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Abstract—The fundamental matrix captures the intrinsic 
geometric properties of two images of a same 3D scene. It 
should be of rank two for all the epipolar lines to intersect in 
a unique epipole. Traditional methods of enforcing the rank 
two property of the matrix are to parameterize the 
fundamental matrix during the estimation. This usually 
results in a system of nonlinear multivariable polynomial 
equations of higher degree. The solution of which is then 
hand over to some numerical techniques. Numerical 
precision analysis and convergence proof of these solutions 
are needed but neglected. This paper studies the structure of 
the typical nonlinear multivariable polynomial equations 
encountered in the fundamental matrix estimation with 
rank constraint. An algebraic method is presented to solve 
this type of equations. The method is based on the classical 
Lagrange multipliers method. After careful transformations 
of the problem, we reduce the problem to the solution of a 
single variable polynomial equation. 
 
Index Terms—computer vision, epipolar geometry, 
fundamental matrix, nonlinear multivariable equations 
 

I.  INTRODUCTION 

The study of the geometric and algebraic constraints 
that hold among multiple views of the same 3D scene is 
called the geometry of multiple views [7]. Specifically, 
the epipolar geometry is the geometry relating two 
images of a 3D scene captured from two pinhole cameras 
from distinct positions.  In epipolar geometry, the 
observed 3D point P and the baseline joining the optical 
centers O and O' of the two cameras define the epipolar 
plane. The projections of point P through projection 
centers O and O' onto the two image planes of the 
cameras are p and p' respectively. The two points e and e' 
at which the baseline intersects the image planes are 
called the epipoles of the two cameras. Let the 
homogeneous coordinates of p and p' be (x, y, 1) and (x', 
y', 1) respectively, it is well known that there is a 3×3 
matrix F such that 

 ( )

'

'1 0
1

x
x y F y

⎛ ⎞
⎜ ⎟

=⎜ ⎟
⎜ ⎟
⎝ ⎠

. (1) 

This matrix is called the fundamental matrix and it 
represents the epipolar constraint that holds between two 
views of the same 3D scene. It is defined only up to a 
scale and has rank 2. So the fundamental matrix has only 
seven independent parameters. The epipolar geometry is 
useful in 3D scene reconstruction. It can also be used to 
limit the search space for point correspondences in stereo 
vision and to constrain the set of possible motions in 
camera motion analysis. 

The computation of the fundamental matrix given a set 
of point correspondences between two images has been 
studied for decades. The fundamental matrix should be of 
rank two for all the epipolar lines to intersect in a unique 
epipole. Most of the traditional methods for estimating 
the parameters of the fundamental matrix usually ignore 
the rank two property of the matrix at the first step of 
derivation and then replace the computed matrix with a 
new matrix to enforce this constraint. So the resulting 
matrix is only an approximation to an ideal fundamental 
matrix that captures the accurate geometric relationship 
of the two views. A few methods try to estimate the 
fundamental matrix with rank-2 constraint through 
nonlinear minimization in parameter space [1, 2, 3, 7, 10, 
14, 17]. The resulting objective functions to minimize are 
nonlinear. The minimization technique is usually based 
on Newton-Raphson method which is time consuming 
and may not always converge. 

This paper presents an effective method to solve the 
typical constrained minimization problem encountered in 
the fundamental matrix estimation with rank-2 constraint. 
In section 2 we present a brief overview of the previous 
methods for the fundamental matrix estimation and 
introduce the constrained minimization problem. In 
section 3 we present the proposed effective method to 
solve the typical minimization problem. The method is 
based on the classical method of Lagrange multipliers for 
solving equality constraint problems. Section 4 is the 
conclusion. 
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II.  STATEMENT OF THE PROBLEM 

Longuet-Higgins first proposed the eight-point 
algorithm to compute the essential matrix for calibrated 
cameras in 1981 [11]. Faugeras and Hartley applied the 
eight-point algorithm to derive the fundamental matrix in 
[4, 5]. Since that time, a large number of methods have 
been developed to estimate the fundamental matrix. 
Those methods can be classified into three categories: 
linear method, iterative method and robust method [1]. 
The input to those methods is a set of point 
correspondences between the two images.  

Linear methods are simple, fast and easy to implement. 
They provide good estimate when noise level is low and 
there is no outliers of point correspondences. They are 
often utilized in more complicated estimation schemas. 
Let the fundamental matrix F be 

 
11 12 13

21 22 23

31 32 33

f f f
F f f f

f f f

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 (2) 

and the set of point correspondences between the two 
images be 

 

'

' ' , 1, 2,3,
1 1

i i

i i i i

x x
p y p y i

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= ↔ = =⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

L . (3) 

From the epipolar constraint (1), a linear equation in the 
nine parameters of the fundamental matrix is obtained for 
each point match 

 0it f = , (4) 

where 

 ( )' ' ' ' ' ', , , , , , , ,1i i i i i i i i i i i i it x x x y x y x y y y x y=  (5) 

and 

       ( )11 12 13 21 22 23 31 32 33, , , , , , , , Tf f f f f f f f f f= . (6) 

The seven-point method has the advantage of 
computing the fundamental matrix using only seven point 
correspondences [7, 15, 16].  In this case, the solution to 
the system of linear equations 

 

1

2

7

0

t
t

f

t

⎛ ⎞
⎜ ⎟
⎜ ⎟ =
⎜ ⎟
⎜ ⎟
⎝ ⎠

M
 (7) 

is a 2-dimensional space of  the form 

 1 2(1 )F F Fα α= + − , (8) 

where α is a scalar variable. Since the fundamental matrix 
is rank deficient, setting 

 1 2det( (1 ) ) 0F Fα α+ − =  (9) 

will result in a cubic polynomial equation in α. 
Substituting back the real solutions (discarding the 
complex solutions) of (9) into (8) gives one or three 
possible solutions of the fundamental matrix.  

