F e dβ β ωξξ ω ω ω
π

+∞
∗

−∞
= ∫ ω . 

 Definition 4. For a window function f  (with some 
smoothness and decay at infinity), the center in the time 
domain t  and the time-duration f∆  of f  are defined by 

2

: ( )t t f t dt
+∞

−∞
= ∫ E，

2
2 2: ( ) ( )f t t f t dt E

+∞

−∞
∆ = −∫ , 

where
2

: ( )E f t dt
+∞

−∞
= ∫ . If the Fourier transform f̂  of f  

satisfies 2ˆ ( ) ( )f L Rω ω ∈ , then the center in the frequency 
domain ω  and the frequency-bandwidth 

f̂
∆  of f  are 

defined by  
2

'ˆ: ( )f d Eω ω ω ω
+∞

−∞
= ∫ ，

2
2 2 '
ˆ

ˆ: ( ) ( )
f

f d Eω ω ω ω
+∞

−∞
∆ = −∫ , 

where 
2

' ˆ: ( )E f dω ω
+∞

−∞
= ∫ . 

The product of time-duration and frequency-bandwidth 
ˆf f

∆ ∆  is called the resolution cell. As the resolution of 
time and frequency can not be infinitely improved 
together, in order to get good property of time and 
frequency, it will have to make ˆf f

∆ ∆  minimized within 
the scope of which the Heisenberg uncertainty principle 
confined. 

If every component of 1( , , )T
rφ φΦ =  and 

 is normalized, i.e., 1( , , )T
rψ ψΨ =

2
1jφ =  and

2
1jψ = , 

then the frequency-bandwidth ˆ
jφ

∆  and ˆ jψ∆  are given by    

2
2 2
ˆ

1 ˆ ( )
2j j d

φ
ω φ ω ω

π
+∞

−∞
∆ = ∫ , 22 2

ˆ

1 ˆ ( )
2j j dψ ω ψ ω ω
π

+∞

−∞
∆ = ∫        (9) 

Definition 4. The sum of resolution cells ˆj jφ φ
∆ ∆  and 

ˆj jψ ψ∆ ∆  is called the areas of time-frequency window( also 
called the window area) 

ˆ ˆ1
:

j j jj

r

j
S φ ψφ= ψ= ∆ ∆ + ∆ ∆∑                               (10) 

To construct multiwavelets with good time-frequency 
properties means to find scaling functions and 
multiwavelets that are less in window area . S

III. MAIN ALGORITHM AND RESULT 
  This paper aims to construct the multiwavelets with 

good properties of arbitrary order vanishing moment, 
time-frequency property and regularity through synthetic 
method of the genetic algorithm and parameterization. 

A. The algorithm for computing time-frequency window 
area 

  It is not difficult to conclude that the frequency-
bandwidth of scaling function and multiwavelet function 
with high order ( )of Jiang’s[4] cannot be obtained, 
which will furthermore influent the calculation of window 
area under the high order condition. The 2-order energy 

2m >
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moments vector in the frequency domain of scaling 
function  and multiwavelet  calculated with the 
method of Jiang’s[4] is the crucial factor in working out 
the frequency-bandwidth. While the 2-order energy 
moments vector in the frequency domain is the right 

Φ Ψ

1 4  
eigenvalue of the representation matrix PT  which satisfier 
specific condition. The order of eigenvalue of 
representation matrix PT  with its 1 2  integer power is 
related with that of the vanishing moment m .If 2m < , 
there is no eigenvalue 1 4  for PT . If , 2m > 1 4  may not 
be the single eigenvalue of PT , which means the 
eigenvalue vector cannot be uniquely destined. 

After deep investigating into the relationship between 
the properties of energy moments in the time and 
frequency domain of scaling function, the window area of 
the scaling function and the multiwavelet function that 
have vanishing moments of arbitrary order can be 
obtained by using the algorithm of calculating the time-
frequency window area, which can choose the method of 
calculating the frequency-bandwidth according to the 
count of 1/4 eigenvalue of representation matrix PT  of the 
multiwavelet. Finally, the window area of the 
multiwavelet is worked out. If the 1/4 eigenvalue of 
representation matrix PT  is simple, then the frequency-
bandwidth ˆ

jφ
∆ and ˆ jψ∆ for the components of scaling 

functions and multiwavelet functions can be worked out 
using the 2-order energy moments vector in the frequency 
domain. Otherwise, ˆ

jφ
∆ and ˆ jψ∆  can be obtained by the 

formula of (3), (4) and compound Simpson. The window 
area  of scaling function and multiwavelets is finally 
worked out by using formula (10). 

