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Abstract—Most of graph pattern mining algorithms focus on 
finding frequent subgraphs and its compact representations, 
such as closed frequent subgraphs and maximal frequent 
subgraphs. However, little attention has been paid to mining 
graph patterns with user-specified significance measure. In 
this paper, we study a new problem of mining top-k graph 
patterns that jointly maximize some significance measure 
from graph databases. Exploiting entropy and information 
gain, we give two problem formulations, EM and IGM. We 
first prove them to be NP-hard and then propose two 
efficient algorithms, PP-TopK and DM-TopK, to solve them. 
PP-TopK greedily selects top-k graph patterns among 
frequent subgraphs. DM-TopK integrates the pruning 
techniques into the mining framework, and directly mines 
top-k graph patterns from graph databases. Empirical 
results demonstrate the quality of our top-k graph patterns, 
and validate the efficiency and scalability of our algorithms. 
 
Index Terms—pattern mining, graph database, frequent 
subgraph, top-k. 
 

I.  INTRODUCTION 

As a general data structure, graph can be used to model 
complicated relations among data objects. It has been 
prevalently used in a wide range of application domains, 
such as protein interaction graphs in biology [1], 
chemical compound structures in chemistry [2], social 
networks in social science [3] and web graphs [4]. As 
witnessed in the core tasks of many applications, 
including graph search [5, 6] and classification [7], graph 
patterns could help build powerful, yet intuitive models 
for better managing and understanding complex 
structures. Their usage, therefore, is far beyond 
traditional exercises, such as association rules. With the 
increasing popularity of graph databases in various 
applications, discovering useful graph patterns from 
graph databases emerges as one of the most important 
mining problems. 

In literature, there have been a number of studies on 
mining interesting patterns from graph databases. Most of 
them focus on finding frequent subgraphs [8-13] and its 
compact representations, such as closed frequent 
subgraphs [14] and maximal frequent subgraphs [15,16]. 
However, little attention has been paid to mining graph 
patterns based on a significance measure specified by 
users. Furthermore, users may need different significance 

measures in different applications. Essentially, support is 
also a specific significance measure, which is widely used 
in mining frequent subgraphs. 

Given a significance measure M, a natural idea is to 
rank discovered graph patterns or all graph patterns in the 
database, and output top-k patterns as the traditional top-k 
query/mining method. However, the traditional top-k 
method assumes that patterns are independent from each 
other, which unfortunately is not the case. Fig. 1 in 
Section V shows the traditional top-5 graph patterns in a 
database of chemical compounds when information gain 
is used as a significance measure. We find that these five 
graph patterns overlap substantially with respect to 
structure, and thus they are not independent from each 
other. If users obtain one of them, the other graph 
patterns become insignificant for users. 

To overcome the shortcomings of the traditional top-k 
method, in this paper, we consider the joint significance 
for a set of graph patterns instead of the single 
significance for each pattern. Specially, given a graph 
database D and a significance measure M, the problem 
studied in this paper is to discover a set T consisting of k 
graph patterns from D such that M(T) is maximized. The 
joint significance measure will present a set of significant 
yet distinct graph patterns to users. For example, Fig. 2 in 
Section V shows the top-5 graph patterns generated based 
on the joint information gain. They are different from 
each other with respect to structure, which is desirable for 
users in many applications. 

In this paper, we study the problem of mining top-k 
graph patterns jointly maximizing some significance 
measure from a graph database. In order to describe our 
method clearly, we first use two concepts in information 
theory, entropy and information gain, to give two 
concrete problem formulations, EM and IGM. We then 
prove that EM and IGM are NP-hard. We propose two 
mining method, PP-TopK and DM-TopK, for EM and 
IGM. PP-TopK is a post-processing method which first 
mines frequent graph patterns from graph databases, and 
then selects top-k graph patterns from frequent patterns. 
DM-TopK integrates effective pruning techniques 
designed for some significance measure into the 
framework of frequent subgraph mining algorithms, and 
directly mines top-k graph patterns jointly maximizing 
some significance measure from graph databases. 
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Furthermore, both PP-TopK and DM-TopK can provide 
an offline approximation bound for EM, and provide an 
online approximation bound for IGM. 

