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Abstract—In the text analysis, the Dirichlet compound 
multinomial (DCM)distribution has recently been shown to 
be a good model for documents because it captures the 
phenomenon of word burstiness, unlike the standard 
multinomial distribution. The burstiness phenomenon 
describes the behavior of a rare word appearing many times 
in a single document. In this paper, for the sake of 
improving performance of modeling documents, we propose 
a variant of DCM and Gibbs distribution called Dirichlet 
multinomial Gibbs (DMG) model by introducing Gibbs 
parameters to DCM distribution. We demonstrate the 
maximum likelihood procedure of the DMG model with 
these Gibbs parameters. By our experiments, the DMG 
approach inherit the merits of methods of Gibbs 
distribution approximation and DCM estimation. More 
specifically, as revealed by our experimental results on 
various real-world text datasets, we show that maximum 
likelihood approximation of the DMG model is more 
desirable than some current state-of-the-art methods. 
 
Index Terms—Document classification, Dirichlet compound 
multinomial model, Gibbs distribution 
 

I.  INTRODUCTION 

Because the increased availability of documents in 
digital formats, there is a growing need for finding, 
filtering, and managing these resources. Document 
classification is a major solution to these kinds of 
problems, which is a text content-based classification 
technique that assigns documents to some predefined 
categories. In past years, a wide range of supervised 
learning algorithms has been applied to document 
classification problem, using a training set of categorized 
documents to build a classifier that maps arbitrary 
documents to relevant categories. 

An important phenomenon reported in [1][2] is 
burstiness of words in document context. The term 
“burstiness” describes the behavior of words which tend 
to appear in bursts, i.e. once they appear in a document, 
they are much more likely to appear again. The notion of 
burstiness describes the fact that the more we find a word 
in a document, the higher the expectation to find new 
occurrences. Recently, the Dirichlet compound 
multinomial (DCM) [3][4] model has been shown to be 

well suited for modeling word burstiness in documents 
and count data on finite mixture distribution [5]. 

Dirichlet compound multinomial (DCM) is a 
generative approaches which are popular to classification 
task since they are relatively easy to interpret and can be 
trained quickly. With these approaches, the key problem 
is to develop a probabilistic model that represents the data 
well. In recent years there has been a proliferation of 
graphical models composed of a multitude of multinomial 
and Dirichlet variables interacting in various inventive 
ways.  

Dirichlet Compound Multinomial model (DCM) uses a 
Dirichlet prior over multinomial conditionals, where 
Dirichlet distribution is conjugate to multinomial 
distribution. Like a multinomial distribution, the Dirichlet 
Compound Multinomial  distribution is a generative 
model for text documents that takes into account 
burstiness [3] and a distribution over all possible count 
vectors that sum to a fixed value. Rather, the term 
frequency (TF) schema or multinomial distribution only 
figure occurrence in the document. Previous work [3] has 
shown that classifiers using Bayes' rule and the DCM 
model are competitive with the best known classification 
methods on standard document collections.  For these 
Dirichlet multinomial models the inference method of 
choice is typically collapsed Gibbs sampling, due to its 
simplicity, speed, and good predictive performance on 
test date. 

Motivating by these idea, we concern with a new 
approach in this paper which is a variant of DCM 
distribution called Dirichlet multinomial Gibbs (DMG) 
model by introducing Gibbs parameters to DCM 
distribution. In our document classification scenario, we 
demonstrate the maximum likelihood procedure of the 
DMG model. Furthermore, we show that the Gibbs 
parameters are similar to the parameters of features in the 
maximum entropy model [6]. The solution estimating on 
DMG model has been proposed to inherit merits of the 
Dirichlet compound multinomial model [3] to model 
word burstiness,  and inherit merits of iteration approxi- 
mation method of the maximum entropy text classifica- 
tion method [6] by our experiments. So it can model 
documents by not only capturing word burstiness but also 
approximating real texts distribution very well. 
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Therefore, our DMG model can improve performance of 
modeling documents which confirmed by our 
experiments conducted over various different test 
collections about document classification. 

