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Abstract—Hyperspectral remote sensing images provide 
richer information about materials than that of 
multispectral images. The new larger data volumes of 
hyperspectral sensors bring new challenges for traditional 
image processing techniques. Therefore, conventional 
classification methods could fail without employing 
dimension reduction preprocessing. The dimensional 
reduction methods can be totally divided into two classes: 
feature extraction and feature selection. In this paper, a new 
feature selection method for hyperspectral images is 
proposed, which colligates the information entropy, 
classification separability and correlation coefficients with 
the Choquet fuzzy integral to select the bands. Experiments 
on the AVIRIS dataset show that the proposed method 
removes the redundant spectral bands effectively.  
 
Index Terms— hyperspectral images, image classification, 
fuzzy integral, spectral band selection, remote sensing 
 

I.  INTRODUCTION 

Recently, research work of optical remote sensing has 
gone through a step increase in number of spectral bands 
for acquired data, ranging from multispectral images to 
hyperspectral ones. Hyperspectral sensors can 
simultaneously measure hundreds of narrow and 
contiguous spectral bands with a fine spectral resolution. 
With enormous increase of input channels from tens to 
hundreds, hyperspectral imagery possesses much richer 
spectral information than multispectral imagery. However, 
the higher dimensional data space generated by the 
hyperspectral sensors generates a new challenge for 
conventional spectral data analysis techniques, It is 
necessary to have a minimum ratio of training pixels to 
the number of spectral bands for a reliable estimate of 
class statistics. The higher dimensional space implies that 
with limited training samples, much hyperspectral data 
space turns to be empty. When performing supervised 
classification, it is important that the number of training 
points is proportional to the number of bands. As the 
number of dimensions increases, the sample size of the 

training data will increase exponentially. Also, 
neighboring bands of hyperspectral data are strongly 
correlated. It has been proven that high dimensional data 
space has the following properties: the volume of a 
hypercube concentrates in the corner, and the volume of a 
hypersphere of hyperellipsoid concentrates in an outer 
shell [1]. Therefore, dimension reduction has become a 
significant part of hyperspectral image interpretation. 
Dimension reduction compresses data from high 
dimension to low dimension, which will conquer the 
curse of dimensionality. Reduction of the dimensionality 
can be achieved by making a selection of a few existing 
bands, i.e., feature selection [2]-[4] or new features 
generated by linear combinations of the bands, i.e., 
feature extraction [5],[6]. 

Your Feature selection methods process bands 
selection after considering the whole characteristics of 
hypersperal images. Therefore, these features contain the 
original characteristics of the images. Although there may 
be hundreds of bands available for analysis, not all bands 
contain the discriminatory information for classification. 
To limit the negative effects incurred by higher 
dimensionality, it is effective to remove parts of the 
spectral bands which convey little discriminatory 
information. Recently, many band selection techniques 
have been proposed [7]. These methods can be roughly 
summarized into three groups, search-based methods [8], 
transform-based methods [9] and information-based 
methods [10]. In this paper, we proposed a new 
information-based band selection method for 
hyperspectral band selection, which colligates the 
information entropy, class separability and correlation 
coefficients with Choquet fuzzy integral (CFI) to get an 
integrative index for band selection. This is considering 
that Choquet fuzzy integral is nonlinear functions 
combining multiple sources of uncertain information [14], 
[15]. And it can take into account the importance of the 
individual and subsets of souce. Choquet fuzzy integral 
have been used in remote sesing data processing [11], 
[12]. 

The remainder of the paper is organized as follows. 
Section II describes the common method of subspace 
decomposition for hyperspectral images. The basic 
concept of fuzzy integral is introduced in Section III. The 
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band selection method based on Choquet fuzzy integral is 
provided in Section VI and experimental results are 
presented in Section V. Finally, concluding remarks are 
drawn in Section VI. 