The most notable and the simplest linear method of 
computing the fundamental matrix is the eight-pint 
algorithm. Suppose that eight point correspondences are 
given. We can set up a system of homogeneous linear 
equations of the form 

 

1

2

8

0

t
t

f

t

⎛ ⎞
⎜ ⎟
⎜ ⎟ =
⎜ ⎟
⎜ ⎟
⎝ ⎠

M
. (10) 

By setting one of the parameters of F to 1, (10) 
becomes a system of eight non-homogeneous linear 
equations with eight unknowns. The solution of the 
resulting equations is sufficient for estimating the 
fundamental matrix [4, 5, 6, 7]. When more than eight 
points are available, F can be estimated using linear least 
squares by minimizing the residual of (1) for each point 
correspondences 

 ( )2

1
minimize

n

iF i
t f

=
∑ . (11) 

The iterative methods start from an initial estimate of 
the fundamental matrix then iterate to find the final F that 
minimizes algebraic error. Luong and Faugeras proposed 
an iterative method that minimize the following equation 
[12] 

 2minimize ( )i iF i
w t f∑ , (12) 

where  

 2 2 '2 ' 2
1 2 1 2

1 1
iw

l l l l
⎛ ⎞

= +⎜ ⎟+ +⎝ ⎠
, (13) 

 

'
1 1

' '
2 2

'
3 3

, T
i i

l l
Fp l F p l

l l

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= = ⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

. (14) 

Robust methods of fundamental matrix estimation are 
needed when noise level in image point measurements is 
high and incorrect point correspondences are present. M-
Estimators try to reduce the effect of point noise and 
outliers by applying weight functions [15, 16]. They are 
based on solving a following weighted least squares 
problem 
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 2minimize ( )i iF i
w t f∑ , (15) 

where wi is a weight function. There have been many 
weight functions proposed for the M-Estimator method. 
A common weight function is proposed by Huber as [8] 

 

1

3

0 3

i

i i
i

i

r

w r
r

r

σ
σ σ σ

σ

⎧ ≤
⎪
⎪= < ≤⎨
⎪
⎪ <⎩

, (16) 

where ri is the residual tif of each point.  
Since there is no efficient method to solve nonlinear 

multivariable polynomial equations of higher degree, the 
minimization of (11), (12), and (15) usually ignores the 
rank-2 constraint of the fundamental matrix during the 
estimation. The obtained matrix is transformed into a new 
rank-2 matrix through singular value decomposition if the 
rank-2 constraint is needed.  

To enforce the rank-2 property of the matrix during the 
estimation, we need to solve a constrained minimization 
problem of the form 

 

2minimize ( )

subject to det( ) 0.

i iF i

w t f

F =

∑
 (17) 

Traditional methods of solving (17) are to parameterize 
the matrix F and then convert the constrained 
minimization problem to an unconstrained minimization 
problem. One method of parameterization is to represent 
one column of the matrix F as a linear combination of the 
other two columns, such as 

 

a b a b
F c d c d

e f e f

α β
α β
α β

+⎛ ⎞
⎜ ⎟= +⎜ ⎟
⎜ ⎟+⎝ ⎠

. (18) 

The main disadvantage is that it does not work when 
the first two columns are linearly dependent. Such 
singularities can be solved by switching to one of the 
alternative parameterizations during the minimization. 
Another method of parameterization of F uses both of the 
two epipoles ( , , 1)α β − and ' '( , , 1)α β − as parameters 

 
' ' ' '

33

a b a b
F c d c d

a c b d f

α β
α β

α β α β

+⎛ ⎞
⎜ ⎟= +⎜ ⎟
⎜ ⎟+ +⎝ ⎠

(19) 

where ' '
33 ( ) ( )f a b c dα α β β α β= + + + . We can 

choose different two rows and two columns to use as the 
basis to avoid singularities.  

After parameterizing the fundamental matrix and then 
eliminating dependent variables, the constrained 
optimization problem (17) is reduced to an unconstrained 

optimization problem. Traditional method to solve this 
problem is based on numerical Newton-Raphson iteration 
technique. The solution is time consuming and is not 
accurate enough sometimes. There is also no guaranty of 
convergence for this method. We will propose an 
algebraic method to solve this kind of constraint 
optimization problem in the next section. 

III.  THE PROPOSED METHOD 

In this section, we propose an effective and algebraic 
method to solve the typical constraint minimization 
problem of the type (17) encountered in the fundamental 
matrix estimation with rank-2 constraint.  

Classically, there are two methods to reduce the 
equality constraint optimization problem to an 
unconstrained optimization problem. One method which 
is widely adopted in the fundamental matrix estimation 
algorithms is to eliminate some dependent variables by 
substituting them into the objective function. This will 
first result in a system of polynomial equations of third 
degree. According to Bezout’s theorem, for 8 polynomial 
equations of the third degree, there are in general at most 
38=6561 common solutions if the 8 polynomial equations 
do not contain common factors. So the structure of the 
solutions is rather complicated.  

The other method of transforming the equality 
constraint optimization problem into unconstraint 
optimization problem is by means of the Lagrange 
multipliers. Although the method of Lagrange multipliers 
is not very practical for solving general equality 
constraint minimization problems, we show that this 
method can be applied to solve the problem (17) 
effectively. 

A. The basic polynomial equations 
The condition that det( ) 0F = in (17) means that one 

column of F is a linear combination of the other two 
columns. Without loss of generality, we suppose that 

 
11 12 13

21 22 23

31 32 33

0,
0,
0,

uf vf f
uf vf f
uf vf f

+ + =
+ + =
+ + =

 (20) 

where u and v are scalars that are not all zero.  
Let us define G1, G2, and G3 as 

 
1 11 12 13

2 21 22 23

3 31 32 33

,
,
.