This paper is organized as follows. Firstly, we 
introduce the related concepts and works in section Ⅱ. 
Secondly, in section Ⅲ  we describe Dirichlet 
Multinomial Gibbs (DMG) model in detail. Next, in 
section Ⅳ  the method estimating parameters of DMG 
model will be derived. While section Ⅴ we show the 
experimental results on various datasets using DMG 
model to document classification. Finally, we conclude 
the paper with a summary in section Ⅵ. 

II.  RELATED CONCEPTS AND WORKS  

A.  Burstiness property 
The term “burstiness” [1][2] describes the behavior of 

a rare word appearing many times in a single document. 
Due to the large number of possible words, most words 
do not appear in a given document. Nevertheless, if one 
word does appear once, it is much more likely to appear 
again, i.e. words appear in bursts.  

Let tfw be the number of occurrences of word w  in a 
given document. For a word probability distribution p ,  
[2] measures the burstiness through the quantity  

[ ]
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with pB denotes the expectation with respect to 
distribution p . In order to give a clear measure on 
whether a given word distribution accounts or not for 
bursty and non-bursty words. [7] introduced a different 
definition. Say that a word w  is bursty at level 0n  
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This definition directly translate the fact that a word is 
bursty if it is easier to generate it again once it has been 
generated a certain number of times (passed a certain 
level). The introduction of a burstiness level ( 0n ) in this 
definition allows one to capture finer-grain behavior. 

The multinomial captures the burstiness of common 
words, but the burstiness of average and rare words is not 
modeled correctly. This is a major deficiency in the 
multinomial model since rare and average words 
represent 99% of the vocabulary and 29% of emissions 
[3] and, more importantly, these words are key features 
for classification. An explanation for this behavior is that 
the common words are more likely to satisfy the 
independence assumption, since many of the common 
words are non-content, function words. The rare and 
average words are information-carrying words, making 
them more likely to appear if they have already appeared 
in a document. 

B. The Dirichlet Compound Multinomial Distribution 
Dirichlet Compound Multinomial model (DCM) [3]  

uses a Dirichlet prior over multinomial conditionals, 
where Dirichlet distribution is conjugate to mutinomial 
distribution. Like a multinomial distribution, the Dirichlet 
Compound Multinomial  distribution is a generative 
model for text documents that takes into account 
burstiness [3] and a distribution over all possible count 
vectors that sum to a fixed value. Rather, the term 
frequency (TF) schema or multinomial distribution only 
figure occurrence in the document. 

Suppose d  is a document, The DCM distribution [3] 
is  
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Where ,tft d  stores the number of occurrences of a word 
t  in document d  and Γ is gamma function. 

So given a corpus D of documents, the dirichlet prior 
parameter α  can be derived by following iteration [8]: 
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where ψ  is digamma function. 
Like a multinomial distribution, a DCM is a 

distribution over all possible count vectors that sum to a 
value ,1

tfn
t dt=∑ . When a DCM or a multinomial is used to 

model a collection of documents of different lengths, 
formally there is a different distribution for each different 
length, with all distributions sharing the same parameter 
values. Also, with a DCM or with a multinomial, ( )p d  
for a document d  is really the probability of the 
equivalence class of all documents that have the same 
word counts, that is all documents that have the same 
bag-of-words representation. 

Moreover, the DCM model is a generative model for 
the documents within a class and it can represent a topic 
where different documents use alternative terminology 
[3]. This within-topic diversity is different from the 
within-document diversity allowed by latent topic 
modeling, where each topic is represented by a single 
multinomial, but each word in a document may be 
generated by a different topic. 

C. Gibbs distribution 
Gibbs distribution [9] related heavily to Boltzmann 

distribution. Boltzmann distribution originated from 
Liouville theorem. It is just one step to the Gibbs 
distribution, the corner stone of the equilibrium Statistical 
Mechanics. Imagine a large mechanical system with 
virtually infinite number of microscopic degrees of 
freedom. This system is supposed to be in equilibrium in 
the sense that all its macroscopic motions have relaxed, 
so that the time evolution is nothing but repeating 
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microscopically different, but macroscopically equivalent 
states. We will refer to such a system as a heat bath. 