Extensive experiments show that our top-k methods, 
PP-TopK and DM-TopK can generate better results than 
the traditional top-k method in terms of classification 
accuracy. Compared with PP-TopK, DM-TopK has a 
higher efficiency, especially when the minimum support 
is low. We summarize the contributions of this paper as 
follows. 

 We propose a novel problem of mining top-k 
graph patterns that jointly maximize some 
significance measure from graph databases. 

 We give two problem formulations, EM and IGM, 
using entropy and information gain, and prove 
that they are NP-hard. 

 We propose two efficient algorithms, PP-TopK 
and DM-TopK, for this new problem. 
Furthermore, we prove that both PP-TopK and 
DM-TopK can provide an offline approximation 
bound for EM and an online approximation 
bound for IGM. 

 Extensive study has been conducted to 
demonstrate the quality of top-k graph patterns 
and validate the algorithm's efficiency and 
scalability. 

The rest of the paper is organized as follows. We 
introduce some background knowledge on frequent 
subgraph mining and information theory in Section II. 
We give two problem formulations, EM and IGM, using 
entropy and information gain, and prove that they are NP-
hard in Section III. Two efficient mining algorithms, PP-
TopK and DM-Topk, are proposed in Section IV. Then, 
we evaluate the performance of PP-TopK and DM-Topk 
and demonstrate the quality of mining results in Section 
V. Finally, we review related work in Section VI and 
conclude the paper in Section VII. 

II.  PRELIMINARIES 

In this section, we introduce some preliminary 
concepts and notations on frequent subgraph mining and 
information theory.  
Definition 1 (Labeled Graph). A labeled graph G is a 4-
tuple G = (V, E, L, l), where V is a set of vertices, E⊆V 
× V is a set of edges, L is the set of labels and l: V�E 
→L is a labeling function that maps each vertex or edge 
to a label in L. 
Definition 2 (Subgraph Isomorphism). A labeled graph 
G = (V, E, L, l) is subgraph isomorphic to a labeled 
graph G' = (V', E', L', l') iff there exists an injective 
function f: V→V', such that (1) ∀ u∈V, l(u) = l'(f(u)) and 
(2) ∀ (u, v)∈E, (f(u), f(v))∈E' and l(u, v) = l'(f(u), f(v)). 

If there exists a subgraph isomorphism from G to G', G 
is called a subgraph of G' and G' is called a supergraph of 
G, denoted by G⊆G'. If G⊆G' and G≠G', G is called a 
proper subgraph of G', denoted by G⊂G'. The subgraph 
isomorphism testing is an NP-complete problem [17]. If 
G⊆G', we call that G' contains G. 

A graph database D consists of a set of labeled graphs 
whose cardinality is denoted by |D|. The support set of a 

graph pattern p in D is the set of all graphs in D that are 
supergraphs of p. The support of a graph pattern p in D, 
denoted by suppD(p), is defined as the number of graphs 
in D that are supergraphs of p. When the context is clear, 
we use supp(p) to denote suppD(p). The support measure 
is anti-monotone, i.e., if p1⊆p2, then supp(p1) ≥supp(p2). 
A graph pattern p is frequent in D if its support in D is 
no less than a user-specified threshold min_sup. A graph 
pattern p is closed in D if there exists no proper 
supergraph of p that has the same support as p. The set of 
frequent graph patterns is denoted by FS. The set of 
closed frequent graph patterns is denoted by CS, i.e., 
CS = {p|p∈FS and ¬∃ p'∈  FS such that p⊂p' and 
supp(p)= supp(p')}. 