G uf vf f
G uf vf f
G uf vf f

= + +
= + +
= + +

 (21) 

Now we construct the Lagrangian function 

 2
1 2 3

1
( )

n

i i
i

H w t f G G Gα β λ
=

= − − −∑ . (22) 

It is well known from the theory of optimization that 
the solution of this unconstrained problem (22) contains 
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the solution of the original constrained problem (17). 
Applying the Lagrange condition yields 

 

'

111

'

112

113

2 0,

2 0,

2 0,

n

i i i i
i

n

i i i i
i

n

i i i
i

H w x x t f u
f

H w x y t f v
f

H w x t f
f

α

α

α

=

=

=

∂ ⎛ ⎞= − =⎜ ⎟∂ ⎝ ⎠
∂ ⎛ ⎞

= − =⎜ ⎟∂ ⎝ ⎠
∂ ⎛ ⎞= − =⎜ ⎟∂ ⎝ ⎠

∑

∑

∑

 (23) 

 

'

121

'

122

123

2 0,

2 0,

2 0,

n

i i i i
i

n

i i i i
i

n

i i i
i

H w y x t f u
f

H w y y t f v
f

H w y t f
f

β

β

β

=

=

=

∂ ⎛ ⎞= − =⎜ ⎟∂ ⎝ ⎠
∂ ⎛ ⎞= − =⎜ ⎟∂ ⎝ ⎠
∂ ⎛ ⎞= − =⎜ ⎟∂ ⎝ ⎠

∑

∑

∑

 (24) 

 

'

131

'

132

133

2 0,

2 0,

2 0.

n

i i i
i

n

i i i
i

n

i i
i

H w x t f u
f

H w y t f v
f

H w t f
f

λ

λ

λ

=

=

=

∂ ⎛ ⎞= − =⎜ ⎟∂ ⎝ ⎠
∂ ⎛ ⎞

= − =⎜ ⎟∂ ⎝ ⎠
∂ ⎛ ⎞

= − =⎜ ⎟∂ ⎝ ⎠

∑

∑

∑

 (25) 

 

11 12 13

21 22 23

31 32 33

0,

0,

0.

H uf vf f

H uf vf f

H uf vf f

α

β

λ

∂
= + + =

∂
∂

= + + =
∂
∂

= + + =
∂

 (26) 

 
11 21 31

12 22 32

0,

0.

H f f f
u
H f f f
v

α β λ

α β λ

∂
= + + =

∂
∂

= + + =
∂

 (27) 

Equation (23), (24), and (25) can be organized as a 
system of linear equations of the following form 

 

'

1

'

1

11
1

12
'

13
1

21
'

22
1

23

31
1

32
'

3
1

'

1

1

2

2

2

2

2

2

2

2

2

n

i i i i
i

n

i i i i
i

n

i i i
i

n

i i i i
i

n

i i i i
i

n

i i i
i

n

i i i
i
n

i i i
i

n

i i
i

w x x t

w x y t

fw x t
f
fw y x t
f

w y y t f
f

w y t f
f

w x t f

w y t

w t

=

=

=

=

=

=

=

=

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑

∑

∑

∑

∑

∑

∑

∑

∑

3

.

u
v

u
v

u
v

α
α
α
β
β
β
λ
λ
λ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟=
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

 (28) 

Let us denote the coefficient matrix in (28) as Ф. Let D 
be the determinant of the coefficient matrix Ф. Let Dij be 
cofactors corresponding to row i and column j of the 
determinant of the coefficient matrix Ф. Then the 
solution of (28) is 

11 11 12 13 14 15

16 17 18 19

(
) / ,

f D u D v D D u D v
D D u D v D D

α α α β β
β λ λ λ

= + + + +
+ + + +

 (29) 

12 21 22 23 24 25

26 27 28 29

(
) / ,

f D u D v D D u D v
D D u D v D D

α α α β β
β λ λ λ

= + + + +
+ + + +

(30) 

13 31 32 33 34 35

36 37 38 39

(
) / ,

f D u D v D D u D v
D D u D v D D

α α α β β
β λ λ λ

= + + + +
+ + + +

(31) 

21 41 42 43 44 45

46 47 48 49

(
) / ,

f D u D v D D u D v
D D u D v D D

α α α β β
β λ λ λ

= + + + +
+ + + +

(32) 

22 51 52 53 54 55

56 57 58 59

(
) / ,

f D u D v D D u D v
D D u D v D D

α α α β β
β λ λ λ

= + + + +
+ + + +

(33) 

23 61 62 63 64 65

66 67 68 69

(
) / ,

f D u D v D D u D v
D D u D v D D

α α α β β
β λ λ λ

= + + + +
+ + + +

(34) 
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31 71 72 73 74 75

76 77 78 79

(
) / ,

f D u D v D D u D v
D D u D v D D

α α α β β
β λ λ λ

= + + + +
+ + + +

(35) 

32 81 82 83 84 85

86 87 88 89

(
) / ,

f D u D v D D u D v
D D u D v D D

α α α β β
β λ λ λ

= + + + +
+ + + +

(36) 

33 91 92 93 94 95

96 97 98 99

(
) / .

f D u D v D D u D v
D D u D v D D

α α α β β
β λ λ λ

= + + + +
+ + − +

(37) 

Substituting the solution of f into equations (26) and 
(27), we obtain 5 polynomial equations of degree three 

2
1 11 21 12 13 31

2
22 32 23 33

2
41 51 42 43 61

2
52 62 53 63

2
71 81 72 73 91

2
82 92 83 93

(( ) ( ))

( ( ) )

(( ) ( ))

( ( ) )

(( ) ( ))

( ( ) ) 0,

D u D D v D D u

D v D D v D

D u D D v D D u

D v D D v D

D u D D v D D u

D v D D v D

α α

α

β β

β

λ λ

λ

Γ = + + + +

+ + + + +

+ + + + +

+ + + +

+ + + + +

+ + + =

 (38) 

2
2 14 24 15 34 16

2
25 35 26 36

2
44 54 45 64 46

2
55 65 56 66

2
74 84 75 94 76

2
85 95 86 96

(( ) ( ))

( ( ) )

(( ) ( ))

( ( ) )

(( ) ( ))

( ( ) ) 0,

D u D D v D D u

D v D D v D

D u D D v D D u

D v D D v D

D u D D v D D u

D v D D v D

α α

α

β β

β

λ λ

λ

Γ = + + + +

+ + + + +

+ + + + +

+ + + +

+ + + + +

+ + + =

 (39) 

2
3 17 27 18 37 19

2
28 38 29 39

2
47 57 48 67 49

2
58 68 59 69

2
77 87 78 97 79

2
88 98 89 99

(( ) ( ))

( ( ) )

(( ) ( ))