S

The new algorithm for the area of time-frequency 
window is as follows: 

Step 1: Find the time-duration 
jφ

∆  and 
jψ∆ of the 

components of scaling functions and multiwavelet 
functions with 1 or 2-order energy moments vector in the 
time domain. 

Step 2:  Work out the eigenvalues of the representation 
matrix PT  

a) If 1 4  is a single eigenvalue, then find the 
frequency-bandwidths ˆ

jφ
∆ and ˆ jψ∆  of scaling functions 

and multiwavelet functions with the 2-order energy 
moments vector in the frequency domain, else 

b) Use the cascade formula (3), (4) and compound 
Simpson formula to find the frequency-bandwidths (9). 

Step 3: Compute the window area S  of the scaling 
functions and multiwavelet functions with formula (10). 

The main body of cascade formula (3) is ˆ ( )n ωϒ . If ω  
multiplicate n1 times ( ), where 1 8n = 1 1[ 2 ,2 ]n nω π π∈ − , and 
ω  is equally separated to  parts with the step 

length of 

1 2 12n n+ +

22n
π , then the time complexity of the cascade 

formula (3) is . During the calculation of 
compound Simpson formula, the lower limit of 

integration 

1 2 1
1(( 1)2 )n nO n + ++

12na π= − , the upper limit 12nb π= , with the 
step length 22nh π= . thus . In order to control 
the error within 

1 22n nn +=
510− , let 2 6n = . 

In fact, ( )j tφ  and ( )j tψ  are aperiodic continuous 
functions in their time-duration [ ]0, N , and the Fourier 

transform ˆ ( )jφ ω  and ˆ ( )jψ ω  of them are aperiodic 
continuous functions in their frequency-bandwidths 
( ),−∞ +∞ . As the attenuation of the window function W  
is a compulsory condition, which means if ω →∞ , then 

ˆ ( ) 0W ω → , and the attenuation of ˆ ( )W ω  gets faster with 
smoother window function W . It is feasible letting the 
lower limit and upper limit of integration in compound 
Simpson formula to be 12n π−  and 12n π  respectively. 

B.  New algorithm of designing balanced symmetric 
orthogonal multifilter banks 

This paper aims to construct the balanced symmetric 
orthogonal multifilter banks with arbitrary order 
vanishing moments through synthetic method of 
parameterization and solving the nonlinear equations of 
vanishing moment conditions. 

Step 1: Construct the parameterized representation of 
multifilter banks P  and Q  which satisfy the conditions of 
orthogonality and balanced of order 1. P  and  can be 
expressed as (6): 

Q

Step 2: Find the parameter that has maximum Sobolev 
regularity through the method of genetic algorithm.  

Step 3: Find the parameter that makes the minimum 
window area through the method of genetic algorithm. 

Step 4: Derive the conditions of vanishing moment of 
each order out according to Proposition 1. 

Step 5: Solve the nonlinear equations of vanishing 
moment conditions. Thus determine the parameter value 
of P  and . Then, compute the corresponding window 
area out. 

Q

Step 6: If the solution of vanishing moment condition is 
not unique, then 

Select the parameter that makes the maximum Sobolev 
regularity. 

Select the parameter that makes the minimum window 
area. 

Select the parameter which makes good perform both 
in regularity and time-frequency properties. 

Step 7: Verify that whether the representation matrix 
 of lowpass filter corresponding to the selecting 

parameters can satisfy the condition E [9] . 
PT

Although these multifilter banks only produce scaling 
functions and multiwavelet functions with approximate 
symmetry, the parameterized form of Pγ  can not only 
satisfy the condition of 1-order balance, but also has γ  
free parameters, which is suitable to use in constructing 
the balanced symmetric orthogonal multifilter banks with 
vanishing moment of high order and smoothness. 

During the 4th step of the algorithm, the vanishing 
moment condition of each order with parameters are 
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obtained. Thus the problem turns to the solving of 
nonlinear equations. In this paper, the classical Newton 
algorithm and secant algorithm are used, during which the 
error 1410ε −< . 