If not explicitly stated, the notation "graph" means an 
undirected labeled connected graph by default in the rest 
of this paper. Since our proposed significant measures 
exploit some concepts of information entropy [18], we 
review them briefly. 
Definition 3 (entropy). The entropy of a random 
variable x, denoted as H(x), is defined as H(x)= 

, where dom(x) is the 
domain of x.  
Definition 4 (conditional entropy). The conditional 
entropy of a random variable y given another variable x, 
denoted as H(y|x), is defined as H(y|x) = 

. 
Definition 5 (joint entropy). The joint entropy of two 
random variables x and y, H(x,y), is defined as H(x,y) = 

. 

III.  PROBLEM STATEMENT 

In this section, we first discuss significance measures 
for a set of graph patterns, and propose the formal 
problem formulation. Then, we show that the proposed 
problem is NP-hard. 

There are lots of studies on the significance measure 
for a single pattern. For example, Chi-square test, Pearson 
correlation, etc. can measure the statistical significance of 
a single pattern. In data mining and machine learning, 
discriminative measures such as information gain and 
cross entropy can be used to measure the discriminative 
power of a single pattern. Tan et al. [19] summarized 
twenty-one significance measures. 

Although these significance measures are still valid for 
a single graph pattern, most of them cannot be used to 
measure the significance of a set of (graph) patterns. In 
this paper, we hope to find a measure that can show the 
combined significance for a set of graph patterns. Before 
giving the concrete significance measure, we first 
formulate the general problem studied in this paper as 
follows. 

We denote by S the full set of available graph patterns, 
which corresponds to the frequent subgraphs generated 
by some frequent subgraph mining algorithm in this 
paper. Let M(T) be a significance measure for a set of 
graph patterns T. We want to discover a subset T* of S 
such that 

       (1) 
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If we first obtain all candidate graph patterns, then the 
problem defined above is clearly an combinatorial 
optimization problem. In this paper, our goal is to design 
a general mining method applicable to a wide range of 
significance measures. In order to describe our method 
clearly, we use information theory concepts to give the 
concrete problem formulation as follows. 
Definition 6 (Entropy-Based Significance). Given a 
graph database D (or a set of frequent subgraphs mined 
from D), the problem of maximizing entropy-based 
significance (EM) is to find a set of (frequent) subgraphs 
T such that H(T) is maximized, where H(T) is the joint 
entropy for graph patterns in T. 
Definition 7 (Information Gain-Based Significance). 
Given a graph database D (or a set of frequent subgraphs 
mined from D). Assume that each graph in D has a class 
label, and C denotes the set of all class labels. The 
problem of maximizing information gain-based 
significance (IGM) is to find a set of (frequent) 
subgraphs T such that IG(T)= H(C) − H(C|T) is 
maximized, where H(C|T) is the entropy conditioned on T, 
and IG(T) is the information gain given T. 

The entropy-based significance is often used to 
measure uncertainly in an unsupervised setting, whereas 
the information gain-based significance is often used to 
select discriminative features in a supervised setting. In 
the above formulation, we consider a subgraph as a 
random variable. If a subgraph p occurs in a graph in the 
database, then the value of p is 1, otherwise 0. 

Generally, when a concrete significant measure is 
given, the problem defined in Equation 1 is an NP-hard 
problem. In the following, we show that the problem of 
the information gain-based formulation (Definition 7) is 
NP-hard. The NP-hardness of the problem of the entropy-
based formulation (Definition 6) can be proved similarly. 
Theorem 1. The problem of maximizing information 
gain-based significance (IGM) is NP-hard. 
Proof. We can easily prove this theorem by reduction 
from the MAX-COVER problem.□ 

IV.  EFFICIENT MINING OF TOP-K GRAPH PATTERNS 

In this section, we illustrate how to efficiently mine 
top-k graph patterns that jointly maximize some 
significance measure. 

A.  Post-Processing Method 
We have shown that both EM and IGM are NP-hard 

problems. Thus, we have to use approximation or 
heuristic algorithms to solve them. In this subsection, we 
discover top-k graph patterns jointly maximizing entropy 
and information gain from the set of frequent subgraphs S. 