( ( ) )

(( ) ( ))

( ( ) ) 0,

D u D D v D D u

D v D D v D

D u D D v D D u

D v D D v D

D u D D v D D u

D v D D v D

α α

α

β β

β

λ λ

λ

Γ = + + + +

+ + + + +

+ + + + +

+ + + +

+ + + + +

+ + + =

 (40) 

2 2
4 11 21 31

41 14

51 24 61 34 71 17

81 27 91 37

2 2
44 54 64 74 47

84 57 94 67
2 2

77 87 97

( )
( )
(( ) ) ( )

(( ) )

( ) ( )
(( ) )

( ) 0,

D u D v D
D D u
D D v D D D D
u D D v D D

D u D v D D D u
D D v D D

D u D v D

α α
αβ

αβ
αλ αλ

β β βλ
βλ

λ λ

Γ = + + +
+ +
+ + + + +
+ + + + +

+ + + +
+ + + + +

+ + =

 (41) 

2 2
5 12 22 32 42 15

52 25 62 35

72 18 82 28 92 38

2 2
45 55 65 75 48

85 58 95 68

2 2
78 88 98

( ) ( )
(( ) )

( ) (( ) )

( ) ( )
(( ) )

( ) 0.

D u D v D D D
u D D v D D

D D u D D v D D

D u D v D D D u
D D v D D

D u D v D

α α
αβ αβ

αλ αλ

β β βλ
βλ

λ λ

Γ = + + + +

+ + + + +
+ + + + +

+ + + + +
+ + + + +

+ + =

(42) 

Equations (38) to (42) are of the third degree. Classical 
algebraic methods to solve polynomial equations (38) to 
(42) include elimination of the unknowns through 
resultants or transforming the set of polynomial equations 
into Gröbner basis. According to Bezout’s theorem, for 5 
polynomial equations of third degree, there are in general 
35=243 common solutions. The computational 
complexity is also quite high.  We now propose a simple 
and clear method to solve this type of equations. 

B. The equations with two variables 
We first transform the set of polynomial equations in 5 

variables derived previously into an equation in two 
variables in this subsection. For presentation simplicity, 
we rewrite (38), (39), and (40) as 

 
1 2 3

1 2 3

1 2 3

0
0
0

b b b
c c c
d d d

α β λ
α β λ
α β λ

+ + =
+ + =
+ + =

. (43) 

From (43), we have 

 
1 2 3

1 2 3

1 2 3

0
b b b
c c c
d d d

α
β
λ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ =⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. (44) 

Since α, β, and λ are not all zero, the determinant of the 
coefficient matrix in (44) must be zero. That is 

 
1 2 3

1 2 3

1 2 3

0
b b b
c c c
d d d

= . (45) 

It is easy to see that (45) is a polynomial equation in 
two variables u and v. Equation (45) is a polynomial of 
the sixth degree.  

C. The equation with a single variable 
We transform the set of polynomial equations in 5 

variables derived previously into one polynomial 
equation in a single variable in this subsection. For 
presentation simplicity, we denote (38), (39), (40), (41), 
and (42) as 

2 2
1 1 2 3 4

2
5 6 7 8 9 0

A u A u A A u

A u A A u A u A

α α α β

β β λ λ λ

Γ = + + + +

+ + + + =
, (46) 
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2 2
2 1 2 3 4

2
5 6 7 8 9 0

B u B u B B u

B u B B u B u B

α α α β

β β λ λ λ

Γ = + + + +

+ + + + =
, (47) 

2 2
3 1 2 3 4

2
5 6 7 8 9 0

C u C u C C u

C u C C u C u C

α α α β

β β λ λ λ

Γ = + + + +

+ + + + =
, (48) 

2 2
4 1 2 3 4

2 2
5 6 7 8

2 2
9 10 11 12 0

S u S S u S

S u S S u S

S u S S u S

α α αβ αβ

αλ αλ β β

βλ βλ λ λ

Γ = + + + +

+ + + +

+ + + =

, (49) 

2 2
5 1 2 3 4

2 2
5 6 7 8

2 2
9 10 11 12 0

T u T T u T

T u T T u T

T u T T u T

α α αβ αβ

αλ αλ β β

βλ βλ λ λ

Γ = + + + +

+ + + +

+ + + =

. (50) 

From (46), we can construct 6 polynomial equations of 
the following form 

2 3 2 3 3
1 1 2 3

2 2 2 2
4 5 6

2 2 2 2
7 8 9 0

A u A u A

A u A u A

A u A u A

α α α α

α β α β α β

α λ α λ α λ

Γ = + + +

+ + +

+ + =

, (51) 

2 2 2 2
1 1 2 3

2 2 2 2
4 5 6

2
7 8 9 0

A u A u A

A u A u A

A u A u A

αβ α β α β α β

αβ αβ αβ

αβλ αβλ αβλ

Γ = + + +

+ + +

+ + =

, (52) 

2 2 2 2
1 1 2 3

2
4 5 6

2 2 2 2
7 8 9 0

A u A u A

A u A u A

A u A u A

αλ α λ α λ α λ

αβλ αβλ αβλ

αλ αλ αλ

Γ = + + +

+ + +

+ + =

, (53) 

2 2 2 2 2
1 1 2 3

3 2 3 3
4 5 6

2 2 2 2
7 8 9 0

A u A u A

A u A u A

A u A u A

β αβ αβ αβ

β β β

β λ β λ β λ

Γ = + + +

+ + +

+ + =

, (54) 

2
1 1 2 3
2 2 2 2

4 5 6

2 2 2 2
7 8 9 0

A u A u A

A u A u A

A u A u A

βλ αβλ αβλ αβλ

β λ β λ β λ

βλ βλ βλ

Γ = + + +

+ + +

+ + =

, (55) 

2 2 2 2 2
1 1 2 3

2 2 2 2
4 5 6

3 2 3 3
7 8 9 0

A u A u A

A u A u A

A u A u A

λ αλ αλ αλ

βλ βλ βλ

λ λ λ

Γ = + + +

+ + +

+ + =

. (56) 