Boltzmann distribution consider systems which are in 
contact with a heat bath at temperature T  and also in 
with a particle reservoir at chemical potential µ . The 
temperature is a measure of the decrease in entropy of the 
reservoir from giving up heat to the system (see here); the 
chemical potential is a measure of the energy decrease 
(and entropy increase) of the reservoir from giving up 
particles to the system. Boltzmann distribution want to 
find the probability that our system will be in a certain 
microstate i  with an energy iε and particle number iN .  

The derivation follows that of the Boltzmann 
distribution closely. Again the probability of the system 
being in the given microstate depends on the number of 
microstates available to the reservoir with energy 

0 iE ε− and particle number 0 iN N− . Expressing the 
number of microstates as the exponential of the entropy, 
making a Taylor expansion of the entropy about 

( )0 0RS E N− , and expressing the derivatives of the 
entropy in terms of T and µ  thus, 
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where the parameter Bk  is called Boltzmann factor. The 
normalization constant Z  is called the partition function. 
Macroscopic functions of state are calculated via 
ensemble averages as usual; the relevant ensemble in this 
case is called the canonical ensemble. 

Ⅲ.  DMG MODEL 

A. Notation 
We describe some notations using in Dirichlet 

multinomial Gibbs (DMG) model. Suppose we have N  
documents which can be classified to M categories, 
containing words from corpus D who has a vocabulary 
V of size v . The corpus of text documents is summarized 
in a N by v co-occurrence table, where ,t dx stores the 
number of occurrences of a word t  in document d . We 
would like to use ( )| cp d θ to denote probability of 
generating document d  from a multinomial distribution 
with parameters vector cθ  specified to category c , 
( )|cp θ α to denote the probability of vector cθ  with 

Dirichlet distribution parameters vector α . 

B. Multinomial modeling of text 
When using a multinomial distribution to model text, 

the multinomialdistribution specifies the probability of 
observing a given vector of word counts, where the 

probabilit ,t cθ of emitting word t is subject to the 
constraints , 1t ct V

θ
∈

=∑  and ,t cθ for all t  specified to 
category c . The probability of a document d generated by 
this model is 

( ) ,
,

,

!|
!

t dx
c t c

t Vt dt V

np d
x

θ θ
∈∈
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                (1) 

where ,t dt V
n x

∈
= ∑ . 

C.  Dirichlet modeling of text 
The majority of the researchers assign a Dirichlet prior 

to the parameter vector of a multinomial distribution. 
This is due to the fact that the Dirichlet is a conjugate 
prior to the multinomial distribution, that is, the posterior 
is also Dirichlet. It is defined as 

( )
( )

( )
1| t

tt V
t

t Vtt V

p α
α

θ α θ
α

∈ −

∈∈

Γ
=

Γ
∑ ∏∏

                (2) 

D. DCM modeling of text 
Given documents set cD of category c ,  we get likely-

hood function which is also Dirichlet distribution as 
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We know expectation of cθ according to [10] about this 
Dirichlet distribution is 
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Thus, the maximum likelihood of cθ is 
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So, given a new document d , we can estimate proba-
bility of document d with respect to cθ according Eq.(1). 
Eventually, by Dirichlet compound multinomial (DCM) 
modeling, we can get posterior probability of the 
document d belong to category c  as 

( ) ( ) ( )dcm | | cp c d p d p cθ∝                   (6) 
where ( )p c is probability of category c . So, accord-

ing to Eq.(6) and (1), we have 
( ) ( ) ,

dcm ,| t dx
t c

t V

p c d p c θ
∈

∝ ∏                   (7) 

E.  DMG modeling of text 
We can represent Eq.(1) by formulation of Gibbs 

distribution [11] as 

( ) ( ) ( )dcm , ,| exp logt d t ct V
p c d p c x θ

∈
∝ ∑       (8) 

Establishing connections between Gibbs and Dirichlet 
compound multinomial, we think that it will allow to 
combine virtues of Gibbs distribution and DCM model. 
Along this line, we introduce Gibbs parameters λ∈Λ  
into DCM distribution and composite the Dirichlet 
multinomial Gibbs (DMG) model. So we represent DMG 
distribution as 
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( ) ( ) ( ) , , ,
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where ( ) ( ) ( ), , ,exp logt c t d t cc t V
Z d p c xλ θΛ ∈

= ∑ ∑ . 