Since it is difficult to find the optimal solution, we 
adopt a well-known greedy algorithm to solve EM and 
IGM. The algorithm incrementally selects patterns from S 
with an estimated benefit b. A pattern is selected if it has 
the maximum benefit among the remaining patterns. That 
is, given a set of selected patterns T, the benefit of a 
pattern p∈S−T is:  

        (2) 

Based on the greedy rule above, we devise a greedy 
post-processing algorithm, PP-TopK, as shown in 
Algorithm 1. At beginning, the result set T is empty. The 
algorithm picks the most significant pattern and inserts it 
into T. When |T| < k, we will compute benefit b(p) for 
every remaining graph pattern p∈ S−T, and select the 
pattern with the maximum benefit. After a pattern is 
inserted into T, it remains in T. When |T| = k, PP-TopK 
terminates. 

Algorithm 1:  PP-TopK  
Input: (1) A graph Dataset D, (2) A minimum support min_sup, 
and (3) A significance measure M, and (4) Number of output 
patterns k. 
Output: The set of k graph patterns T that jointly maximize M 

1: Mine all frequent subgraphs S from D with min_sup;  
2: Select a graph pattern p that maximizes M(p); 
3: T = {p}; 
4: WHILE (|T| < k) do  
5:       Find a graph pattern p* from patterns in S −T such that 

b(p*) is maximized; 
6:         T = T ∪{ p* }; 
7: Output T; 
 

If a significance measure satisfies the submodular 
property (A measure function M is said to be submodular 
on a set S if for T ⊂ T ' ⊆ S and p ∈S, M(T∪{p})−M(T) 
≥ M(T '∪{p})−M(T '), the greedy strategy above will 
yield a near-optimal solution [20]. 

We find that the entropy-based measure satisfies the 
submodular property, thus we can obtain the following 
approximation bound for EM. 
Theorem 2. Let the set of graph patterns selected by 
Algorithm 1 be T, the set of optimal k graph patterns that 
maximize the joint entropy H be T*, then H(T) ≥ 
(1−1/e)×H(T*). 

The information gain-based measure doesn't satisfy the 
submodular property, thus we cannot obtain any offline 
approximation bound for IGM. However, since H(C) is 
the possible maximum value of IG(C|T) for any set of 
graph patterns T, we can easily obtain an online 
approximation bound for IGM. 
Theorem 3. Let the set of graph patterns selected by 
Algorithm 1 be T, then the approximation bound for IGM 
is guaranteed to be at most H(C)/IG(T). 

B.  Direct Mining 
In this subsection, we design effective pruning 

techniques and integrate them into the framework of 
frequent subgraph mining algorithms to directly mine 
top-k graph patterns jointly maximizing entropy and 
information gain from graph databases. 

All of frequent subgraph mining algorithms exploits 
the well-known anti-monotone property of support to 
prune the search space of frequent graph. That is, the 
support of a subgraph p is an upper bound for the 
supports of its supergraphs. However, the significance 
measures presented in this paper are not anti-monotone. 
We cannot apply the significance measures like support. 

Fortunately, given the significance measure value of a 
subgraph p, we can derive an upper bound for the 
significance measure value of its supergraphs, thereby 
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allowing us to effectively prune the search space for 
graph patterns. 

We still adopt the framework of greedy selection to 
mine the top-k graph patterns. That is, given the current 
set of selected graph patterns T, we then select a graph 
pattern p such that M(T∪{p}) is maximized, where M is 
a measure to be optimized. 

In the following, we introduce the pruning techniques 
in two cases: (1) when the result set is empty, we mine 
the first graph pattern; (2) when some graph patterns have 
been selected, we mine the next graph pattern. 