From (49), we can construct 6 polynomial equations of 
the following form 

3 3 2 2
4 1 2 3 4

2 2 2 2
5 6 7 8

2 2
9 10 11 12 0

S u S S u S

S u S S u S

S u S S u S

α α α α β α β

α λ α λ αβ αβ

αβλ αβλ αλ αλ

Γ = + + + +

+ + + +

+ + + =

, (57) 

2 2 2 2
4 1 2 3 4

3 3
5 6 7 8

2 2 2 2
9 10 11 12 0

S u S S u S

S u S S u S

S u S S u S

β α β α β αβ αβ

αβλ αβλ β β

β λ β λ βλ βλ

Γ = + + + +

+ + + +

+ + + =

, (58) 

2 2
4 1 2 3 4

2 2 2 2
5 6 7 8

2 2 3 3
9 10 11 12 0

S u S S u S

S u S S u S

S u S S u S

λ α λ α λ αβλ αβλ

αλ αλ β λ β λ

βλ βλ λ λ

Γ = + + + +

+ + + +

+ + + =

, (59) 

3 2 3 2 2 2
4 1 2 3 4

2 2 2 2 2 2
5 6 7 8

2 2 2 2
9 10 11 12 0

u S u S u S u S u

S u S u S u S u

S u S u S u S u

α α α α β α β

α λ α λ αβ αβ

αβλ αβλ αλ αλ

Γ = + + +

+ + + + +

+ + + =

,(60) 

4
2 2 2 2 2 2

1 2 3 4

2 3 2 3
5 6 7 8

2 2 2 2 2 2
9 10 11 12

0u

S u S u S u S u

S u S u S u S u

S u S u S u S u

β

α β α β αβ αβ

αβλ αβλ β β

β λ β λ βλ βλ

Γ = =

+ + + +

+ + + +

+ + +

, (61) 

4
2 2 2 2

1 2 3 4

2 2 2 2 2 2
5 6 7 8

2 2 2 3 2 3
9 10 11 12

0u

S u S u S u S u

S u S u S u S u

S u S u S u S u

λ

α λ α λ αβλ αβλ

αλ αλ β λ β λ

βλ βλ λ λ

Γ = =

+ + + +

+ + + +

+ + +

. (62) 

Similarly, we can construct another 18 polynomial 
equations from (47), (48), and (50). In this way, we 
obtain 30 polynomial equations. The 30 polynomial 
equations can be thought of as a system of homogeneous 
linear equations in 30 variables α3u2, α3u, α3, α2βu2, α2βu, 
α2β, αβ2u2, αβ2u, αβ2, β3u2, β3u, β3, α2λu2, α2λu, α2λ, αβλu2, 
αβλu, αβλ, β2λu2, β2λu, β2λ, αλ2u2, αλ2u, αλ2, βλ2u2, βλ2u, 
βλ2, λ3u2, λ3u, and λ3. For this system of homogeneous 
linear equations to have nontrivial solutions, the 
determinant of the coefficient matrix Ψ has to be zero. 
This will result in a polynomial equation in single 
variable v. The explicit forms of the 30 row vectors of the 
coefficient matrix Ψ are 
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1 11 21 31 41 14

51 24 61 34 71 17

81 27 91 37 44

54 64 74 47

84 57 94 67

77 87 97

( , ,0, ,
( ) ,0, ,
( ) ,0,0,0,0, ,

,0, ,
( ) ,
0,0,0,0, , ,0,0,0,0,0,0,0),

D D v D D D
D D v D D D D
D D v D D D

D v D D D
D D v D D

D D v D

Ψ = + +
+ + + +
+ + +
+ +
+ + +

+

 (63) 

2 12 22 32 42 15

52 25 62 35 72 18

82 28 92 38 45

55 65 75 48

85 58 95 68

78 88 98

( , ,0, ,
( ) ,0, ,  
( ) ,0,0,0,0, ,

,0, ,
( ) ,0,0,0,0,

, ,0,0,0,0,0,0,0),

D D v D D D
D D v D D D D
D D v D D D

D v D D D
D D v D D

D D v D

Ψ = + +
+ + + +
+ + +

+ +
+ + +

+

 (64) 

3 11 21 12 13 31
2

22 32 23 33 41

51 42 43 61

2
52 62 53 63

71 81 72 73 91

2
82 92 83 93

( , ( ) ,

( ) , ,
( ) ,

( ) ,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0, , ( ) ,

( ) ,0,0,0,0,0,0),

D D D v D D

D v D D v D D
D D v D D

D v D D v D
D D D v D D

D v D D v D

Ψ = + + +

+ + +
+ + +

+ + +
+ + +

+ + +

 (65) 

4 14 24 15 16 34
2

25 35 26 36 44

54 45 46 64

2
55 65 56 66

74 84 75 76 94

2
85 95 86 96

( , ( ) ,

( ) , ,
( ) ,

( ) ,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0, , ( ) ,

( ) ,0,0,0,0,0,0),

D D D v D D

D v D D v D D
D D v D D

D v D D v D
D D D v D D

D v D D v D

Ψ = + + +

+ + +
+ + +

+ + +
+ + +

+ + +

 (66) 

5 17 27 18 19 37
2

28 38 29 39 47

57 48 49 67

2
58 68 59 69

77 87 78 79 97

2
88 98 89

(( , ( ) ,

( ) , ,
( ) ,

( ) ,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0, , ( ) ,

( ) 99,0,0,0,0,0,0),

D D D v D D

D v D D v D D
D D v D D

D v D D v D
D D D v D D

D v D D v D

Ψ = + + +

+ + +
+ + +

+ + +
+ + +

+ + +

 (67) 

6 11 21 31 41 14

51 24 61 34 71 17

81 27 91 37 44

54 64 74 47

84 57 94 67

77 87 97

(0, , ,0, ,
( ) ,0, ,
( ) ,0,0,0,0, ,

,0, ,
( ) ,0,0,0,0,

, ,0,0,0,0,0,0),

D D v D D D
D D v D D D D
D D v D D D

D v D D D
D D v D D

D D v D

Ψ = + +
+ + + +
+ + +
+ +
+ + +

+

 (68) 