II.  SUBSPACE DECOMPOSITION 

Different ground objects have different 
electromagnetic characteristics. In general, the reflection 
characteristics of ground objects distribute in narrow 
frequency range relatively. There is discrepancy between 
the global statistical characteristic and the local statistical 
characteristics of the hyperspectral images. If the band 
selection is applied to the whole source area directly, it 
may lead to some loss of the local information. Selecting 
the bands on the base of the subspace decomposition will 
solve the problem effectively. At the same time, the 
subspace decomposition will help to reduce the data 
space, so as to improve the speed and efficiency of 
hyperspectral remote sensing data processing. The widely 
used subspace decomposition methods include:  

(1)  Uniform subspace decomposition 
Uniform subspace decomposition (USD) is the 

simplest method to divide the source data, which 
distribute the hyperspectral data to the subspaces in 
average. The definition is as follows: 

                                bands SourceN N N=                            (1) 

where N is the number of the bands of the original 
hyperspectral image data, SourceN  is the number of the 
subspace, bandsN is the number of bands in each subspace. 
USD is the simplest subspace decomposition method; 
however, the method divides the source data averagely 
without considering the discrepancy of the spectral 
features of the ground objects. 

(2) Subspace decomposition based on spectral 
range 

Hyperspectral data covers the spectrum ranging from 
the visible light to the infrared light, so the spectral 
discrepancy can be used to divide the source data. For 
example, the source data can be divided into the range of 
visible, near infrared and shortwave infrared light. 
However, this method divides the data only in accordance 
with the spectral range without considering the spectral 
features of the specific data structure and relationship of 
the ground object. 

(3) Adaptive subspace decomposition based on 
correlation filtering 

Zhang et al. proposed a method of adaptive subspace 
decomposition [13]. The correlation coefficient Ri,j 
between the bands i  and j  is calculated first. The larger 
the absolute value of Ri,j is, the stronger the correlation 
between the bands is. Therefore, the correlation 
coefficients of any two bands Ri,j  compose the 
correlation coefficient matrix R. According to the matrix 
R, a threshold value T will be set and the adjacent bands, 
where Ri,j T≥  will be combined into a new subspace. By 
adjusting the value of T, the number of the subspaces can 
be changed adaptively. With the increase of the value of 

T, the number of the bands in each subspace will reduce 
and the number of subspace will increase. The advantage 
of this method is that it not only reduces the data 
dimensionality, but also combines the bands which have 
strong correlation into one subspace. 

(4) Automatic subspace decomposition based on 
local relevant minimum value 

With this method, the correlation coefficient vector of 
the adjacent bands according to the correlation coefficient 
matrix is defined first. The definition of the correlation 
coefficient vector is 

12 23 , 1 2, 1 1,( , ,..., ,... , )T
i i l l l lr r r r r r+ − − −= . The second step 

is to extract the locally relevant minimum from the vector. 
The original source data can be divided into N data 
subspaces according to the local relevant exacted 
automatically. The method makes use of the features of 
the correlation of the adjacent bands. The divided data 
subspaces have the similar spectral characteristics. 

III.  FUZZY MEASURE AND FUZZY INTEGRAL 

A.  Fuzzy measure 
Fuzzy measures [14], [15] are the natural 

generalizations of classical measures. Let U be an 
arbitrary set, a set function P(U) is defined over the 
power set of U , if the mapping g ：P (U) →[0, 1]  has 
the following properties, then it is called a fuzzy measure. 

(1) ( ) 0g ∅ = ， ( ) 1g U =  

(2) A, B∈P(U), and A ⊆ B ⇒ g(A) ≤ g(B)  

(3) nA A↑ ⇒ lim ( ) ( )nn
g A g A

→∞
= . 

where g is the F measure, ( , ( ), )U P U g  is the F measure 
space. Sugeno introduced so-called Fλ −  fuzzy measure, 
if :g  ( ) [ ]0,1P U → satisfies the additional property: 

( ) ( ) ( ) ( ) ( )g A B g A g B g A g Bλ∪ = + + ，

where λ ∈(−1,∞)and A∩ B = Ø. 

 B.  Choquet fuzzy integral (CFI) 
Let ( , ( ), )S P S g  be the F measure space, ( )h h s∈ , 

( )h s is the set of all the non-negative real-valued 

measurable functions defined in set S , A ∈ P( S ) , 
Choquet integral of h on A relative to g  is denoted as: 

                  
0

( ) ( )
A

c hdg g h A d
+∞

∂= ∩ ∂∫ ∫                        (2) 

where “(c)∫ ” means Choquet integral, and 
{ }/ ( ) , [0,1]h s h s∂ = ≥ ∂ ∂ ∈ . 