We first study how to effectively prune the search 
space when mining the first graph pattern. Theorem 4 
gives the pruning condition for the entropy measure, and 
Theorem 5 gives the pruning condition for the 
information gain measure.  
Theorem 4. Let D be a graph database, and q be a 
supergraph of p. If suppD(p) ≤ 1/2, then H(q) ≤ H(p). 
Theorem 5. Let D=PD+ND, where PD and ND are 
positive and negative graph databases respectively, q be 
a supergraph of p, x and y be the number of graphs that 
contain p in PD and ND respectively. Then, 

     (3) 

where . 
Theorems and inequalities presented above can be 

directly applied in the first iteration of greedy selection. 
For later iterations of greedy selection, we can define a 
similar upper bound for pruning. For this goal, we first 
give the concept of equivalence class. 
Definition 8 (Equivalence Class). Let D be a graph 
database, G be a graph in D, and T be a set of graph 
patterns. Then, the equivalence class of G w.r.t T is 
defined as  
where  is the indicator function. 

Based on the above definition, we know that a set of 
graph patterns T can partition a graph database D into a 
set of equivalence classes (or blocks)  
such that  

Using the above concept of Equivalence Class, we can 
obtain the pruning condition for the entropy measure 
when the set of selected graph patterns is not empty, as 
shown in Theorem 6. The pruning condition for the 
information gain measure is shown in Theorem 7. 
Theorem 6. Let D be a graph database, T be the set of 
selected patterns, be the set of equivalence classes 
w.r.t. T and D,  Then, 

   (4) 

where   where 
xi is the number of graphs that contain p in Bi. 
Theorem 7. Let D=PD+ND, where PD and ND are 
positive and negative graph databases respectively, T be 
the set of selected patterns, be the set of equivalence 
classes w.r.t. T and D,  Then, 

        (5) 

where    
    

   
where 

mi and ni are the number of positive and negative graphs 
in Bi respectively, and xi and yi are the number of positive 
and negative graphs that contain p in Bi respectively. 

Our pruning techniques introduced above can be 
integrated into the framework of any frequent subgraph 
mining algorithm. In this subsection, we integrate the 
pruning techniques into the DFS code tree enumeration 
framework adopted by gSpan [11], and develop an 
efficient algorithm, DM-TopK, to mine a set of top-k 
graph patterns jointly maximizing some significance 
measure from graph databases. The pseudo-code for the 
DM-TopK algorithm is shown in Algorithm 2. 

We now explain the major steps of the DM-TopK 
algorithm. In the preprocessing stage, DM-TopK first 
removes the infrequent vertexes and edges from the input 
graph database, and then obtains the set of frequent edges. 
Then, DM-TopK starts an iteration procedure. At each 
iteration, DM-TopK performs the depth-first search in the 
graph pattern space for each frequent 1-edge graph 
pattern, and outputs a graph pattern p such that M(T∪{p}) 
is maximized. 

In Line 1 of Function MiningNextPattern, p≠min(p) 
prunes duplicate subgraphs and all their descendants, 
where min(p) is the minimum DFS code of p. Please refer 
to [11] for more details. We use global variable best to 
denote the best graph pattern selected so far. Line 3-8 
deals with the case that the current set of selected graph 
patterns T is empty. If the current pattern p is better than 
best based on the greedy rule in Line 4, we replace best 
with p in Line 5. We compute the upper bound ub of M(q) 
for any supergraph q of p using Theorem 4, 5 or 
Corollary 1 in Line 6. If the M(best) is larger than ub in 
Line 7, then the branch rooted at p cannot contain any 
graph pattern q such that M(q) is larger that M(best), and 
thus we can safely prune the branch. Similarly, Line 9-14 
deals with the case that the current set of selected graph 
patterns T is not empty based on Theorem 6 and 7. In 
Line 15, we scan the graph database D once, and 
enumerate all frequent supergraphs  of p where p 
can be right-most extended to . Line 16-17 
recursively invoke Function MiningNextPattern to 
continue the enumeration process for each right-most 
extended supergraph of p. gSpan [11] has shown that 
performing the right-most extension only in the minimum 
DFS code can guarantee the completeness of mining 
results. More details can be found in [11]. 