7 12 22 32 42 15

52 25 62 35 72 18

82 28 92 38 45

55 65 75 48

85 58 95 68 78

88 98

(0, , ,0, ,
( ) ,0, ,
( ) ,0,0,0,0, ,

,0, ,
( ) ,0,0,0,0, ,

,0,0,0,0,0,0),

D D v D D D
D D v D D D D
D D v D D D

D v D D D
D D v D D D

D v D

Ψ = + +
+ + + +
+ + +

+ +
+ + +
+

 (69) 

8 11 21 31 41 14

51 24 61 34 71 17

81 27 91 37 44

54 64 74 47

84 57 94 67

77 87 97

(0,0,0, , ,0, ,
( ) ,0, ,
( ) ,0,0,0,0, ,

,0, ,
( ) ,0,0,0,0,

, ,0,0,0,0),

D D v D D D
D D v D D D D
D D v D D D

D v D D D
D D v D D

D D v D

Ψ = + +
+ + + +
+ + +
+ +
+ + +

+

 (70) 

9 12 22 32 42 15

52 25 62 35 72 18

82 28 92 38 45

55 65 75 48

85 58 95 68

78 88 98

(0,0,0, , ,0, ,
( ) ,0, ,
( ) ,0,0,0,0, ,

,0, ,
( ) ,0,0,0,0,

, ,0,0,0,0),

D D v D D D
D D v D D D D
D D v D D D

D v D D D
D D v D D

D D v D

Ψ = + +
+ + + +
+ + +
+ +
+ + +

+

 (71) 

10 11 21 12 13 31
2

22 32 23 33 41

51 42 43 61
2

52 62 53 63

71 81 72 73 91
2

82 92 83 93

(0,0,0, , ( ) ,

( ) , ,
( ) ,

( ) ,0,0,0,0,0,0,
, ( ) ,

( ) ,
0,0,0,0,0,0,0,0,0,0,0,0),

D D D v D D

D v D D v D D
D D v D D

D v D D v D
D D D v D D

D v D D v D

Ψ = + + +

+ + +
+ + +

+ + +
+ + +

+ + +

 (72) 
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11 14 24 15 16 34
2

25 35 26 36 44

54 45 46 64
2

55 65 56 66

74 84 75 76 94
2

85 95 86 96

(0,0,0, , ( ) ,

( ) , ,
( ) ,

( ) ,0,0,0,0,0,0,
, ( ) ,

( ) ,
0,0,0,0,0,0,0,0,0,0,0,0),

D D D v D D

D v D D v D D
D D v D D

D v D D v D
D D D v D D

D v D D v D

Ψ = + + +

+ + +
+ + +

+ + +
+ + +

+ + +

 (73) 

12 17 27 18 19 37
2

28 38 29 39 47

57 48 49 67
2

58 68 59 69

77 87 78 79 97
2

88 98 89 99

(0,0,0, , ( ) ,

( ) , ,
( ) ,

( ) ,0,0,0,0,0,0,
, ( ) ,

( ) ,
0,0,0,0,0,0,0,0,0,0,0,0),

D D D v D D

D v D D v D D
D D v D D

D v D D v D
D D D v D D

D v D D v D

Ψ = + + +

+ + +
+ + +

+ + +
+ + +

+ + +

 (74) 

13 11 21 31 41 14

51 24 61 34 71 17

81 27 91 37 44

54 64 74 47

84 57 94 67

77 87 97

(0,0,0,0, , ,0, ,
( ) ,0, ,
( ) ,0,0,0,0, ,

,0, ,
( ) ,0,0,0,0,

, ,0,0,0),

D D v D D D
D D v D D D D
D D v D D D

D v D D D
D D v D D

D D v D

Ψ = + +
+ + + +
+ + +
+ +
+ + +

+

 (75) 

14 12 22 32 42 15

52 25 62 35 72 18

82 28 92 38 45

55 65 75 48

85 58 95 68

78 88 98

(0,0,0,0, , ,0, ,
( ) ,0, ,
( ) ,0,0,0,0, ,

,0, ,
( ) ,0,0,0,0,

,  ,0,0,0),

D D v D D D
D D v D D D D
D D v D D D

D v D D D
D D v D D

D D v D

Ψ = + +
+ + + +
+ + +

+ +
+ + +

+

 (76) 

15 11 21 12
2

13 31 22 32 23 33 41

51 42 43 61

2
52 62 53 63

2
71 81 72 73 91 82

92 83 93

(0,0,0,0,0,0, , ( )

, ( ) , ,
( ) ,

( ) ,0,0,0,0,0,0,

, ( ) ,
( ) ,0,0,0,0,0,0,0,0,0),

D D D v

D D D v D D v D D
D D v D D

D v D D v D

D D D v D D D v
D D v D

Ψ = + +

+ + + +
+ + +

+ + +

+ + + +

+ +

 (77) 

16 14 24 15 16
2

34 25 35 26 36 44

2
54 45 46 64 55

65 56 66 74

2
84 75 76 94 85

95 86 96

(0,0,0,0,0,0, , ( )

, ( ) , ,

( ) ,
( ) ,0,0,0,0,0,0, ,

( ) ,
( ) ,0,0,0,0,0,0,0,0,0),

D D D v D

D D v D D v D D

D D v D D D v
D D v D D

D D v D D D v
D D v D

Ψ = + + +

+ + +

+ + + +

+ +

+ + + +

+ +

 (78) 

17 17 27 18
2

19 37 28 38 29 39 47

57 48 49 67
2

58 68 59 69

77 87 78 79 97
2

88 98 89 99

(0,0,0,0,0,0, , ( )

, ( ) , ,
( ) ,

( ) ,0,0,0,0,0,0,
, ( ) ,

( ) ,
0,0,0,0,0,0,0,0,0),

D D D v

D D D v D D v D D
D D v D D

D v D D v D
D D D v D D

D v D D v D

Ψ = + +

+ + + +
+ + +

+ + +
+ + +

+ + +

 (79) 