Let { }1 2, ,... nS s s s= be a finite set, 
and 1 20 ( ) ( ) ( ) 1mh u h u h u≤ ≤ ≤ ⋅⋅ ⋅ ≤ ≤ , then the Choquet 
integral with respect to formula (2) can be computed by: 

11
( ) ( )( ( ) ( ))

i

n
i iiS

c hdg g h h s h s∂ −−
= −∑∫     (3) 
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where { }1, , ,
i i i nh s s s∂ += ⋅⋅ ⋅ , 0( ) 0h s = . 

IV. THE BAND SELECTION METHOD BASED ON CFI 

In this paper, we adopted the adaptive subspace 
decomposition method based on correlation filtering. 
After obtaining the subspaces decomposed with the 
correlation filtering, we make use of the feature of CFI to 
colligate the information entropy , correlation coefficients 
and classification separability to get an integrative index 
for bands selection. It not only guarantees the selected 
bands containing more comprehensive information in 
each subspace, but also guarantees the selected bands 
distributing in the whole data space reasonably. This 
method will avoid the loss of local information. 

A.  The band selection in the subspaces with CFI 
For the band selection of hyperspectral data, the first 

step is to determine the criterion of band selection. There 
are two widely used criterions: one is that the 
combination of the selected bands must keep more 
information; the other is that the selected bands must be 
more useful for classification of the ground objects. Thus, 
the band selection should consider three factors [16]: (a) 
the information contained in the band or the band 
combination; (b) the correlation among the bands; (c) the 
spectral response of the ground objects to be identified. 
Bands that contain more information have little 
correlation with other bands, also, the bands with better 
spectral response of the ground objects are supposed to be 
the optimal bands. The proposed method makes use of 
the features of CFI which can integrate the multi-source 
information, colligates the above three factors to get an 
integrative index to select the bands.  

The steps of the band selection are as follows: 
(1) Denote the values of information entropy of the 

band in each subspace as ( )H X , the definition of the 
information entropy is as follows: 

255

2
0

( ) logi i
i

H X P P
=

=∑                        (4) 

where iP  is the probability of the gray scale value of i . 
(2) Use the correlation coefficients to indicate the 

correlation between bands. Denote the image of band i  
as ( , )if x y , band 1i +  as 1( , )if x y+ , the definition of the 
correlation coefficient is as follows: 

1 1
1 1

2 2
1 1

1 1 1 1

[ ( , ) ][ ( , ) ]
(5)

( [ ( , ) ] )( [ ( , ) ] )

M N

i i i i
x y

M N M N

i i i i
x y x y

f x y f x y
CC

f x y f x y

μ μ

μ μ

+ +
= =

+ +
= = = =

− −
=

− −

∑∑

∑∑ ∑∑

where
1 1

1 ( , )
M N

i i
x y

f x y
M N

μ
= =

=
× ∑∑ ,

1 1
1 1

1 ( , )
M N

i i
x y

f x y
M N

μ + +
= =

=
× ∑∑ , ( , )if x y  is the value of the 

pixel in the position ( , )x y  of band i , and 1( , )if x y+  is the 
value of the pixel in the position ( , )x y  of  band 1i + . 

(3) The standard distance of the mean values between 
two classes stands for the spectral separability. As there 
are more than two kinds of ground objects in the 
hyperspectral images, the averaged standard distance of 
mean values between different classes should be 
calculated. The definition of the standard distance of 
mean value is as follows: 

i j

i j

d
μ μ
σ σ

−
=

+
                       (6) 

where iμ , jμ  are the mean values of two different types 
of ground objects i  and j respectively, iσ , jσ  are the 
values of the variance of two different types of ground 
objects i  and j , respectively. 