C.  Construction result 
The scaling function 1 2( , )φ φΦ =  corresponding to the 

balanced symmetric orthogonal multifilter banks 
constructed in this paper has the properties such as: 

a)  is balanced and orthogonal; Φ
b) The matrix lowpass filter of 1φ  and 2φ  are symmetric; 
c) The length difference of matrix lowpass filter of 1φ  

and 2φ  is 4. 
Table I shows the properties of the balanced symmetric 

orthogonal multifilter banks constructed in this paper 
when 2,3,4γ = . When the supported in [0, 2 1γ× + ] and 
the vanishing moment is N-order, O γ _VN and S γ _VN 
represent those multifilter banks of optimum time-
frequency resolution and optimum regularity, and 
OS γ _VN represent those of good time-frequency 
resolution and regularity properties concerned together. 
Here, O γ _VN and OS γ _VN are provided by this paper 
for the first time, and S2_V2, S3_V3, S4_V3 are the same 
in properties to Jiang’s [6].  

TABLE I.  CONTRASTING OF PROPERTIES BETWEEN VARIOUS 
MULTIWAVELETS 

Multi- 
wavelet Support Regularity Vanishing 

moment 
Window

area 
GHM 3 1.4999 2 8.1492

J_EX2 3 1.7470 2 9.2793

J_EX4 5 1.7018 2 8.9565

O2_V2 5 1.0000 2 5.7427

S2_V2 5 1.5379 2 5.7706

O3_V2 7 1.5842 2 7.1738

S3_V2 7 1.9984 2 7.6951

OS3_V2 7 1.9911 2 7.5803

O3_V3 7 1.9983 3 7.6961

S3_V3 7 2.0953 3 9.3950

OS3_V3 7 1.9883 3 7.7421

O4_V2 9 1.0000 2 5.6579

S4_V2 9 1.9967 2 6.4761

OS4_V2 9 1.9082 2 5.7589

O4_V3 9 1.5890 3 5.7281

S4_V3 9 2.3583 3 12.1789

OS4_V3 9 2.0460 3 7.3696

We representatively list the coefficients of OS3_V3 as 
follows, which is good in regularity and time-frequency 
resolution with 3-order vanishing moment. 

0 -0.00722419185700a = , , 1 0.02517755242000a =

2 -0.01657868919500a = , , 3 -0.05777958621500a =

4 0.06500377807200a = , , 5 0.49140113677500a =

0 0.00045619860800b = , , 
, ,  

1 -0.00158993069200b =

2 0.00131515341700b = 3 0.00458353609100b =

4 0.01561574451800b = , ,  5 -0.09976122681300b =

6 0.10003600408800b = , ,  7 0.47934452078400b =

0 -0.00459388502300c = , ,  1 0.01601048023800c =

2 -0.01749108641000c = , , 3 -0.06095944759900c =

4 0.25325770936800c = , ,  5 -0.42609987213500c =

0 -0.00045619860800d = , , 1 0.00158993069200d =

2 -0.00131515341700d = , , 3 -0.00458353609100d =

4 -0.04968552012300d = , , 5 0.21850026062700d =

6 -0.08821792720800d = , , 7 -0.43815648812600d =

Contrast with the OPTFR multiwavelets of Jiang’s [4], 
our multifilter banks in this paper have the advantages as 
follows 

a) The multifilter banks with optimum time-frequency 
resolution constructed in this paper have the vanishing 
moment of 3-order, comparing with the 2-order of Jiang’s. 

b) J_EX2 and J_EX4 are the multiwavelets listed in 
Jiang’s [4] as example 2 and 4. These orthogonal OPTFR 
multiwavelets are not balanced. Although we can further 
make them balanced by reversing the original 
multiwavelets for / 4π  angle, the symmetry of the 
balanced multiwavelets and the multifilter banks would 
be lost, which are not optimum in its time-frequency 
property any longer. The multifilter banks constructed in 
this paper are not only balanced, but also have the 
balanced optimum time-frequency resolution and the 
symmetry properties as concerned in formula (6). 

c) The window area of multifilter banks we constructed 
is smaller than those of Jiang’s [4]. For example, the 
window area of O2_V2 is 3.2 smaller than J_EX4, with 
their support being both 5. Although the support of 
O3_V2, OS3_V2, O3_V3, OS3_V3, O4_V2, OS4_V2, 
O4_V3 and OS4_V3 are longer than Jiang’s, the window 
areas of them are all smaller by contraries.  