Once T contains k graph patterns, DM-TopK 
terminates. Since the solution generated by DM-TopK is 
same as that generated by PP-TopK, the offline 
approximation bound for the entropy measure and the 
online approximation bound for the information gain still 
hold for DM-TopK. 
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Some optimization strategies can be applied in DM-
TopK. For example, at each iteration, we also maintain 
the search space built by a DFS Code Tree in previous 
iteration as long as memory allows. This substantially 
speeds up the whole mining procedure, since DM-TopK 
will reduce the cost of scanning the graph database at 
each iteration. If the size of the DFS tree is too large to be 
stored fully in memory, we can only store several layers 
of the whole DFS tree to facilitate efficient mining. 

Algorithm 2:  DM-TopK  
Input: (1) A graph Dataset D, (2) A minimum support min_sup, 
and (3) A significance measure M, and (4) Number of output 
patterns k. 
Output: The set of k graph patterns T that jointly maximize M 

1: Remove infrequent vertices and edges from D; 
2: S1 = Minimum DFS codes of frequent edges in D; 
3: T = Ø; 
4: best = Ø; 
5: while |T|< k do 
6:          for each code p in S1 do 
7:                if best = Ø then 
8:                    best = p; 
9:                MiningNextPattern(p;D;min_sup;M;T;best); 
10:        T = T ∪{best}; 
11:        best = Ø; 
12: Output T; 
 

Function : MiningNextPattern  
Input: (1) A DFS code p, (2) A graph Dataset D, (3) A 
minimum support min_sup, (4) A significance measure M, (5)  
The set of selected graph patterns T, and (6) The best graph 
pattern discovered so far best. 
Output: The best graph pattern discovered after searching the 
branch rooted at p 

1: if p != min(p) then 
2:    Return; 
3: if |T| = 0 then 
4:      if M(best) < M(p) then 
5:          best = p; 
6:      Compute an upper bound ub for q ( ) using Theorem 

4 or Theorem 5; 
7:       if M(best) > ub then 
8:           Return; 
9:  if |T| > 0 then 
10:     if M(T ∪best) < M(T ∪p) then 
11:         best = p; 
12:      Compute an upper bound ub for q ( ) using Theorem 

6 or Theorem 7; 
13:      if M(T ∪best) > ub then 
14:           Return; 
15: Scan D once, find every frequent edge e such that p can be 

right-most extended to ; 
16: for each right-most extended child  of p do 
17:       MiningNextPattern( ;D;min_sup;M;T;best); 
 

V.  EXPERIMENTAL RESULTS 

In this section, we conduct extensive experiments to 
examine the quality of extracted top-k graph patterns and 
efficiency of the proposed methods. 

A.  Experimental Settings 
We derived several graph datasets from a publicly 

available set of chemical compounds [21]. This set of 
chemical compounds is the AIDS antiviral screen 
compound dataset from developmental therapeutics 
program in NCI/NIH which contains about 44,000 
chemical compounds. Among all AIDS chemical 
compounds, the results of screening tests are categorized 
into three classes: CA: confirmed active; CM: confirmed 
moderately active; and CI: confirmed inactive. 422 
compounds of them belong to active, 1081 ones are in 
class CM, and the remaining ones are in class CI. In our 
experiments, we construct three graph datasets from 
NCI/CA, NCI/CM and NCI/CI respectively. The graph 
dataset associated with NCI/CI includes 5,000 
compounds which are randomly sampled from more than 
40,000 compounds in CI class. Each graph in NCI/CA 
has 40 vertexes and 42 edges on average, each one in 
NCI/CM has 27 vertexes and 28 edges on average, and 
each one in NCI/CI has 20 vertexes and 22 edges on 
average. 