(4) Determination of the belief function 
Set 1 2 3{ , , }U u u u= , where 1u , 2u  and 3u   represent 

the information entropy of each band， the correlation 
coefficient among each band, and the average distance of 
mean value, respectively. The relationship of the single 
index and the band selection can be described as follows:  
① The larger the value of the information entropy is, the 
more information included in the selected bands is. 
② The smaller the correlation coefficient among each 
band is, the higher the degree of the independence of the 
bands is. 
③ The larger the value of the average standard distance 
of the mean value among the ground objects classes is, 
the better the classification separability is, and the 
selected bands will be more helpful to the classification. 
Suppose there are N subspaces obtained from the original 
source data, according to the condition: 0 ( ) 1h u≤ ≤ , in 
each subspace, denote the maximum value of the single 
index iu  as maxiu , denote the minimum value of the 
single index as miniu . The belief function is defined as 
follows [17]: 

1 1min
1

1max 1min

( )
u u

h u
u u

−
=

−
 

2 max 2
2

2 max 2 min

( )
u u

h u
u u

−
=

−
                                                            

3 3min
3

3max 3min

( )
u u

h u
u u

−
=

−
                                (7) 

According to the condition: 
1 20 ( ) ( ) ( ) 1mh u h u h u≤ ≤ ≤ ⋅⋅ ⋅ ≤ ≤ , rearrange the above 

formula, we have: 

                  1 1 2 3( ) min{ ( ), ( ), ( )}h u h u h u h u=  

2 1 2 3( ) mid{ ( ), ( ), ( )}h u h u h u h u=   

3 1 2 3( ) max{ ( ), ( ), ( )}h u h u h u h u=                  (8)                        
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where 1( )h u , 2( )h u  and 3( )h u  are the minimum, middle 
and maximum values, respectively. 

(5) Determination of the fuzzy measure 
How to determine the fuzzy measure g  is another 

pivotal problem. In this paper, the importance degree of 
the single index can be used to determine the fuzzy 
measure. For the belief functions arranged in a non-
decreasing order, the one which has larger value is 
considered as higher importance. The definition of fuzzy 
measure in this paper is as follows [18]: 

In each subspace, let  

1 2 3( ) ( ) ( )S h u h u h u= + +  

                  ( ) ( )    1, 2,3k kg u h u S k= =                          (9) 

(6) Determination of the CFI value 
In each subspace, the CFI value of every band can be 

calculated as: 

       3
11

( )( ( ) ( ))i i ii
C g h h u h u∂ −=

= −∑                      (10) 

where 1{ , ,... }i i i nh u u u∂ += , and 0( ) 0h u = . 
(7) Band selection in each subspace 

In each subspace, the first N bands according to the 
value of CFI are selected to construct the new feature 
subspace. There are three methods to determine the 
number of the bands to be selected. 
①  Select the bands with the same number in each 
subspace. 
②  Set the threshold value of the CFI, and select the 
bands whose CFI value is bigger than the chosen 
threshold value to compose the new feature subspace. 
The threshold value can be adjusted according to specific 
application. 
③ In each subspace, suppose the bands have been ranged 
in the descending order according to the values of CFI. 
The ratio P is used to select the bands in each subspace. 
The first N bands are selected by the ratio P . 
Because of the asymmetry of band number in each 
subspace, it is hard to choose and guarantee acquiring 
bands with same number in each subspace. In addition, 
since the value of fuzzy integral gotten from each 
subspace is different, it is also hard to confirm the 
threshold value. Therefore, the third method is adopted to 
decompose the subspace in this paper. 

V. EXPERIMENTS 

A.  Experimental Data 
In this paper, hyperspectral test data were obtained 

from the AVIRIS imaging spectrometer. We focused on 
the collection of Indiana’s Indian Pines Data set taken on 
1992. The tested data consists of 145×145 pixels by 224 
bands. We intercepted a subimage with size of 128×128 
from the original images in the experiments. The source 
images are shown in Fig.1. 

B.  Supervised Classification Method 
In our experiments, the Maximum Likelihood 

Classification (MLC) method is used, which is one of the 
most commonly used method in supervised classification 
applications. The effectiveness of the MLC depends on 
reasonably accurate estimation of the mean vector and the 
covariance matrix for each spectral class. 