Hereafter, we have ( )|p c d  as maximum likelihood 
of ( )|p c dλ with respect to Gibbs parameters λ . 

( ) ( )| max |p c d p c dλλ
=                         (10) 

F.  The analysis of DMG model 
According to above description, DMG model make up 

of random field [12]. In the following, we analyse the 
random field property of DMG model according to [12]. 

The random field model can be manifest by a finite 
graph G [12]. Let ( ),G E V= with vertex set V and edge 
set E . Configuration space Ω  can be defined as the set 
of the vertices in V which have the same label. For DMG 
model, c is a configuration. If a clique cl V⊂ and 
ω∈Ω  is a configuration, then clω  denotes the con-
figuration restricted to cl . A random field on G is a 
probability distribution on Ω . We can define configure-
tion function :f RΩ→ and we assume that each cl  is a 
path-connected subset of V  and that 

( ) ( ) ( )
1 cl

cl cl cl cl
cl i i

i n

V f fω λ ω λ ω
≤ ≤

= = ⋅∑  

where cl
i Rλ ∈ and the values cl

iλ  are the parameters of 
the DMG field, the functions cl

if  are the features of the 
field. It will usually regard these features and parameters 
independent on a vertex clique cl . And the field can be 
express in the form 

( ) ( ) ( )( )1 1exp expi i
i

p f f
Z Z

ω λ ω λ ω⎛ ⎞= = ⋅⎜ ⎟
⎝ ⎠
∑  

where Z is normalization in order to make ( )p ω  is a 
probability function. 

Hence it will be convenient to express our DMG model 
in terms of the random field models described above 
according Eq.(9). There are several contact points. The 
Gibbs distribution can be derived by maximizing entropy: 
basically, it has maximal entropy among all probability 
measures on Ω  with the same average. We should also 
like to mention the interesting observation to that conven-
tional ME restoration is a special case of MAP estimation 
in which the prior distribution on F [9] is 

( ) , ,
,

1 exp logi j i j
i j

p
Z

ω β ω ω
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

∑  

which is a variant of Eq.(9). By conventional maximum 
entropy method, we prefer to maximizing the entropy 

, ,logi j i jf f . 
In the following, we discuss two optimization 

problems [12] of the random fields which related to our 
DMG model. Suppose that we are a set of features 

( )1 2, , , nf f f f= L , and p%  is the empirical distribution of 
a set of training documents 1 2, , , Nd d dL . We can derive 
a probability distribution q∗  that accounts for these 
training documents and approximates p% . 

Usually, we measure distance between probability 
distributions p and q using the Kullback-Leibler diver-
gence  

( ) log pD p q p
q

= ∑�  

and we have the expectation of function or feature g  
about distribution p as 

[ ]E p g g p= ⋅∑  
There are two natural sets of probability distributions 

determined by the data p%  and f . The first is the set 
( ),P f p% of all distributions that agree with p%  as to the 

expected value of the feature function f : 
( ) [ ] [ ]{ }, : E Ep pP f p p f f= = %%  

The second is the set ( )Q f  of generalized Gibbs 
distributions based on feature function f : 

( ) ( ){ }exp : nQ f f Rλ λ= ∈  

We let ( )Q f  denote the closure of ( )Q f . 
There are two natural criteria for choosing an element 

q∗  from these sets: one is maximum likelihood method 
and the other is maximum entropy method. 

Maximum Likelihood Gibbs Distribution. Choose  
q∗ to be a distribution in ( )Q f  with maximum likeli-
hood with respect to p% : 

( )

ML arg min log
q Q f

pq p
q∗

∈
= ∑ %

%  

Maximum Entropy Constrained Distribution. Choose  
q∗  to be a distribution in ( ),P f p%  that has maximum 
entropy: 

( )

ME

,
arg min log
p P f p

q p p∗
∈

= ∑
%

 

These criteria are different, but they determine the 
same distribution: ML MEq q q∗

∗ ∗= = . Furthermore, this 
distribution is the unique element of the intersection of 
sets ( ) ( ),P f p Q f% I . In conclusion,  for DMG the 
maximum likelihood of the model equal to maximum 
entropy of the model. 