Our algorithm is implemented in C++ with STL library 
support and compiled by g++ with -O3 optimization. All 
our experiments are performed on a 3.2GHZ Intel 
Pentium-4 PC with 1G memory, running RedHat 8.0. 

Note that PP-TopK and DM-TopK will generate the 
same results. Additionally, we use T-TopK to refer to the 
traditional method extracting top-k patterns completely 
based on single significance, instead of considering joint 
significance. 

B.  Quality of Top-K Patterns 
In the following, we demonstrate that our top-k graph 

patterns that consider joint significance are superior to the 
top-k graph patterns that only consider single significance 
in terms of classification accuracy. 

We formulate three classification problems on NCI 
dataset. In the first problem we separate active (CA) and 
moderately active (CM) compounds. In the second 
problem we separate active (CA) and inactive (CI) 
compounds. In the third problem we separate moderately 
active (CM) and inactive (CI) compounds. 

We build classifiers based on different sets of top-k 
graph patterns. One set considers joint significance of 
graph patterns, which is generated by PP-TopK/DM-
TopK. The other set only considers single significance of 
each graph patterns, which is generated by T-TopK. The 
information gain is used as significance measure in this 
experiment. We mine top-k graph patterns from positive 
and negative class respectively using the same minimum 
support 10%. Top-k graph patterns from two different 
class will be combined as classification features. 
LIBSVM [22] with default parameters is used as the 
classification model. The classification accuracy is 
evaluated with 5-fold cross validation. We use the area 
under the ROC curve (AUC) to measure the classification 
performance. A perfect model will have the area of 1. 
Table 1 summarizes the AUC using different sets of top-k 
graph patterns w.r.t. different k. 
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As one can see, the classification accuracy achieved by 
top-k patterns that consider joint significance is clearly 
better than that achieved by top-k patterns that only 
consider single significance. This is because that the set 
of top-k patterns that consider single significance 
contains many correlated features. When correlated 
features are used together, the overall effect (i.e. 
classification performance) will be reduced. Assume that 
a feature which can correctly predict some examples is 
already selected, to improve the overall accuracy, the 
features considered subsequently need to predict better on 
those examples or subspaces of the dataset that the 
chosen feature cannot predict correctly. The traditional 
top-k approach does not consider this, whereas our top-k 
measure does use this combined effect. This illustrates an 
advantage of joint significance over single significance. 

To further demonstrate the effect of joint significance, 
we run T-TopK and DM-TopK on CA database with 
min_sup = 10% to extract top-5 graph patterns, which are 
shown in Fig. 1 and 2. We also run T-TopK and DM-
TopK on CM database with min_sup = 10% to extract 
top-5 graph patterns, which are shown in Fig. 3 and 
4.Without considering joint significance, the top-5 results 
returned by T-TopK overlap substantially with respect to 
structure, as shown in Fig. 1 and 3. Practically, if the first 
graph pattern is selected, all the other graph patterns 
become insignificant. By considering joint significance, 
the top-5 results returned by DM-TopK are different from 
each other with respect to structure, as shown Fig. 2 and 4. 
This again illustrates that joint significance measure is 
clearly superior to single significance measure for a set of 
graph patterns. 

Table 1 
Classification Performance Based on Different Top-K Graph Patterns 
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Fig. 1. Top-5 graph patterns generated by the traditional method T-TopK on CA dataset(min_sup=10%) 
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Fig. 2. Top-5 graph patterns generated by our method PP-TopK/DM-TopK on CA dataset(min_sup=10%) 
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Fig. 3. Top-5 graph patterns generated by the traditional method T-TopK on CM dataset(min_sup=10%) 
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Fig. 4. Top-5 graph patterns generated by our method PP-TopK/DM-TopK on CM dataset(min_sup=10%) 

 CA vs. CM CA vs. CI CM vs. CI 
 Single Info Gain Joint Info Gain Single Info Gain Joint Info Gain Single Info Gain Joint Info Gain 