C.  Experimental Results 
Besides the bands polluted severely by noise, we kept 

179 bands from the original bands in our experiments. 
When the correlation threshold T is set as 0.5, five data 
sources are obtained. There are bands 5 to 36, band 37, 
bands 38 to 87, bands 88 to 111 and bands 112 to 216. In 
each subspace, the bands are ranged according to the 
values of the CFI. The bands with the largest values of 
the CFI in each subspace are shown in Fig.2 (a)-Fig.2 (e). 

Seven kinds of ground objects are chosen for 
classification, and the numbers of samples for training 
and testing are shown in Table I. 

The experiments were performed with the bands 
selected according to the different proportion P . When 
the values of P  are 1, 1/7, 1/6, 1/5, 1/4, the 
corresponding classification accuracies are shown in 
Table II. The graph of the classification accuracies is 
shown in Fig.3. 

From the Table II, it can be seen that the classification 
accuracies with the selected bands are higher than that 
with the original bands. From Fig.3, it is apparent that the 
classification accuracy with the bands selected by the 
proportion 1/6 is higher than the other accuracies, which 
means only with 1/6 of the original bands, highest 
classification accuracy can be obtained. The high 
correlated bands and the band selection can save more 
storage space and communication bandwidth. When the 
proportion P  is 1/6, the band numbers and the 
corresponding CFI values are shown in Table III. 

The original demarcated image of the ground objects is 
shown in Fig.4 (a), and the images of the classification 
results with the bands selected by the ratio 1, 1/7, 1/6, 1/5 
and 1/4 are shown in Fig.4(b)~Fig.4(f) respectively, 
where orange represents the ground objects of class 1, 
lake blue represents the ground objects of class 2, green 
represents the ground objects of class 3, blue represents 
the ground objects of class 4, purple represents the 
ground objects of class 5, red represents the ground 
objects of class 6, yellow represents the ground objects of  
class 7, and black represents the other ground objects 
which are not chosen for classification.  

Comparing the accuracy of the proposed method to 
those presented in [10], when the value of P are 1/7, 1/6, 
1/5, 1/4, the corresponding classification accuracy are 
better than that of [10]. 

From the images of the classification results, it can be 
concluded that the classification accuracies with the 
bands selected by the values of the CFI are higher than 
the classification accuracy with all the bands. 
Experimental results demonstrate the efficiency of the 
proposed method. It also can be seen that when the value 
of the proportion P  is 1/6, the classification accuracy of 
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the ground objects improves apparently, which means 
that the best classification accuracy may be obtained with  

some particular proportion P  and not all bands contain 
useful information. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure. 1  AVIRIS image composed of band 90, 
band 5 and band 120. 

Figure.2(a) The band with the largest value of the 
CFI in the first subspace. 

Figure.2(b) The band with the largest value of the 
CFI in the second subspace. 

Figure.2(c) The band with the largest value of 
the CFI in the third subspace. 

Figure.2(d) The band with the largest value of the
CFI in the fourth subspace. 

Figure.2(e) The band with the largest value of 
the CFI in the fifth subspace. 
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TABLE I.   
NUMBERS OF TRAIN SAMPLES AND TEST SAMPLES 

Classes Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 

Training Samples 68 147 120 152 547 100 348 

Testing Samples 72 162 140 171 616 127 353 

 

TABLE II.   
THE CLASSIFICATION ACCURACIES WITH THE BANDS SELECTED BY DIFFERENT RATIO P (%) 

P  Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Accuracy 

1 65.00 96.46 100 64.50 88.48 64.10 98.25 86.25 

1/7 93.33 99.56 100 89.69 92.12 87.82 99.34 94.40 

1/6 87.50 99.12 100 92.37 93.33 83.97 99.34 94.54 

1/5 68.33 99.12 100 90.84 94.18 77.56 99.56 93.22 

1/4 51.67 97.79 100 83.21 95.64 59.62 99.56 90.53 

 