Ⅳ. ESTIMATING PARAMETERS OF DMG 

In section Ⅲ, we get representation of DMG model 
and we also know it is a variant of DCM and Gibbs 
distribution. Therefore, we can obtain maximum 
likelihood approximation of  DMG model by using 
improved iterative scaling (IIS)[12] algorithm to estimate 
Gibbs parameter. In this section, we briefly outline the 
derivation of IIS which is a hillclimbing algorithm. A 
complete description and derivation of improved iterative 
scaling method is presented by [12]. We describe the 
algorithmic details of this procedure follows [13] and  
[6]. We know that IIS performs hillclimbing in parameter 
log likelihood space. Then, given a set of i.i.d. training 
data D , we can designate the log likelihood ( )|L DΛ of 
an DMG model with regard to Λ  which is the set of the 
gibbs parameters: 
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where ,t cλ ∈Λ . 
Let us define 
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Then at each step, IIS algorithm can find an 
incrementally more likely set of parameters which denote 
by ∆ . When starting from some initial vector parameters 
Λ , we improve Λ  by setting it equal to Λ + ∆ . Thus we 
expect to obtain a ∆  such that the difference in 
likelihoods is positive: 

( ) ( )| | 0L D LΛ + ∆ − Λ ∆ ≥                   (13) 
Referring to Eq.(11) we have 
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where iλ ∈Λ  and iδ ∈∆ . 
And according to Eq.(9), above equation (14) also can 

be represented as 
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Using the inequality log 1x x≤ − , we can get: 
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We can apply Jensen's inequality -- namely for a p.d.f. 
( )p x  

( ) ( ) ( ) ( )exp exp
x x

p x q x p x q x≤∑ ∑  

So we can bound this expression as: 
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where ( ) ( )# , ,ii
f d c f d c=∑ . 

Let us define an auxiliary function called B  to denote 
right hand side of above equation (17): 
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If 0B ≥ , we can gaurantee an increase in the 
likelihood. We can derive optimal ∆  by differentiating 
B  with respect to the trivial changes in each parameter 

iδ ∈∆  and solving for the maxima: 

( ) ( )

( ) ( ) ( )( )#

log ,

   | , exp ,

k k
d Dk

k k
d D c

B p c f d c
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This analysis demonstrate that the likelihood is 
convex. Thus, we can improve the model likelihood at 
each hillclimbing step, such as Newton-Raphson method, 
which is guarenteed to converge to the global maximum. 

So the procedure of IIS algorithm for estimating 
parameters of DMG model can be shown as follows: 

 Given A collection D  of labeled documents and 
a set of feature functions if . 

 Our target is estimating every feature if  expect-
ed value on the training documents by the 
constraints Eq.(12). 

 Initialize all the parameters iλ 's to be zero. 
 Iterate the model likelihood until convergence by 

Newton-Raphson method: 
 Calculate the expected class labels for each 

document with the current parameters 
according to Eq.(9). 

 For each parameter iλ : 
 Set iB δ∂ ∂  and solve for iδ  accord-

ing to Eq.(19). 
 set i i iλ λ δ= + . 

 At last, we can derived a document classifier that 
takes an unlabeled document and predicts a class 
label. 

Ⅴ. EXPERIMENTS AND RESULTS 

In order to evaluate the properties of our method, we 
have conducted experiments on two real-world datasets, 
WebKB and 20Newsgroups, to evaluate the effectiveness 
of our proposed model for text categorization. 
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A. Datasets 
The 20Newsgroups(20NG)1 dataset is a collection of 

approximately 20,000 documents that were collected 
from 20 different newsgroups with about 1000 messages 
from each newsgroup. This collection consists of 19,974 
non-empty documents distributed evenly across 20 
newsgroups and we selected 19,946 nonempty documents 
which are all the same after feature selection. We use the 
newsgroups to form categories, and randomly select 70% 
of the documents to be used for training and the 
remaining 30% for testing. 