IV. APPLICATION IN IMAGE PROCESSING 
 In order to test the performances of the balanced 

symmetric orthogonal OPTFR multiwavelets constructed 
in our research, we use the standard 512×512 grey image 
named Lena, Baboon and Barbara to do the simulating 
experiment, in which Barbara and Baboon are texture 
images, and Lena is the typical smooth image. As 
i)wavelets CDF9-7, DB4 and multiwavelet SA4 
performing well in image processing, ii)multiwavelet 
GHM being similar in form of multifilter bank with ours, 
iii) J_EX2 and J_EX4 being the best two OPTFR 
multiwavelets of Jiang’s[4], we choose these 
wavelets/multiwavelets to do our experiment. 

A.  Application in image denoising 
  During the experiment, we first produced three kind 

of noise image of different intensity ( 10,20,30σ = ). Then, 
with each kind of noise image decomposed to three 
degree, the denoising is pursued with Donoho’s 
SureShrink [9] threshold value program. Finally, the 
denoising images are reconstructed with multiwavelet 
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inverse transformation. Table II shows the peak signal to 
noise ratio (PSNR) of noising image and reconstructed 
denoising image. As shown in fig.1, the summery of 
denoising appreciation index (adding three PSNRs in the 
same row of Table II) to every multiwavelet for Barbara, 
Baboon and Lena are listed. In fig.2, a) is the original 
image of Lena, b), c) and d) are the denoising image 
processed by OS3_V3,  J_EX2 and SA4 seperately, based 
on the noising image of Lena with 20σ = (not showed 
here). Likewise, in fig.3, a) is the original image of 
Barbara, b),c) and d) are the denoising image processed 
by OS3_V3,  J_EX2 and SA4 seperately.    

The experiment results show that: 
a) The multifilter banks we have constructed are 

obviously better than multiwavelet GHM in image 
denoising. Moreover, the advantages become bigger with 
more noise. For texture image Barbara and Baboon, the 
value of PSNR is higher for 0.71 to 1.61dB; for image 
Lena, it is also higher for 1.04 to 3.14dB. Especially for 
multiwavelet O2_V2, it is lower in regularity for 0.5 and 
smaller in time-frequency window area for 2.4 contrasting 
with GHM when their vanishing moment is equivalent.  
 

TABLE II.  PSNR OF WAVELETS/MULTIWAVELETS UNDER DIFFERENT NOISING VARIANCE 

Barbara Baboon Lena 

10σ =  20σ =  30σ = 10σ = 20σ = 30σ = 10σ =  20σ =  30σ =NO. Wavelet/ 
multiwavelet 

28.1496 22.2005 18.8001 28.1474 22.1198 18.6556 28.1167 22.1389 18.7202
1 GHM 30.6647 26.3682 23.9871 28.3819 25.0009 22.8704 32.5039 27.9962 25.3866
2 J_EX2 30.5197 26.9376 25.0078 27.9729 24.8689 23.2836 33.2071 30.1380 28.3591
3 J_EX4 29.1941 25.5981 23.8247 26.8960 23.9753 22.4742 31.8879 28.6367 26.8396
4 SA4 31.2018 27.5280 25.5348 28.1598 25.1245 23.4536 33.4509 30.3375 28.5072
5 DB4 30.7848 27.0461 25.0840 28.0645 24.8914 23.3249 33.2711 30.1076 28.2982
6 CDF9-7 30.7179 27.0756 25.1927 28.0427 24.9556 23.3010 33.4065 30.2667 28.4657
7 O2_V2 30.6660 26.9326 25.0046 27.9327 24.9578 23.2667 33.2412 30.1116 28.2402
8 S2_V2 30.6605 26.9206 25.0069 27.9469 24.9486 23.2635 33.2448 30.1110 28.2377
9 O3_V2 31.0349 27.2572 25.2795 28.1598 24.9970 23.3488 33.4039 30.2302 28.4100
10 S3_V2 31.3730 27.5580 25.5221 28.2497 25.0891 23.3940 33.5263 30.3600 28.5241
11 OS3_V2 31.3384 27.5298 25.5045 28.2603 25.0936 23.3923 33.5374 30.3574 28.5213
12 O3_V3 31.3638 27.5615 25.5203 28.2466 25.0893 23.3938 33.5266 30.3601 28.5243
13 S3_V3 31.3405 27.6143 25.5979 28.3081 25.0974 23.3776 33.5227 30.3168 28.4890
14 OS3_V3 31.3607 27.5560 25.5357 28.2769 25.0810 23.3843 33.5485 30.3669 28.5214
15 O4_V2 30.7447 27.0463 25.0754 28.0922 24.9631 23.2851 33.2771 30.1425 28.3025
16 S4_V2 31.1218 27.2738 25.2918 28.1366 25.0389 23.3521 33.4648 30.3021 28.4240
17 OS4_V2 30.8504 27.0896 25.1459 28.0207 24.9708 23.3328 33.3107 30.175 28.3244
18 O4_V3 30.6640 26.9901 25.0428 27.9602 24.9712 23.3036 33.2850 30.1262 28.2907
19 S4_V3 30.9655 27.3312 25.4186 27.9920 24.9662 23.3051 33.1317 30.0562 28.2978
20 OS4_V3 31.2181 27.4192 25.5081 28.1779 25.0504 23.4058 33.4454 30.2709 28.4707