TABLE III.   
THE BAND NUMBER AND THE CORRESPONDING CFI VALUE WITH 1/6 BANDS 

Subspace 1 71 0.965 119 0.9709 

Band Number Index Value 74 0.965 117 0.9704 

5 0.9665 75 0.9641 120 0.9704 

17 0.9539 70 0.9636 121 0.9702 

11 0.9487 69 0.9633 122 0.9698 

16 0.9465 72 0.9629 123 0.9694 

10 0.9429 Subspace 4 124 0.9689 

Subspace 2 Band Number Index Value 183 0.9688 

Band Number Index Value 87 0.9886 184 0.9687 

37 1 88 0.9202 125 0.9686 

Subspace 3 Subspace 5 185 0.9686 

Band Number Index Value Band Number Index Value 193 0.9686 

73 0.9659 118 0.9709 188 0.9683 
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Figure. 3 Classification accuracies with the bands selected by different ratio P . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure.4 The original demarcated image and the images of the classification results with the bands selected by different ratio P . 

 

VI. CONCLUSION 

This paper presents a band selection method based on 
CFI. The experimental results indicate that the proposed 
method saves the storage space and improves the 
processing speed on the basis of keeping the 
classification accuracy. Our future work will focus on 
developing a new band selection approach by combining 
several features together. In addition, the set of the 
indexes can be chosen according to the actual needs. 

  

ACKNOWLEDGMENT 

This paper was supported by National Natural Science 
Foundation of China (No.60774092, No.60872096, and 
No.60901003), the Key (Key grant) Project of Chinese 
Ministry of Education (No.107057), the Specialized 
Research Fund for the Doctoral Program of Higher 
Education (No.20070294027), and Jiangsu Provincial 
Science and Technology Planning Project of China 
(No.BG2006003, BS2007057). 

82.00%

84.00%

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

1 1/7 1/6 1/5 1/4

different radio P

cl
as

si
f
ic
at

io
n
 a
cc

ur
ac

y

86.25% 

94.40% 94.54% 93.22% 

90.53% 

JOURNAL OF COMPUTERS, VOL. 5, NO. 7, JULY 2010 1025

© 2010 ACADEMY PUBLISHER



REFERENCES 

[1] Jimenez. L., and D.Landgrebe., “Supervised classification 
in high-dimensional space: Geometrical, statistical, and 
asymptotical properties of multivariate data,” IEEE 
Transactions on Systerms, Man and Cybernetics, vol.28, 
no.1,pp. 39–54,1998.  

[2] Serpico. S. B., and L. Bruzzone, “A new search algorithm 
for feature selection in hyperspectral remote sensing 
images,” IEEE Transactions on Geoscience and Remote 
Sensing, vol.39, no.7, pp. 1360–1367, 2001. 

[3] Bajcsy. P., and P. Groves, “Methodology for hyperspectral 
band selection,” Photogrammetric Engineering and 
Remote Sensing, vol.70, no.7, pp. 793–802, 2004. 

[4] B. Guo, R.I.Damper, S. R. Gunn, and J.D.B.Nelson, “A 
fast separability-based feature-selection method for high-
dimensional remotely sensed image classification,” Pattern 
Recognition, vol.41, no.5, pp.1653-1662, 2008.  

[5] Hsu. P. H. and Y. H. Tseng, “Feature extraction for 
hyperspectral image,” in Proc. 20th ACRS, Hong Kong, 
vol.1, Nov. 1999, pp. 405-410. 

[6] A. Plaza, J.A.Benediktsson, J.W.Boardman et al, “Recent 
advances in techniques for hyperspectral image 
processing,” Remote Sensing of Environment, vol.113, S1,  
pp.s110-s122, 2009. 

[7] Groves. P., and P. Bajcsy., “Methodology for hyperspectral 
band and classification model selection,” IEEE Workshop 
on Advances in Techniques for Analysis of Remotely 
Sensed Data, pp.120-128, June 2003. 

[8] S.B. Serpico and L. Bruzzone, “A new search algorithm 
for feature selection in hyperspectral remote sensing 
images,” IEEE Transactions on Geoscience and Remote 
Sensing, vol.39, no.7, pp.1360-1367, 2001. 

[9] H.Du, H.i, X.Wang, R.Ramanath, and W.E.Snyder, “Band 
selection using independent components analysis for 
hyperspectral image processing,” in Proc. IEEE 32nd Appl. 
Imagery Pattern Recognit. Workshop, Washington, D.C., 
2003, pp.93-98. 