18 11

21 31 41 14

51 24 61 34 71 17

81 27 91 37 44

54 64 74 47

84 57 94 67 77 87 97

(0,0,0,0,0,0,0,0,0,0,0,0, ,
,0, ,

( ) ,0, ,
( ) ,0, ,

,0, ,
( ) ,0, , ,0),

D
D v D D D
D D v D D D D
D D v D D D

D v D D D
D D v D D D D v D

Ψ =
+ +
+ + + +
+ + +
+ +
+ + + +

(80) 

19 12

22 32 42 15

52 25 62 35 72 18

82 28 92 38 45 55 65

75 48 85 58 95 68

78 88 98

(0,0,0,0,0,0,0,0,0,0,0,0, ,
,0, ,

( ) ,0, ,
( ) ,0, , ,
0, , ( ) ,
0, ,  ,0),

D
D v D D D
D D v D D D D
D D v D D D D v D

D D D D v D D
D D v D

Ψ =
+ +
+ + + +

+ + + +
+ + + +

+

 (81) 

20

11 21 12 13 31

2
22 32 23 33 41

51 42 43 61

2
52 62 53 63

71 81 72 73 91
2

82 92 83 93

(0,0,0,0,0,0,0,0,0,0,0,0,
, ( ) ,

( ) , ,
( ) ,

( ) ,
0,0,0, , ( ) ,

( ) ,0,0,0,0,0,0),

D D D v D D

D v D D v D D
D D v D D

D v D D v D
D D D v D D

D v D D v D

Ψ =
+ + +

+ + +
+ + +

+ + +
+ + +

+ + +

 (82) 
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21

14 24 15 16 34

2
25 35 26 36 44

54 45 46 64

2
55 65 56 66

74 84 75 76 94
2

85 95 86 96

(0,0,0,0,0,0,0,0,0,0,0,0,
, ( ) ,

( ) , ,
( ) ,

( ) ,0,0,0,
, ( ) ,

( ) ,0,0,0,0,0,0),

D D D v D D

D v D D v D D
D D v D D

D v D D v D
D D D v D D

D v D D v D

Ψ =
+ + +

+ + +
+ + +

+ + +
+ + +

+ + +

 (83) 

22

17 27 18 19 37

2
28 38 29 39 47

57 48 49 67

2
58 68 59 69

77 87 78 79 97
2

88 98 89 99

(0,0,0,0,0,0,0,0,0,0,0,0,
, ( ) ,

( ) , ,
( ) ,

( ) ,0,0,0,
, ( ) ,

( ) ,0,0,0,0,0,0),

D D D v D D

D v D D v D D
D D v D D

D v D D v D
D D D v D D

D v D D v D

Ψ =
+ + +

+ + +
+ + +

+ + +
+ + +

+ + +

 (84) 

23 11

21 31 41 14

51 24 61 34 71 17

81 27 91 37 44 54 64

74 47 84 57 94 67

77 87 97

(0,0,0,0,0,0,0,0,0,0,0,0,0, ,
,0, ,

( ) ,0, ,
( ) ,0, , ,
0, , ( ) ,
0, , ),

D
D v D D D
D D v D D D D
D D v D D D D v D

D D D D v D D
D D v D

Ψ =
+ +
+ + + +
+ + + +
+ + + +

+

 (85) 

24 12

22 32 42 15

52 25 62 35 72 18

82 28 92 38 45 55 65

75 48 85 58 95 68

78 88 98

(0,0,0,0,0,0,0,0,0,0,0,0,0, ,
,0, ,

( ) ,0, ,
( ) ,0, , ,
0, , ( ) ,
0, , ),

D
D v D D D
D D v D D D D
D D v D D D D v D

D D D D v D D
D D v D

Ψ =
+ +
+ + + +
+ + + +
+ + + +

+

 (86) 

25

11 21 12 13 31

2
22 32 23 33

41 51 42 43 61

2
52 62 53 63

71 81 72 73 91
2

82 92 83 93

(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
, ( ) ,

( ) ,
, ( ) ,

( ) ,0,0,0,
, ( ) ,

( ) ,0,0,0),

D D D v D D

D v D D v D
D D D v D D

D v D D v D
D D D v D D

D v D D v D

Ψ =
+ + +

+ + +
+ + +

+ + +
+ + +

+ + +

 (87) 

26

14 24 15 16 34

2
25 35 26 36

44 54 45 46 64

2
55 65 56 66

74 84 75 76 94
2

85 95 86 96

(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
, ( ) ,

( ) ,
, ( ) ,

( ) ,0,0,0,
, ( ) ,

( ) ,0,0,0),

D D D v D D

D v D D v D
D D D v D D

D v D D v D
D D D v D D

D v D D v D

Ψ =
+ + +

+ + +
+ + +

+ + +
+ + +

+ + +

 (88) 

27

17 27 18 19 37

2
28 38 29 39

47 57 48 49 67

2
58 68 59 69

77 87 78 79 97
2

88 98 89 99

(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
, ( ) ,

( ) ,
, ( ) ,

( ) ,0,0,0,
, ( ) ,

( ) ,0,0,0),

D D D v D D

D v D D v D
D D D v D D

D v D D v D
D D D v D D

D v D D v D

Ψ =
+ + +

+ + +
+ + +

+ + +
+ + +

+ + +

 (89) 

28

11 21 12 13 31

2
22 32 23 33

41 51 42 43 61

2
52 62 53 63

71 81 72 73 91
2

82 92 83 93

(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0, , ( ) ,

( ) ,
, ( ) ,

( ) ,
, ( ) ,

( ) ),

D D D v D D

D v D D v D
D D D v D D

D v D D v D
D D D v D D

D v D D v D

Ψ =
+ + +

+ + +
+ + +

+ + +
+ + +

+ + +

 (90) 

29

14 24 15 16 34

2
25 35 26 36

44 54 45 46 64

2
55 65 56 66

74 84 75 76 94
2

85 95 86 96

(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0, , ( ) ,

( ) ,
, ( ) ,

( ) ,
, ( ) ,

( ) ),

D D D v D D

D v D D v D
D D D v D D

D v D D v D
D D D v D D

D v D D v D

Ψ =
+ + +

+ + +
+ + +

+ + +
+ + +

+ + +

 (91) 
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30

17 27 18 19 37

2
28 38 29 39

47 57 48 49 67

2
58 68 59 69

77 87 78 79 97
2

88 98 89 99

(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0, , ( ) ,

( ) ,
, ( ) ,

( ) ,
, ( ) ,

( ) ).