The WebKB2 dataset contains manually classified Web 
pages that were collected from the computer science 
departments of four university (Cornell, Texas, Washing-
ton and Wisconsin) and some other university. The pages 
are divided into seven categories: student, faculty, staff, 
course, project, department and other. In this paper, we 
use the four most populous entity-representing categories: 
student, faculty, course, and project, which all together 
contain 4199 pages. We called this selected WebKB 
dataset as WebKB top-4 dataset. Like handling 20News-
groups dataset, We randomly select 70% of the docu-
ments to be used for training and the remaining 30% for 
testing. 

B. Gaussian Prior of DMG Model 
Dirichlet multinomial Gibbs (DMG) model can also 

suffer from overfitting like document classification 
method proposed by Nigam et al [6]. Chen and Rosenfeld 
[14] have shown applying a Gaussian prior centered 
around to smooth the maximum likelihood, which can 
ameliorate over-fitting. Goodman [15] have done the 
similar work also. By performing maximum a posteriori 
instead of maximum likelihood estimation toward the 
uniform model, the Gaussian prior method adds little 
computation to existing maximum likelihood estimation 
algorithms. Since the logarithm of the Gaussian prior is 
concave the objective function is still concave, we can 
make a simple modification to improved iterative scaling 
(IIS) to find the MAP model. Accordingly, we integrate a 
Gauss prior into DMG model with the mean at zero and a 
diagonal covariance matrix. 

The prior probability of the model is just the product 
over the Gaussian of each feature value iλ  with variance 

2
iσ  : 

( )
2

2

1 exp
22

i

i i

p λ
σπσ

⎛ ⎞
Λ = −⎜ ⎟

⎝ ⎠
∏  

Integrating this prior into improved iterative scaling 
requires adding a single term to the derivative of B  
(Equation  19): 
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1 http://people.csail.mit.edu/jrennie/20newsgroups 
2 http://people.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data 

Moreover, this new formula is easily solved for a 
maximum with a numeric root-finding procedure, like 
Newton's method. [14] have shown that introducing a 
Gaussian prior on each iλ  improves performance for 
language modeling tasks when sparse data causes over-
fitting. This paper also derives the update rule give by 
above equation. 

C. Experiments 
The standard performance measure for document 

classification systems is precision and recall. Precision 
measures how many of the retrieved entries are relevant. 
Recall measures how many relevant entries were found 
compared to the amount of relevant entries in the 

collection. The F1 measure [16] weights the importance 
of precision and recall equally. 

Macro averaging [16] evaluate precision and recall for 
each category, and average over the results of the 
different categories. However, micro averaging [16] over 
all the classes, is rewarded when classifiers of frequent 
categories performs well. So the micro averaged 
precision and recall simplifies to the fraction of correct 
classified documents. It follows from that the F1 measure 
also becomes the fraction of correct classified documents. 
These two methods may give quite different results, 
especially if the different categories have very different 

TABLE I.   
EXPERIMENTAL RESULTS ON THE WEBKB TOP-4 

 SVM MaxEnt DMG 

macro-averaging precision 0.753 0.892 0.889 

macro-averaging recall 0.703 0.879 0.865 

macro-averaging F1 0.720 0.855 0.876 

micro-averaging accuracy 0.733 0.897 0.891 

 

TABLE II.   
EXPERIMENTAL RESULTS ON THE 20NG DATASET 

 SVM MaxEnt DMG 

macro-averaging precision 0.817 0.803 0.824 

macro-averaging recall 0.801 0.804 0.823 

macro-averaging F1 0.805 0.803 0.823 

micro-averaging accuracy 0.798 0.801 0.823 

 

TABLE III.   
 THE COMPARISON OF PERFORMANCE (F1) ON WEBKB TOP-4 

Category SVM MaxEnt DMG 

student 0.878 0.917 0.912 

faculty 0.817 0.870 0.857 

course 0.446 0.931 0.947 

project 0.741 0.818 0.782 

macroaveraging F1 0.720 0.885 0.876 
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Figure 1.  The micro-averaging precision on the WebKB data set with
different vocabulary size according to SVM, MaxEnt and DMG model.