[10]  Bao feng, Guo  and S.R. Gunn, “Band Selection for 
Hyperspectral Image Classification Using Mutual 
Information,” IEEE Geoscience and Remote Sensing 
Letters, vol.3, no.4, pp.522-526, Oct.2006. 

[11] A.S.Kumar, S.K.Basu, and K.L.Majumdar. “Robust 
classification of multispectral data using multiple neural 
networks and fuzzy integral,” IEEE Transactions on 
Geoscience and Remote Sensing, vol.35, no.3, pp.787-790, 
1997. 

[12] Nemmour.H and Chibani Youcef, “ Neural network 
combination by fuzzy integral for robust change detection 
in remotely sensed imagery,” EURASIP Journal on 
Applied Signal Processing, vol.2005, no.14, pp.2187-2195, 
2005. 

[13] Jun ping Zhang and Zhang Ye, “Hyperspectral image 
classification based on information fusion,” Journal of 
Harbin institute of technology, vol.34, no.4, pp. 464-468, 
Aug. 2002. 

[14] Sugeno M., “An interpretation of fuzzy measure and the 
choquet integral as an integral with respect to fuzzy 
measure,” Fuzzy Sets and Systems, vol.29, no.2,  pp. 201-
227, Jan. 1989. 

[15] M. Grabish, T. Murofushi, M. Sugeno, “Fuzzy measure of 
fuzzy events defined by fuzzy integrals,” Fuzzy Sets and 
Systems, vol.50, no.3, pp.293-313, 1992. 

[16] Junping Zhang, and Zhang Ye, “State-of-Arts and analysis 
on hyperspectral image classification in imaging spectral 
technique,” Chinese space science and technology, no.1, 
pp. 37-42, Feb. 2001. 

[17] Baochang Xu, and Chen Zhe, “Image fusion effect 
evaluation based on fuzzy choquet integration,” Opto-
Electronic Engineering, vol.31, no.11, pp. 42-46, Nov. 
2004. 

[18] Jing Ling, and Xu Lizhong, “Remote sensing images 
fusion based on wavelet coefficients selection using 
choquet fuzzy integral,”Journal of Remote Sensing, vol.13, 
no.2,  pp. 263-268, Mar. 2009. 

 
Fengchen Huang is a Senior Research 
Associate at College of Computer and 
Information Engineering, Institute of 
Communication and Information 
System Engineering, Hohai University, 
Nanjing, P. R. China. He received the 
B.S. degree in Electronic Engineering 
from Chengdu Institute of 
Telecommunications Engineering, 
Chengdu, P. R. China, in 1985, M.S. 

degree in Communications and Electronic System from 
University of Electronic Science and Technology of China, 
Chengdu, P. R. China, in 1991. He is a Senior Member of 
Chinese Institute of Electronic, his research areas are signal 
processing in remote sensing and remote control. 

 
Jing Ling received the B.S. degree in 
Communication Engineering and M.S. 
degree in Signal and Information 
Processing from Hohai University, 
Nanjing, P. R. China in 2006 and 2009 
respectively. Her main research interest 
is  remote sensing images processing 
and analysis. 

 
 

 
Aiye Shi received the Ph.D degree in 
hydroinformatics from Hohai University, 
in 2008. He is a lecturer at the Hohai 
University. His current interests include 
information fusion, image fusion, and 
image super-resolution.   
 
 
 
 

 
Lizhong Xu is a Professor at College of 
Computer and Information Engineering, 
as well as the Director of Institute of 
Communication and Information 
System Engineering, Hohai University, 
Nanjing, P. R. China. He received the 
Ph.D. degree in Control Science and 
Engineering from China University of 
Mining and Technology, Xuzhou, P. R. 
China in 1997.  He is a Senior Member 

of IEEE, Chinese Institute of Electronic, and China Computer 
Federation. His current research areas include signal processing 
in remote sensing and remote control, information processing 
system and its applications, system modeling and system 
simulation. He is the corresponding author of this paper, his 
email: lzhxu@hhu.edu.cn, hhice@126.com 

1026 JOURNAL OF COMPUTERS, VOL. 5, NO. 7, JULY 2010

© 2010 ACADEMY PUBLISHER