K=5 0.6032 0.7530 0.7222 0.8284 0.5069 0.5981 
K=10 0.6608 0.7966 0.5699 0.9074 0.6049 0.6864 
K=15 0.6847 0.8030 0.6161 0.9216 0.5872 0.7415 
K=20 0.7179 0.8023 0.7635 0.9244 0.5912 0.7435 
K=25 0.6952 0.7998 0.7769 0.9224 0.6201 0.7493 
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(a): CA, K=20                                                (b): CM, K=20                                                (c): CI, K=20 

Fig. 5. Post-Processing method PP-TopK vs. Direct Mining method DM-TopK 

C.  Efficiency for PP-TopK and DM-TopK 
In this subsection, we study the computational 

performance of the post-processing method PP-TopK and 
direct mining method DM-TopK. 

Fig. 5 compares the runtime of PP-TopK and DM-
TopK with respect to different support on CA, CM and 
CI datasets, with a fixed k = 20. From Fig. 5, we can see 
that the pruning techniques in DM-TopK are very 
effective in improving the efficiency. It is because that 
when selecting a best pattern at each step, the pruning 
techniques can effectively prune the unpromising parts of 
search space and hence DM-TopK can filter a large 
number of graph patterns that must be explored in PP-
TopK. Furthermore, we can observe the fact that the 
lower the minimum support threshold min_sup, the more 
effective the pruning techniques adopted in DM-TopK.  

D.  Scalability 
We also study the scalability of our algorithm DM-

TopK in terms of the base size of graph datasets. We 
replicate CA and CM datasets respectively from 1 to 10 
times and run DM-TopK with fixed relative min_sup. The 
experimental results are shown in Fig. 6. It is evident that 
DM-TopK shows linear scalability in runtime against the 
number of input graphs. 
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Fig. 6. Scalability Test on CM, min sup = 5% and K=20 

VI.  RELATED WORK 

Many frequent subgraph mining algorithms have been 
proposed. They can be roughly classified into two 
categories. Algorithms in the first category, including 

AGM [8] and FSG [9], use a level-wise search scheme to 
enumerate all frequent subgraphs based on the Apriori 
property. Algorithms in the second category, including 
Mofa [10], gSpan [11], FFSM [12] and GASTON [13], 
use a depth-first search to enumerate all frequent 
subgraphs. Due to the exponential number of frequent 
subgraphs, attention has been paid to closed frequent 
subgraphs [14] and maximal frequent subgraphs [15, 16] 
to reduce the number of frequent subgraphs. 

In spite of many algorithms related to frequent 
subgraph mining, little work focuses on mining graph 
patterns based on other significance measure except 
support. Recently, He and Singh [23] introduced a 
statistical model to evaluate significance of subgraphs in 
the feature space. Yan et al. developed a framework to 
mine significant patterns based on structural leap search 
[24]. However, these techniques still consider the 
significance of each graph pattern independently, rather 
than the joint significance for a set of graph patterns. 

Different from the traditional top-k method, our joint 
significance measure evaluates the overall significance 
for a set of graph patterns. As shown in our experiments, 
when selecting top-k graph patterns, joint significance is 
clearly superior to single significance. 

VII.  CONCLUSION 

In this paper, we propose a novel problem of mining 
top-k graph patterns jointly maximizing some 
significance measure from graph databases. Based on 
entropy and information gain, we give two problem 
formulations, EM and IGM, and prove that they are NP-
hard. We then present two efficient algorithms, PP-TopK 
and DM-TopK, for mining top-k graph patterns. 
Experimental study confirms that PP-TopK and DM-
TopK are efficient and scalable in terms of the base size 
of input databases. The results in classifying chemical 
compounds demonstrate the advantage of our top-k 
definition against the traditional top-k definition. Since 
graphs represent the most general type of patterns, the 
concepts and methods presented in this paper can also be 
applied to mine other type of top-k patterns like itemsets, 
sequences and tree. 
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