 

 
a) Barbara                                                               b) Baboon                                                                c) Lena 

Figure 1.  Denoising performance of different Wavelet/Multiwavelet  

 
a)the original image of Lena                           b) OS3_V3                                            c) J_EX2                                               d) SA4 

Figure 2.  Denoising performance of different Wavelet/Multiwavelet with Lena ( 20σ = ) 
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a)the original image of Barbara                            b) OS3_V3                                            c) J_EX2                                              d) SA4 

Figure 3.  Denoising performance of different Wavelet/Multiwavelet with Barbara ( 20σ = ) 

Further more, its performance with Lena and Barbara are 
greatly better than GHM. 

b) Contrast with multiwavelet J_EX4(NO.3), 
multiwavelet O2_V2(NO.7) has the same support, but 
lower in regularity for 0.7 and smaller in time-frequency 
window area for 3.2, which makes good greatly for its 
performance in image denoising. In fig. 1, we can see 
that O2_V2 perform better in denoising for all the three 
images than J_EX2 (NO.2), which was the best 
multiwavelet of Jiang’s. 

c) As shown in fig. 1, from multiwavelet SA4(NO.4) 
to wavelet CDF9-7(NO.6) and  DB4(NO.5), the 

denoising performance decrease in turn, and SA4 is the 
best one at present. However, the synthetic performances 
of our multiwavelets(NO10. TO NO.14) in image 
denoising are better  than SA4.   

In summery, the multifilter banks constructed in this 
paper have good performances in both texture image and 
smooth image. Especially for S3_V2, OS3_V2, O3_V3, 
S3_V3 and OS3_V3, their performances in image 
denoising are better than not only the best multiwavelet 
SA4, but also the best wavelet CDF9-7 at present. 

TABLE III.  PSNR OF WAVELETS/MULTIWAVELETS IN COMPRESSING WITH DIFFERENT COMPRESSING RATIO 

 
Barbara Baboon Lena NO. Wavelet/ 

multiwavelet 
16:1 32:1 64:1 16:1 32:1 64:1 16:1 32:1 64:1 

1 GHM 28.1833 25.1393 23.3500 24.6406 22.7511 21.4624 34.5513 31.1196 28.1739
2 J_EX2 29.7339 26.1370 23.6241 25.3085 23.0975 21.6889 35.6398 32.0850 28.6669
3 J_EX4 26.5333 24.0995 22.2643 24.0833 22.1177 21.0473 32.4086 28.8778 25.8550
4 SA4 29.5402 26.0751 23.6423 25.3112 23.0124 21.6230 35.6983 31.9372 28.4684
5 DB4 29.9789 26.2356 23.6681 25.3216 23.0708 21.6884 35.6657 31.9305 28.3906
6 CDF9-7 30.3255 26.4018 23.7980 25.5048 23.1999 21.7113 36.3287 32.7832 29.2587
7 O2_V2 29.7733 26.1491 23.5683 25.2666 23.0666 21.6941 35.5921 31.8970 28.4569
8 S2_V2 29.7684 26.1465 23.5672 25.2639 23.0629 21.6931 35.5884 31.8877 28.4530
9 O3_V2 29.3660 26.1106 23.5552 25.2353 23.0083 21.6464 35.2839 31.6400 28.3022