 
Figure 2.  The micro-averaging precision on the 20newsgroups data set
with different vocabulary size according to SVM, MaxEnt and DMG
model. 

generality. For instance, the ability of a classifier to 
behave well also on categories with low generality (i.e., 
categories with few positive training instances) will be 
emphasized by macro averaging and much less so by 
micro averaging. So, in this experiment, we just focus on 
macro precision, macro recall, macro F1 and micro 
accuracy (precision) measure. 

For these two datasets, we performed stop word 
removal, stemming, and case-conversion to lower case 
before feature selection was applied on the training set. 
Furthermore, We apply Information Gain feature 
selecting method to the documents of both WebKB and 
20NG datasets with threshold -0.0436 to WebKB and 
0.055 to 20NG. 

We deployed LIBSVM [17] implementation of SVM 
which uses the “one vs rest” method for multi-category 
classification because of its effectiveness and efficiency. 
We set all the parameters to their default values except 
few parameters were set special values for various 
datasets. Especially, we adapted LIBSVM with 
polynomial kernel to execute document classification 
tasks.  

We implement standard maximum entropy according 
to the work of Nigam et al [6]. And we use free software 
MALLET [18] for the maximum entropy method of 
document classification tasks. Developed by Andrew 
McCallum, MALLET is a library of Java code for 

machine learning applied to text. It provides facilities for 
many natural language processing, such as document 
classification. 

The results of macro-averaging and micro-averaging to 
WebKB and 20NG datasets are shown in Tables Ⅰand 
Ⅱ for standard maximum entropy (MaxEnt), SVM with 
polynomial kernel(SVM) and Dirichlet multinomial 
Gibbs (DMG) model respectively. We also showed the 
comparison of performance F1 on WebKB and 20NG 
subsets in Table Ⅲ and Table Ⅳ. The micro-averaging 
accuracy comparison between our algorithm and other 
methods according to different vocabulary size are shown 
in Fig. 1 and Fig. 2 for WebKB and 20newsgroups 
respectively. Specially, All results are averaged across 5 
random runs for WebKB and 20NG dataset. 

According experimental results, Dirichlet multinomial 
Gibbs (DMG) model has better effects on both datasets. 
And we can affirm that our model has potential energy to 
model document in area of text analysis. In the future 
work, we figure to modify the method of iterating 
parameters in order to obtain more perfect approximation. 

Ⅵ. CONCLUSION 

In this paper we derived a  new approach modeling 
documents called Dirichlet multinomial Gibbs (DMG) 
model, which inherit merits of the Dirichlet compound 
multinomial (DCM) modeling word burstiness. We have 
shown that the maximum likelihood estimation method of 
the DMG model with Gauss prior which smooth the 
likelihood to overcome overfitting problem, and the 

TABLE IV.   
 THE COMPARISON OF PERFORMANCE (F1) ON 20NG SUBSET 

Category SVM MaxEnt DMG 

alt.atheism 0.708 0.697 0.723 
comp.graphics 0.736 0.759 0.786 

comp.os.ms-windows.misc 0.806 0.791 0.792 

comp.sys.ibm.pc.hardware 0.753 0.723 0.730 

comp.sys.mac.hardware 0.815 0.778 0.822 

comp.windows.x 0.830 0.812 0.851 

misc.forsale 0.607 0.767 0.791 

rec.autos 0.877 0.854 0.878 

rec.motorcycles 0.895 0.909 0.917 

rec.sport.baseball 0.934 0.936 0.960 

rec.sport.hockey 0.948 0.943 0.954 

sci.crypt 0.884 0.894 0.926 

sci.electronics 0.766 0.771 0.797 

sci.med 0.897 0.874 0.899 

sci.space 0.926 0.913 0.920 

soc.religion.Christian 0.875 0.877 0.873 

talk.politics.guns 0.803 0.760 0.808 

talk.politics.mideast 0.893 0.879 0.898 

talk.politics.misc 0.659 0.623 0.657 

talk.religion.misc 0.480 0.480 0.496 

macroaveragingF1 0.805 0.803 0.823 
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method approximate real texts distribution very well. We 
have demonstrated experiements using our DMG model 
on WebKB and 20Newsgroups datasets. According to the 
experimental results, Dirichlet multinomial Gibbs(DMG) 
model which we proposed is more desirable than SVM 
with polynomial kernel and standard maximum entropy. 
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