D D D v D D

D v D D v D
D D D v D D

D v D D v D
D D D v D D

D v D D v D

Ψ =
+ + +

+ + +
+ + +

+ + +
+ + +

+ + +

 (92) 

Although the matrix Ψ is a polynomial in single 
variable v, it is impractical to compute the determinant of 
it through determinant expansion directly. To speed up 
the computation and to conserve memory, an extended 
row reduction method can be adopted. Let A be a square 
matrix of polynomials in variable v. Elementary row 
operations will affect the solutions of the equation Det(A) 
= 0 in the following way 
a) If A' is the matrix that results from multiplying a 

row or column of A by a nonzero polynomial c in 
variable v, then Det(A') = cDet(A). The solutions for 
the equation Det(A') = 0 contain the solutions for the 
equation Det(A) = 0.  

b) If A' is the matrix that results from interchanging 
two rows or two columns of A then Det(A') = -
Det(A). The solutions for the equation Det(A') = 0 
are the same as the solutions for the equation Det(A) 
= 0.  

c) If A' is the matrix that results from adding a multiple 
of one row of A onto another row of A or adding a 
multiple of one column of A onto another column of 
A then Det(A') = Det(A). The solutions for the 
equation Det(A') = 0 are the same as the solutions 
for the equation Det(A) = 0. 

In traditional computations of the determinants of 
matrices, one has to be careful with these elementary 
operations in order to retain the values of the 
determinants. Since we are only interested in the possible 
solutions of the equation Det(A) = 0, we can use these 
operations at will. For example, from 
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We can deduce 

 

11 12

11 22 12 21

11 2 12 1

0
0

0 n n

A A
A A A A

A A A A

−
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−

M

M

L L M

L

. (94) 

A brief examination of the structure of the matrix Ψ 
reveals that 10 columns of the matrix contain only 

constants and 6 columns of the matrix contain some 
constants. By carefully selecting these constants as pivot 
values, we can reduce the equation containing a 
determinant of a 30×30 matrix into an equation 
containing a determinant of a 14×14 matrix. The 
transformed determinant is of the form 

2 2
12 11 10 12 11 10

2 2
22 21 20 22 21 20

2 2
32 31 30 32 31 30

2 2
42 41 40 42 41 40

2 2
52 51 50 52 51 50

2 2
62 61 60 62 61 60

2 2
72 71 70 72 71

a v a v a b v b v b
a v a v a b v b v b
a v a v a b v b v b
a v a v a b v b v b
a v a v a b v b v b
a v a v a b v b v b
a v a v a b v b v b

+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +

L

L

L

L

L

L

70
2 2

82 81 80 82 81 80a v a v a b v b v b+ + + +
L

L

M M M

. (95) 

After the first round of row reductions, the resulting 
determinant looks like 

4 3 2
14 13 12 11 10

3 2
23 22 21 20

2
30 32 31 30

2
42 41 40

2
52 51 50

2
62 61 60

2
72 71 70

2
82 81 80

0

0

0

0

0

0

0

b v b v b v b v b

b v b v b v b

a b v b v b

b v b v b

b v b v b

b v b v b

b v b v b

b v b v b

+ + + +

+ + +

+ +

+ +

+ +

+ +

+ +

+ +

% % % % % L

% % % % L

% % %% L

% % % L
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M M M

. (96) 

Canceling the constant factor 30a% and making another 
round of extended row reductions, we have 

4 3 2
44 43 42 41 40

3 2
53 52 51 50

2
60 62 61 60

2
72 71 70

2
82 81 80

0
0
0
0

0
0

c v c v c v c v c
c v c v c v c

b c v c v c
c v c v c
c v c v c

+ + + +
+ + +

+ +
+ +
+ +

L L

L L
% % % % %% % % % % L

% % % %% % % % L

%% % % %% % % L
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% % %% % % L

M M M

. (97) 

In this way, we can derive a polynomial equation of 
the form 
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where П is a determinant of a 10×10 matrix of 
polynomials in variable v. The elements in the first row of 
П are polynomials in variable v of the tenth degree, the 
elements in the second row of П are polynomials in 
variable v of the ninth degree, the elements in the third 
row are polynomials in variable v of the eighth degree, 
etc. The elements in the last two rows are polynomials in 
variable v of the second degree. 

Now performing column reduction on the last three 
columns of П, we finally obtain a determinant of a 7×7 
matrix of polynomials in variable v. Expanding the 
determinant, we obtain an equation in variable v in 
explicit form 

1 2
1 2 1 0 0n n n

n n na v a v a v a v a− −
− −+ + + + + =L . (99) 

In summary, the computation steps consist of 
a) Compute the coefficient matrix Ф in (28) from 

given point correspondences; 
b) Compute cofactors Dij of the coefficient matrix Ф; 
c) Construct the matrix Ψ of polynomials in variable v; 
d) Derive equation (99) from Ψ through extended row 

reduction. 
Substituting back each solution of v of (99) into (45), 

we have a polynomial equation in variable u of the sixth 
degree. For each solution of u and v, substituting them 
into equations (23), (24), (25), and (26), we can then have 
a linear solution of f11, f12, f13, f21, f22, f23, f31, f32, and f33. 
The solution that has the minimum value where the 
determinant of f11, f12, f13, f21, f22, f23, f31, f32, and f33 are of 
rank 2 is the final result. In this way, we can effectively 
derive the fundamental matrix with rank-2 constraint. 

IV.  CONCLUSION 

We have presented an algorithm to solve the typical 
system of multivariable nonlinear equations encountered 
in the fundamental matrix estimation. The method 
reduces the system of nonlinear multivariable equations 
into a single variable equation which is easy to solve. 
Compared with traditional numerical method based on 
Newton-Raphson iteration, our method is fast and always 
produces solutions. Future directions of research include 
investigating the performance of the algorithm with real 
data and applying the method to other minimization 
problems. 
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