10 S3_V2 29.8516 26.4345 23.7064 25.3399 23.0522 21.6706 35.5838 31.8972 28.5129
11 OS3_V2 29.7959 26.3964 23.6811 25.3300 23.0404 21.6701 35.5467 31.8634 28.4922
12 O3_V3 29.8511 26.4346 23.7065 25.3400 23.0525 21.6706 35.5837 31.8972 28.5138
13 S3_V3 29.8952 26.5441 23.7693 25.3255 23.0454 21.6464 35.5271 31.7922 28.4498
14 OS3_V3 29.8723 26.4444 23.7158 25.3431 23.0616 21.6750 35.5883 31.9071 28.5120
15 O4_V2 29.9025 26.2353 23.6407 25.2453 23.0454 21.6685 35.4364 31.7293 28.4307
16 S4_V2 29.7660 26.2629 23.6102 25.2441 23.0298 21.6611 35.5408 31.8207 28.4149
17 OS4_V2 30.0384 26.3106 23.6948 25.2863 23.0537 21.6729 35.5757 31.8335 28.5172
18 O4_V3 29.7399 26.1538 23.5989 25.2154 23.0249 21.6555 35.3598 31.6691 28.3744
19 S4_V3 29.8048 26.2381 23.6644 25.2151 22.9445 21.6063 34.7106 31.3981 28.2485
20 OS4_V3 29.8185 26.4303 23.7256 25.3054 23.0149 21.6471 35.4291 31.7070 28.4855

 
a) Barbara                                                               b) Baboon                                                                 c) Lena 

Figure 4.  Compressing performance of different Wavelet/Multiwavelet  
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B.  Application in image compression 
During the experiment, the multiwavelet is 

decomposed to 5 degree first. Then, job of quantification 
and compression are done by the improved SPIHT 
algorithm [12]. Finally, decoding for SPIHT bit current 
and image reconstructing through multiwavelet inverse 
transformation are performed. As the aim of our 
experiment is to contrast with the different performances 
of various multiwavelets/wavelets, the process of 
arithmetic coding for bit current which is coded by 
SPIHT is neglected. The contrasting experiment based 
on SPIHT bit current can well demonstrate the difference 
performances of the multifilter/filter banks. Table III 
shows the values of PSNR for the multiwavelets/ 
wavelets dealing with Barbara, Baboon and Lena with 
the compression rate of 16:1, 32:1 and 64:1 . 

From the experiment we found that: 
a) The performances of the multifilter banks we 

constructed in image compression are obviously better 
than that of GHM. As for image Barbara, Baboon and 
Lena, the value of PSNR of our result is higher than that 
of GHM for 0.42 to 1.86dB, 0.23 to 0.70dB and 0.34 to 
1.04dB separately. 

b) From fig. 4 we know, as for the three images we 
chose, most of our multifilter banks performed better 
than J_EX4 in image compression. As J_EX2 being the 
OPTFR multiwavelet of Jiang’s[4] with shortest 
supported in [0,3], most of our multifilter banks 
performed better than J_EX2 in compression with 
Barbara, and approximate J_EX2 with Baboon.  

c) As shown in a) and b) of fig. 4, the best 
performances in compressing with texture image Barbara 
and Baboon are made by wavelet CDF9-7, wavelet DB4 
and multiwavelet SA4. However, most of our 
multiwavelets are synthetically better performed than the 
best multiwavelet SA4, and better than or approximate 
that of wavelet DB4. 

Image compression experiments show that, the 
performances of most of our multiwavelets are better 
than that of SA4 and approximate wavelet DB4. 

It is not difficult to see that, the performances of 
OS3_V2, S3_V2, O3_V3, S3_V3, OS3_V3 in image 
compression are better than that of the others especially 
when dealing with texture images.    

V. CONCLUSION 
In this paper, construction method is improved to 

obtain the multifilter banks that have good properties and 
better performances in image processing. By introduce 
the time-frequency property to the construction of 
balanced symmetric orthogonal multifilter banks, we first 
obtained the optimum time-frequency resolution 
multifilter banks which have arbitrary vanishing moment. 
With the properties of vanishing moment, regularity, 
time-frequency resolution synthetically concerned, we 
first constructed the multifilter banks which have good 
performances both in regularity and time-frequency 
resolution. Furthermore, the smoothest balanced 
symmetric orthogonal multifilter bank is obtained. 
Application experiments in image processing show that, 

the performances of most of our multifilter banks in 
image denoising are better than that of multiwavelet SA4 
and wavelet CDF9-7. As for image compression, their 
performances are better than that of SA4 and 
approximate wavelet DB4.  
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